Rudin Chapter 5, problems 22 and 23

Amanda Hood

November 21, 2008

Suppose f is a real function on $(-\infty, \infty)$. We say x is a fixed point of f if $f(x)=x$.
a) If f is differentiable and $f^{\prime}(t) \neq 1$ for every real t, prove that f has at most one fixed point.
Proof: Suppose that f satisfies the hypotheses, but, for distinct real numbers a and b with $a<b, f(a)=a$ and $f(b)=b$. Then, by the Mean Value Theorem, there exists $r \in(a, b)$ such that $f^{\prime}(r)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1$, contradiction. Hence, f has at most one fixed point.
b) Show that the function defined by

$$
f(t)=t+\left(1+e^{t}\right)^{-1}
$$

has no fixed point, although $0<f^{\prime}(t)<1$ for all real t.
First, $f^{\prime}(t)=1-e^{t}\left(1+e^{t}\right)^{-2}$. To see that $f^{\prime}(t)$ is bounded between 0 and 1 , consider the following implications:

$$
\begin{aligned}
0<e^{t} & \Rightarrow 1<1+e^{t} \Rightarrow e^{t}<\left(1+e^{t}\right)^{2} \Rightarrow-1<-e^{t}\left(1+e^{t}\right)^{-2}<0 \\
& \Rightarrow 0<f^{\prime}(t)<1
\end{aligned}
$$

If f did have a fixed point, then $f(t)=t \Rightarrow\left(1+e^{t}\right)^{-1}=0$, which is a contradiction since the left-hand side is positive for all t.
This shows that boundedness of f^{\prime} less than 1 does not guarantee a fixed point.
c) However, if there is a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq A$ for all real t, then a fixed point x of f exists, and $x=\lim x_{n}$, where x_{1} is an arbitrary real number and $x_{n+1}=f\left(x_{n}\right)$ for $n \in \mathbb{N}$.
Lemma: If, in addition to the above hypotheses, $f(t)>t$ for all t, then $f(t) \leq g(t)=A t+f(0)$ for all $t \geq 0$. Similarly, if $f(t)<t$ for all t, then $f(t) \geq h(t)=A t+f(0)$ for all $t \leq 0$.
Proof of lemma: Note that $f(0)=g(0)$, and that g is a differentiable function with a constant derivative, namely A. Let $y \in(0, \infty)$ be arbitrary. Then, by
the Mean Value Theorem, there exists $r \in(0, y)$ such that $f^{\prime}(r)=\frac{f(y)-f(0)}{y}$. Since $f^{\prime}(r) \leq g^{\prime}(r)=A$, we have $\frac{f(y)-f(0)}{y} \leq \frac{g(y)-g(0)}{y} \Rightarrow f(y) \leq g(y)$. Hence, $f(t) \leq g(t)$ for all $t \geq 0$.
Take an arbitrary $z \in(0, \infty)$. Then, by the Mean Value Theorem, there is a point $s \in(-z, 0)$ such that $f^{\prime}(s)=\frac{f(0)-f(-z)}{z}$. As above, we find that $\frac{f(0)-f(-z)}{z} \leq \frac{h(0)-h(-z)}{z} \Rightarrow-f(-z) \leq-h(-z) \Rightarrow h(-z) \leq f(-z)$. Since z was arbitrarily chosen, $h(t) \leq f(t)$ for all $t \leq 0$.
This is an image of the function $f(t)=\log (t+8)+5$, for which $f^{\prime}(t) \leq 1 / 8$ for $t \geq 0$. Clearly, it cannot always be bounded between t and (1/8)t+f(0).

Proof of c): Recall that f can have at most one fixed point. Suppose f has none. Then, for all $t, f(t)>t$ or $f(t)<t$. If it is always the case that $f(t)>t$, then by the lemma we can conclude that $t<A t+f(0)$ for all positive t; this is a contradiction, since $t=A t+f(0)$ at $t=\frac{f(0)}{1-A}$. If $f(t)<t$ for all t, we have by the lemma that $A t+f(0)<t$ for all negative t; again, this is a contradiction.

