(15) 1. If A is real and positive, and  $A \neq 1$ , Maple reports that

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+A^2)} = \frac{\pi}{A+1}.$$

Check this assertion using the Residue Theorem.

**Sketch** the contour of integration.

Show any residue computations.

Explain why some integral has limiting value equal to 0.

For a rather small amount of extra credit\* please guess the value of  $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)^2}$ .

Answer \_\_\_\_\_

(14) 2. a) State a version of the Cauchy integral formula for derivatives\*\*.

b) Use the statement in a) or some other result to compute  $_{3i}$   $\int_{B} \frac{z^{4}}{(z-(1+i))^{3}} dz$  where B is the simple closed curve shown:

the line segment from 0 to 3, followed by the quarter-circular arc centered at 0 from 3 to 3i, followed by the line segment from 3i to 0.

**Answer**  $-24\pi$ 



(15) 3. In this problem,  $f(z) = \frac{1}{e^z - 1} - \frac{1}{z}$ . Find and classify (as removable, pole, or essential) all isolated singularities of f(z). Find the residue of f(z) at every singularity. For each singularity which is a pole, find the order of the pole.

Comment This is a complex analysis course! Please find all isolated singularities!

(12) 4. a) Suppose that f(z) is an entire function and there is a positive constant K so that |f(z)| > K for all z. Prove that f(z) must be a constant function.

**Hint** What can you do with something that is not 0?

b) The exponential function is never 0 and is an entire function. Briefly explain why the exponential function does not contradict the assertion in part a).

(14) 5. Find the first four non-zero terms of the Taylor series centered at z=0 for the function  $f(z)=\frac{\sin z}{(z-1)^2}$ .

**Suggestion** A direct computation *is* possible. The results are messy, with a large chance for error. Try another way.

<sup>\*</sup> Let's say, uhhh, 3 points.

<sup>\*\*</sup> Your statement should contain the words "simply" and "simple", and be valid for derivatives of any order.

- (15) 6. In this problem,  $f(z) = \frac{\sqrt{z}}{(z-1)^2}$ .
  - a) Specify precisely a maximal (largest) domain in  $\mathbb{C}$  in which f(z) is analytic. (You need not prove your assertion!)
  - b) What is the radius of convergence of the Taylor series centered at z = 1 + i for f(z)?

    Note The coefficients of this series are complicated. You may use your answer to a) here.

Answer \_\_\_\_\_

c) What is the radius of convergence of the Taylor series centered at z = -2 + i for f(z)?

Note The coefficients of this series are complicated. The answer is tricky.

Answer \_\_\_\_\_

- d) Find the first four non-zero terms of the Laurent series centered at z=1 for f(z).
- (15) 7. Suppose a and b are real and positive, and a > b. Use the Residue Theorem or other results of this course to compute

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta}.$$

Note This is problem #7 of section 2.3 in your text. The answer given in the text is  $\frac{\pi}{\sqrt{a^2-b^2}}$  which is slightly (?) incorrect.

## Second Exam for Math 403, section 2

April 19, 2005

| NAME |  |  |
|------|--|--|
|      |  |  |

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

No notes, texts, or calculators may be used on this exam.

| Problem<br>Number | Possible<br>Points | Points<br>Earned: |
|-------------------|--------------------|-------------------|
| 1                 | 15                 |                   |
| 2                 | 14                 |                   |
| 3                 | 15                 |                   |
| 4                 | 12                 |                   |
| 5                 | 14                 |                   |
| 6                 | 15                 |                   |
| 7                 | 15                 |                   |
| Total Poi         | nts Earned:        |                   |