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Suppose f is a real function on (−∞,∞). We say x is a fixed point of f if
f(x) = x.

a) If f is differentiable and f ′(t) 6= 1 for every real t, prove that f has at most
one fixed point.

Proof: Suppose that f satisfies the hypotheses, but, for distinct real numbers
a and b with a < b, f(a) = a and f(b) = b. Then, by the Mean Value

Theorem, there exists r ∈ (a, b) such that f ′(r) = f(b)−f(a)
b−a

= b−a
b−a

= 1,
contradiction. Hence, f has at most one fixed point.

b) Show that the function defined by

f(t) = t + (1 + et)−1

has no fixed point, although 0 < f ′(t) < 1 for all real t.

First, f ′(t) = 1− et(1 + et)−2. To see that f ′(t) is bounded between 0 and 1,
consider the following implications:

0 < et ⇒ 1 < 1 + et ⇒ et < (1 + et)2 ⇒ −1 < −et(1 + et)−2 < 0

⇒ 0 < f ′(t) < 1.

If f did have a fixed point, then f(t) = t ⇒ (1 + et)−1 = 0, which is a
contradiction since the left-hand side is positive for all t.

This shows that boundedness of f ′ less than 1 does not guarantee a fixed
point.

c) However, if there is a constant A < 1 such that |f ′(t)| ≤ A for all real t, then
a fixed point x of f exists, and x = lim xn, where x1 is an arbitrary real
number and xn+1 = f(xn) for n ∈ N.

Lemma: If, in addition to the above hypotheses, f(t) > t for all t, then
f(t) ≤ g(t) = At + f(0) for all t ≥ 0. Similarly, if f(t) < t for all t, then
f(t) ≥ h(t) = At + f(0) for all t ≤ 0.

Proof of lemma: Note that f(0) = g(0), and that g is a differentiable function
with a constant derivative, namely A. Let y ∈ (0,∞) be arbitrary. Then, by
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the Mean Value Theorem, there exists r ∈ (0, y) such that f ′(r) = f(y)−f(0)
y

.

Since f ′(r) ≤ g′(r) = A, we have f(y)−f(0)
y

≤ g(y)−g(0)
y

⇒ f(y) ≤ g(y). Hence,

f(t) ≤ g(t) for all t ≥ 0.

Take an arbitrary z ∈ (0,∞). Then, by the Mean Value Theorem, there

is a point s ∈ (−z, 0) such that f ′(s) = f(0)−f(−z)
z

. As above, we find that
f(0)−f(−z)

z
≤ h(0)−h(−z)

z
⇒ −f(−z) ≤ −h(−z) ⇒ h(−z) ≤ f(−z). Since z

was arbitrarily chosen, h(t) ≤ f(t) for all t ≤ 0.

This is an image of the function f(t) = log(t + 8) + 5, for which f ′(t) ≤ 1/8
for t ≥ 0. Clearly, it cannot always be bounded between t and (1/8)t+ f(0).
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Proof of c): Recall that f can have at most one fixed point. Suppose f has
none. Then, for all t, f(t) > t or f(t) < t. If it is always the case that
f(t) > t, then by the lemma we can conclude that t < At + f(0) for all

positive t; this is a contradiction, since t = At + f(0) at t = f(0)
1−A

. If f(t) < t
for all t, we have by the lemma that At + f(0) < t for all negative t; again,
this is a contradiction.

To see the following argument more clearly, we define g(t) = f(t) − t. We
have assumed that g(t) 6= 0 for all t, and that neither g(t) > 0 or g(t) < 0
can hold for all t. Hence, there exist a and b with a < b such that g(a) > 0
and g(b) < 0. By the Intermediate Value Theorem, there exists r ∈ (a, b)
such that g(r) = 0, contradicting that g(t) 6= 0 for all t. Hence, there is some
point x such that f(x) = x.