To see the following argument more clearly, we define $g(t)=f(t)-t$. We have assumed that $g(t) \neq 0$ for all t, and that neither $g(t)>0$ or $g(t)<0$ can hold for all t. Hence, there exist a and b with $a<b$ such that $g(a)>0$ and $g(b)<0$. By the Intermediate Value Theorem, there exists $r \in(a, b)$ such that $g(r)=0$, contradicting that $g(t) \neq 0$ for all t. Hence, there is some point x such that $f(x)=x$.
Finally, we show that $\left(x_{n}\right)$ converges to x. First, note that $\left|x-x_{2}\right|=$ $\left|f(x)-f\left(x_{1}\right)\right|$. Then, by the Mean Value Theorem, there is some number r
between x and x_{1} such that $\left|f^{\prime}(r)\right|=\frac{\left|f(x)-f\left(x_{1}\right)\right|}{\left|x-x_{1}\right|}$. As $\left|f^{\prime}(r)\right| \leq A,\left|x-x_{2}\right|=$ $\left|f(x)-f\left(x_{1}\right)\right| \leq A\left|x-x_{1}\right|$. Suppose that for some natural number $n \geq 1$ that $\left|x-x_{n+1}\right|=\left|f(x)-f\left(x_{n}\right)\right| \leq A^{n}\left|x-x_{1}\right|$. Then, applying the Mean Value Theorem as we did in the case $n=1$, we find that $\left|x-x_{n+2}\right|=$ $\left|f(x)-f\left(x_{n+1}\right)\right| \leq A\left|x-x_{n+1}\right| \leq A \cdot A^{n}\left|x-x_{1}\right|=A^{n+1}\left|x-x_{1}\right|$. So, for every $n,\left|x-x_{n}\right| \leq A^{n-1}\left|x-x_{1}\right|$. By Bernoulli's inequality, $0 \leq \lim _{n \rightarrow \infty}\left|x-x_{n}\right| \leq$ $\lim _{n \rightarrow \infty} A^{n-1}\left|x-x_{1}\right|=0$, and therefore $x_{n} \rightarrow x$.
d) Here is a picture of the algorithm converging. The path $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{2}, x_{2}\right) \rightarrow$ $\left(x_{2}, x_{3}\right) \rightarrow\left(x_{3}, x_{3}\right) \rightarrow\left(x_{3}, x_{4}\right) \rightarrow \ldots$ is represented by the zig-zag lines. The function whose fixed point is being found is $-\sqrt{x}+2$, and I chose $x_{1}=3$.

As an example of how this can be applied, consider the function

$$
f(x)=\frac{x^{3}+1}{3}
$$

which has three fixed points. The fixed points α, β, and γ satisfy

$$
-2<\alpha<-1, \quad 0<\beta<1, \quad 1<\gamma<2
$$

. Suppose that we have a sequence defined as in 22c.
a) If $x_{1}<\alpha$, then $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.

If $x_{n}<\alpha$, then $x_{n+1}=\frac{x_{n}^{3}+1}{3}<\alpha$. Hence, $x_{n} \in(-\infty, \alpha)$ for all n. It follows that $f^{\prime}\left(x_{n}\right)>f^{\prime}(\alpha)=\alpha^{2}>1$ for each n. By the Mean Value Theorem, for each n there exists a point $c_{n} \in\left(x_{n}, \alpha\right)$ such that $f^{\prime}\left(c_{n}\right)=\frac{f(\alpha)-f\left(x_{n}\right)}{\alpha-x_{n}}$.

Hence, $\left|\alpha-x_{n+1}\right|=\left|f(\alpha)-f\left(x_{n}\right)\right|=f^{\prime}\left(c_{n}\right)\left|\alpha-x_{n}\right|>\alpha^{2}\left|\alpha-x_{n}\right|$. Since $\left|\alpha-x_{2}\right|>\alpha^{2}\left|\alpha-x_{1}\right|$, the relation $\left|\alpha-x_{n}\right|>\alpha^{2(n-1)}\left|\alpha-x_{1}\right|$ holds for all $n \geq 2$.
Since $\lim _{n \rightarrow \infty} \alpha^{2(n-1)}\left|\alpha-x_{1}\right|=\infty, \lim _{n \rightarrow \infty}\left|\alpha-x_{n}\right|=\infty$. Thus, $x_{n} \rightarrow-\infty$.
b) If $\alpha<x_{1}<\gamma$, then $x_{n} \rightarrow \beta$ as $n \rightarrow \infty$. [Note: $f^{\prime}(x)=x^{2}$.]

