1. Suppose $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ are real sequences, and that for all positive integers, n, $x_{n} \leq y_{n} \leq z_{n}$. If both $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ converge and have the same limit, L, prove that $\left\{y_{n}\right\}$ converges and its limit is L. Answer Fix $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} x_{n}=L$ there is $N_{x} \in \mathbb{N}$ so that if $n \geq N_{x}$, then $\left|x_{n}-L\right|<\varepsilon$. Therefore for such $n, L-\varepsilon<x_{n}<L+\varepsilon$. Similarly, there is $N_{z} \in \mathbb{N}$ so that if $n \geq N_{z}$, then $L-\varepsilon<z_{n}<L+\varepsilon$. Let $N=\max \left(N_{x}, N_{z}\right)$. If $n \geq N$, then $L-\varepsilon<x_{n} \leq y_{n} \leq z_{n}<L+\varepsilon$, so that $\left|y_{n}-L\right|<\varepsilon$. Thus $\lim _{n \rightarrow \infty} y_{n}=L$.
2. Suppose (X, d) is a metric space. If P and Q are connected subsets of X with $P \cap Q \neq \emptyset$, prove that $P \cup Q$ is connected. Answer Suppose there is a separation, A and B of $P \cup Q$. Then $A \cup B=P \cup Q, \bar{A} \cap B=\emptyset, A \cap \bar{B}=\emptyset$, and neither A nor B is empty. Since $P \cap Q \neq \emptyset$, there is $x \in P \cup Q$ so that $x \in A$ or $x \in B$. We address the first case (the second is similar). Surely $A \cap P$ and $B \cap P$ is a separation of P since $\overline{A \cap P} \subset \bar{A} \cap P \subset \bar{A}$ and $B \cap P \subset B$ and therefore $(\overline{A \cap P}) \cap(B \cap P)=\emptyset$ (and similarly reversing the roles of A and B). But $x \in A$, so since P is connected, $P \subset A$. Similarly, if $x \in Q, Q \subset A$. Therefore $B=\emptyset$, a contradiction: no separation exists, and $P \cup Q$ is connected.
3. Suppose (X, d) is a metric space.
a) If A and B are subsets of X, prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Answer If $x \in \bar{A}$, then given $r>0, N_{r}(x) \cap A \neq \emptyset$. That is, either $x \in A$ or x is a limit point of A. Since $A \subset A \cup B$, if $x \in \bar{A}$, then given $r>0, N_{r}(x) \cap(A \cup B) \neq \emptyset$ and thus $x \in \overline{A \cup B}$. The case $x \in \bar{B}$ is similar. Now if $x \in \overline{A \cup B}$, consider $N_{r}(x) \cap(A \cup B)=\left(N_{r}(x) \cap A\right) \cup\left(N_{r}(x) \cap B\right)$. This is not empty because x is an element of the closure of $A \cup B$. If there is $r>0$ so that $N_{r}(x) \cap A=\emptyset$, there is always $b \in B$ with $b \in N_{r}(x)$. Also, if $0<s<r$, there must be $b \in B$ with $b \in N_{s}(x)$ or else $N_{s}(x) \cap(A \cup B)=\emptyset$. Therefore $x \in \bar{B}$. The situation if $N_{r}(x) \cap B=\emptyset$ is similar, so either x is in \bar{A} or in \bar{B}.
b) Give an example to show that the closure of the union of a countable number of subsets of X need not be equal to the union of the closures of each of the sets. Answer Take $X=\mathbb{R}$ with the usual metric, and $A_{j}=\left\{\frac{1}{j}\right\}$ for positive integer j. Here $\overline{A_{j}}=A_{j}$ but $0 \in \overline{\bigcup_{j=1}^{\infty} A_{j}}$. So the union of the closures is not the same as the closure of the union.
