AB
1 Answer by Joseph Buono; corrected by Samantha Parillo |
CD
1 Answer by Joseph Buono |
2
a,b, cAB,cCD |
3 Answer by Joseph Buono |
4 Answer by Joseph Buono; a small part of a)'s answer is missing |
5 Answer by Sai Veruva |
6 | 8 | |
9 | 10 Answer by Sai Veruva |
11 Answer by Sai Veruva |
12
Answer by Sai Veruva |
Problem 5
F(x,y)=(2y+1)ex2-y=2yex2-y+ex2-y
5a)
∂f/∂x=(2x)(2y)ex2-y+(2x)ex2-y=ex2-y(4xy+2x)=0.
Exponential functions are never =0, so 4xy+2x=0; x(4y+2)=0 →
x=0.
∂f/∂y=2ex2-y-2yex2-y-ex2-y=ex2-y(2-2y-1)=0.
Exponential functions are not =0, so 2-2y-1=0 → y=1/2.
The critical point is at (0,1/2). No other points satisfy the equations
above.
5b) The nature of the critical point is determined by
D=D(a,b)=fxx(a,b)fyy(a,b)-fxy(a,b)2.
fxx(x,y)=(4y+2)ex2-y+ex2-y(4xy+2x)2x,
where fxx(0,.5)=4e-.5.
fyy(x,y)=-ex2-y(2-2y-1)+(-2)ex2-y,
where fyy(0,.5)=-2e-.5.
fxy(x,y)=2xex2-y(2-2y-1), where
fxy(0,.5)=0.
Thus, D=(4e-.5)(-2e-.5)-02=-8/e.
Since D<0, the critical point (0,.5) is a saddle point.
(z2)x + 3xy2 + ey2z = 4. Find ∂z/∂x. ∂z/∂x = -Fx/Fz Fx= z2 + 3y2 Fz=2zx+(y2)ey2z ∂z/∂x=-(z2+3y2)/[2zx+(y2)ey2z]If the formula wasn't given, then it can be easily derived using implicit diff. ideas from single variable calc. If we assume F(x,y,z)=0 and differentiate both sides with respect to x:
∂F/∂x(∂x/∂x)+∂F/∂y(∂y/∂x)+∂F/∂z(∂z/∂x)=0 ∂F/∂x(1)+∂F/∂y(0)+∂F/∂z(∂z/∂x)=0 ∂F/∂z(∂z/∂x)= -(∂F/∂x) ∂z/∂x= -(∂F/∂x)/(∂F/∂z)= -Fz/Fz
Maintained by greenfie@math.rutgers.edu and last modified 12/11/2008.