The cases we consider are $x_{1} \in(\alpha,-1), x_{1} \in[-1,-1 / 2), x_{1} \in[-1 / 2,1 / 2]$, $x_{1} \in(1 / 2,1]$, and $x_{1} \in(1, \gamma)$.
Case 1: First, suppose $x_{1} \in[-1 / 2,1 / 2]$. For $t \in[-1 / 2,1 / 2], f^{\prime}(t) \leq 1 / 4<1$. Then, $\left|\beta-x_{2}\right|=\left|f(\beta)-f\left(x_{1}\right)\right| \leq(1 / 4)\left|\beta-x_{1}\right|$. Since x_{2} is closer to β than $x_{1}, x_{2} \in[-1 / 2,1 / 2]$. It can be shown by an argument similar to the one given in 22c that $x_{n} \rightarrow \beta$.
Case 2: Next, suppose that $x_{1} \in[-1,-1 / 2)$. Since $-1 \leq x_{1}<-1 / 2$, $-1 \leq x_{1}^{3}<(-1 / 2)^{3} \Rightarrow 0 \leq \frac{x_{1}^{3}+1}{3}=x_{2}<7 / 24<1 / 2$. Thus, $x_{2} \in[-1 / 2,1 / 2]$, and it follows from case 1 that $x_{n} \rightarrow \beta$.
Case 3: It is easy to see that if $x_{n} \in(\alpha,-1)$ then $x_{n+1}<0$, and therefore $x_{n+1} \notin(1 / 2, \gamma)$. Thus, $x_{n+1} \in[-1,1 / 2]$, in which case convergence to β follows, or $x_{n+1} \in(\alpha,-1)$.
So, suppose that $x_{n} \in(\alpha,-1)$ for all n. If $x_{1} \in(\alpha,-1)$, then $\alpha<x_{1} \Rightarrow \alpha<$ $\frac{x_{1}^{3}+1}{3}=x_{2}$. An inductive argument shows that $x_{n}>\alpha$ for all n.
Notice that for $t \in(\alpha,-1)$ we have that $f^{\prime}(t)>1$. Consider $\left|\alpha-x_{n+1}\right|=$ $\left|f(\alpha)-f\left(x_{n}\right)\right|$. By the Mean Value Theorem, there exists $c_{n} \in\left(\alpha, x_{n}\right)$ such that $f^{\prime}\left(c_{n}\right)=\frac{f(\alpha)-f\left(x_{n}\right)}{\alpha-x_{n}}$. Thus, $\left|\alpha-x_{n+1}\right|>\left|\alpha-x_{n}\right|$ for all n. Therefore, $\left(x_{n}\right)$ is monotonically increasing, and is bounded above by -1 . Hence, $\left(x_{n}\right)$ must converge to some number $x \in(\alpha,-1)$. From continuity of f and the fact that $\left(x_{n}\right)$ and $\left(f\left(x_{n}\right)\right)$ have the same limit, it follows that $f(x)=x$, so x is a fixed point. But this is a contradiction, since there is no fixed point in $(\alpha,-1)$. Hence, the sequence is not bounded above by -1 , and therefore $x_{n} \rightarrow \beta$.
Case 4: The argument for when $x_{1} \in(1 / 2,1]$ is similar to case 2 .
Case 5: The argument for when $x_{1} \in(1, \gamma)$ is similar to case 3 .
c) If $\gamma<x_{1}$, then $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

The result follows from the same argument used in part a).
Here is an image of the fixed point iteration algorithm converging to β. I chose $x_{1}=-3 / 2$.