c) Give an example to show that $\overline{A \cap B}$ and $\bar{A} \cap \bar{B}$ need not be equal. Here A and B are subsets of X. Answer Take $X=\mathbb{R}$ with the usual metric. Suppose $A=[0,1)$ and $B=[1,2]$ so that $\bar{A}=[0,1]$ and $\bar{B}=[1,2]$. Therefore $A \cap B=\emptyset$ so the closure is empty, but $\bar{A} \cap \bar{B}=\{1\}$
4. Suppose (X, d) is a metric space.
a) If A is a subset of X, prove that $\operatorname{diam}(A)=\operatorname{diam}(\bar{A})$. Comment $\operatorname{diam}(S)=$ $\sup \{d(x, y): x, y \in S\}$ if $S \subset X$. Answer Since $A \subset \bar{A}$, the sup for \bar{A} is taken over more real numbers, and therefore $\operatorname{diam}(A) \leq \operatorname{diam}(\bar{A})$. If $\operatorname{diam}(A)<\operatorname{diam}(\bar{A})$, then there is $\delta>0$ so that $\operatorname{diam}(A)+\delta<\operatorname{diam}(\bar{A})$ and therefore $d(x, y)+\delta<\operatorname{diam}(\bar{A})$ for all x and y in A. But the diameter of the closure is a sup, so there must be z and w in \bar{A} so that $d(x, y)+\frac{\delta}{2}<d(z, w)$ for all x and y in A. Since $z \in \bar{A}$ and $w \in \bar{A}$, there are elements \tilde{z} and \tilde{w} in A with $d(z, \tilde{z})<\frac{\delta}{4}$ and $d(w, \tilde{w})<\frac{\delta}{4}$. Estimate: $d(z, w) \stackrel{\Delta}{\leq} d(\tilde{z}, z)+d(\tilde{z}, \tilde{w})+d(\tilde{w}, w)<d(\tilde{z}, \tilde{w})+2\left(\frac{\delta}{4}\right)=d(\tilde{z}, \tilde{w})+\frac{\delta}{2}$. This contradicts a
previous assertion (with \tilde{z} as x and \tilde{w} as y) so the diameters must be equal. (The text's proof is more economical.)
b) Give an example of a subset A of X with $\operatorname{diam}(A) \neq \operatorname{diam}\left(A^{\circ}\right)$ and $A^{\circ} \neq \emptyset$. (A° is the interior of A.) Answer Take $X=\mathbb{R}$ with the usual metric. If $A=[0,1] \cup\{2\}$, then $A^{\circ}=(0,1), \operatorname{diam}(A)=2$, and $\operatorname{diam}\left(A^{\circ}\right)=1$.
5. a) Suppose (X, d) is a metric space, K is a compact subset of X, U is an open subset of X, and $K \subset U$. Prove that there is $r>0$ so that $\bigcup_{k \in K} N_{r}(k) \subset U$. Answer Suppose $k \in K$. Since U is open, there is $r_{k}>0$ with $N_{2 r_{k}}(k) \subset U$. Then $\left\{N_{r_{k}}(k)\right\}_{k \in K}$ is an open cover of K (with no 2 here!). K is compact so there is a finite subcover, $\left\{N_{r_{k_{j}}}\left(k_{j}\right)\right\}_{1 \leq j \leq n}$. Define $r=\min \left\{r_{k_{j}}: 1 \leq j \leq n\right\} . s$ is a positive real number since it is the minimum of a finite set of positive real numbers. If $k \in K$, then there is k_{j} with $d\left(k, k_{j}\right)<r$ (cover!). But $N_{r}(k) \subset N_{2 r}\left(k_{j}\right)$ (triangle inequality) and $N_{2 r}\left(k_{j}\right) \subset N_{2 r_{k_{j}}}\left(k_{j}\right) \subset U$. So we have proved $\bigcup_{k \in K} N_{r}(k) \subset U$.
Alternative proof Suppose no such r exists. Then for any positive integer n we can find $k_{n} \in K$ and $v_{n} \notin U$ with $d\left(k_{n}, v_{n}\right)<\frac{1}{n}$. Since K is compact, the sequence $\left\{k_{n}\right\}$ has a subsequence which converges to q in K. But $q \in U$ so there's $\delta>0$ with $N_{\delta}(q) \subset U$. Find n so that $\frac{1}{n}<\frac{\delta}{2}$ and $d\left(k_{n}, q\right)<\frac{\delta}{2}$, possible since q is a subsequential limit of $\left\{k_{n}\right\}$. Then (by $\Delta \leq$) $v_{n} \in N_{\frac{1}{n}}\left(k_{n}\right) \subset N_{\frac{\delta}{2}}\left(k_{n}\right) \subset N_{\delta}(q) \subset U$. But this contradicts $v_{n} \notin U$.