Finally, we show that (xn) converges to x. First, note that |x − x2| =
|f(x)− f(x1)|. Then, by the Mean Value Theorem, there is some number r
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between x and x1 such that |f ′(r)| = |f(x)−f(x1)|
|x−x1| . As |f ′(r)| ≤ A, |x− x2| =

|f(x) − f(x1)| ≤ A|x − x1|. Suppose that for some natural number n ≥ 1
that |x − xn+1| = |f(x) − f(xn)| ≤ An|x − x1|. Then, applying the Mean
Value Theorem as we did in the case n = 1, we find that |x − xn+2| =
|f(x)−f(xn+1)| ≤ A|x−xn+1| ≤ A ·An|x−x1| = An+1|x−x1|. So, for every
n, |x − xn| ≤ An−1|x − x1|. By Bernoulli’s inequality, 0 ≤ lim

n→∞
|x − xn| ≤

lim
n→∞

An−1|x− x1| = 0, and therefore xn → x.

d) Here is a picture of the algorithm converging. The path (x1, x2) → (x2, x2) →
(x2, x3) → (x3, x3) → (x3, x4) → ... is represented by the zig-zag lines. The
function whose fixed point is being found is −√x + 2, and I chose x1 = 3.
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As an example of how this can be applied, consider the function

f(x) =
x3 + 1

3

which has three fixed points. The fixed points α, β, and γ satisfy

−2 < α < −1, 0 < β < 1, 1 < γ < 2

. Suppose that we have a sequence defined as in 22c.

a) If x1 < α, then xn → −∞ as n →∞.

If xn < α, then xn+1 = x3
n+1
3

< α. Hence, xn ∈ (−∞, α) for all n. It follows
that f ′(xn) > f ′(α) = α2 > 1 for each n. By the Mean Value Theorem,

for each n there exists a point cn ∈ (xn, α) such that f ′(cn) = f(α)−f(xn)
α−xn

.
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Hence, |α − xn+1| = |f(α) − f(xn)| = f ′(cn)|α − xn| > α2|α − xn|. Since
|α − x2| > α2|α − x1|, the relation |α − xn| > α2(n−1)|α − x1| holds for all
n ≥ 2.

Since lim
n→∞

α2(n−1)|α− x1| = ∞, lim
n→∞

|α− xn| = ∞. Thus, xn → −∞.

b) If α < x1 < γ, then xn → β as n →∞. [Note: f ′(x) = x2.]

The cases we consider are x1 ∈ (α,−1), x1 ∈ [−1,−1/2), x1 ∈ [−1/2, 1/2],
x1 ∈ (1/2, 1], and x1 ∈ (1, γ).

Case 1: First, suppose x1 ∈ [−1/2, 1/2]. For t ∈ [−1/2, 1/2], f ′(t) ≤ 1/4 < 1.
Then, |β − x2| = |f(β)− f(x1)| ≤ (1/4)|β − x1|. Since x2 is closer to β than
x1, x2 ∈ [−1/2, 1/2]. It can be shown by an argument similar to the one
given in 22c that xn → β.

Case 2: Next, suppose that x1 ∈ [−1,−1/2). Since −1 ≤ x1 < −1/2,

−1 ≤ x3
1 < (−1/2)3 ⇒ 0 ≤ x3

1+1

3
= x2 < 7/24 < 1/2. Thus, x2 ∈ [−1/2, 1/2],

and it follows from case 1 that xn → β.

Case 3: It is easy to see that if xn ∈ (α,−1) then xn+1 < 0, and therefore
xn+1 /∈ (1/2, γ). Thus, xn+1 ∈ [−1, 1/2], in which case convergence to β
follows, or xn+1 ∈ (α,−1).

So, suppose that xn ∈ (α,−1) for all n. If x1 ∈ (α,−1), then α < x1 ⇒ α <
x3
1+1

3
= x2. An inductive argument shows that xn > α for all n.

Notice that for t ∈ (α,−1) we have that f ′(t) > 1. Consider |α − xn+1| =
|f(α)− f(xn)|. By the Mean Value Theorem, there exists cn ∈ (α, xn) such

that f ′(cn) = f(α)−f(xn)
α−xn

. Thus, |α − xn+1| > |α − xn| for all n. Therefore,
(xn) is monotonically increasing, and is bounded above by −1. Hence, (xn)
must converge to some number x ∈ (α,−1). From continuity of f and the
fact that (xn) and (f(xn)) have the same limit, it follows that f(x) = x, so
x is a fixed point. But this is a contradiction, since there is no fixed point
in (α,−1). Hence, the sequence is not bounded above by −1, and therefore
xn → β.

Case 4: The argument for when x1 ∈ (1/2, 1] is similar to case 2.

Case 5: The argument for when x1 ∈ (1, γ) is similar to case 3.

c) If γ < x1, then xn →∞ as n →∞.

The result follows from the same argument used in part a).

Here is an image of the fixed point iteration algorithm converging to β. I chose
x1 = −3/2.
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