b) Give an example to show that there can be a closed subset C of X and an open subset U of X with $C \subset U$ so that there is no $r>0$ with $\bigcup_{x \in C} N_{r}(x) \subset U$. Answer Take \mathbb{R} with the usual metric and let C be the positive integers and U be the open set $\bigcup_{n \in N}\left(n-\frac{1}{n}, n+\frac{1}{n}\right)$. The Archimedean property implies there is no positive r with $r<\frac{1}{n}$ for all $n \in \mathbb{N}$, so this C is as desired. It is not difficult to find examples of connected C 's and U 's satisfying this question in R^{2}.
6. a) Prove directly from the definition of compactness that the half-open interval $(0,1] \subset \mathbb{R}$ is not compact. (\mathbb{R} has the usual topology.) Answer Take $U_{n}=\left(\frac{1}{n}, 1\right]$. Then $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ is an open cover of $(0,1]$ and $U_{n+1} \supset U_{n}$. It is a cover by the Archimedean property. The cover "nests" since $\frac{1}{n+1}<\frac{1}{n}$. If $\left\{U_{n_{j}}\right\}_{1 \leq j \leq N}$ is a finite subcover, $\bigcup_{1 \leq j \leq N} U_{n_{j}}=U_{M}$ where $M=\max \left\{n_{j}: 1 \leq j \leq N\right\}$. But $U_{M}=\left(\frac{1}{M}, 1\right] \neq(0,1]$ by the Archimedean property.
b) Prove that a Cauchy sequence in a metric space is bounded.

Answer Proved in class and in the text.
7. Suppose the following is known about three sequences:

If n is a positive integer, then $\left|x_{n}-2\right|<\frac{5}{n},\left|y_{n}-6\right|<\frac{20}{\sqrt{n}}$, and $\left|z_{n}-5\right|<\frac{6}{n^{2}}$.
Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ converge, and their respective limits are 2,6 , and 5. The sequence whose $n^{\text {th }}$ term is $x_{n} y_{n}-z_{n}$ converges and its limit is $2 \cdot 6-5=7$. Do not prove this, but find and verify a specific n so that $\left|\left(x_{n} y_{n}-z_{n}\right)-7\right|<\frac{1}{1,000}$. This need not be a "best possible" n but you must supply a specific n and a proof of your estimate. Answer $\left|\left(x_{n} y_{n}-z_{n}\right)-7\right|=\left|\left(x_{n} y_{n}-z_{n}\right)-(2 \cdot 6-5)\right| \leq\left|x_{n} y_{n}-2 y_{n}+2 y_{n}-2 \cdot 6\right|+\left|z_{n}-5\right| \leq$ $\left|x_{n}-2\right|\left|y_{n}\right|+2\left|y_{n}-6\right|+\left|z_{n}-5\right|$. Suppose $n \geq(100)^{2}$. Then $\left|y_{n}-6\right|<\frac{20}{100}=\frac{1}{5}$ so that $\left|y_{n}\right| \leq\left|y_{n}-6\right|+|6|<7$ as well as $\left|y_{n}-6\right|<\frac{20}{\sqrt{n}}$. Further, we know $\left|x_{n}-2\right|\left|y_{n}\right|<\frac{5}{n} \cdot 7=\frac{35}{n}$. Therefore $\left|\left(x_{n} y_{n}-z_{n}\right)-7\right|<\frac{35}{n}+\frac{20}{\sqrt{n}}+\frac{6}{n^{2}}$. Wow! Now take $n=10^{10}$ so $\frac{35}{n}=\frac{35}{10^{10}}<\frac{1}{3,000}$, $\frac{20}{\sqrt{n}}=\frac{20}{10^{5}}<\frac{1}{3,000}$, and $\frac{6}{n^{2}}=\frac{6}{10^{20}}<\frac{1}{3,000}$. The total will be less than $\frac{1}{1,000}$.

