640:192:01 Part IV: playing with graphs on maple 9/1/2005

The graphing capabilities of maple explored here will probably seem rather familiar to you after your experience with graphing calculators and possibly other programs or devices. I won't discuss polar plots or parametric plots - but even those are generally available on hand-held calculators now. maple does really lovely pictures with three-dimensional plots - but that's another course!

Let's begin with the simple command

$$
\operatorname{plot}\left(x^{\wedge} 3-6^{*} x+1\right) \mathbf{R E T}
$$

After the program responds, move back and alter your command to read

$$
\operatorname{plot}\left(\mathrm{x}^{\wedge} 3-6^{*} \mathrm{x}+1, \mathrm{x}\right) \mathbf{R E T}
$$

Now a graph should appear.
There are some things to notice. For this kind of plot, the "default" interval for x (what maple assumes unless advised otherwise) is $[-10,10]$ Maybe this is o.k. for you (suggestion: try graphing $\frac{1}{\sqrt{x^{2}-100}}$ and see what happens) but you may want more control. The plot command has many options. Read about them during the first free week you have by typing help(plot) and following all the references!
Let's look at the graph we have. By the way, when I am graphing, I tend to foul things up a great deal and I frequently end up with 5 or 10 graphs sitting around at the same time. Try to be neat. You can get rid of those graphs you don't want by clicking on the plot and then invoking Cut. Of course, if they hang around until you quit maple entirely, these graphs will then disappear also. But you can try to diminish confusion!
Again, look at the graph. Note that the vertical and horizontal axes are very differently scaled. But maple is trained to "autoscale" so it will distort the picture to fill the rectangular screen. I wrote that word in a large and bold font because it's something that has repeatedly caused me confusion. Now go to the graph, right click, and click on Scaling Constrained that's the way it really looks, darn it: a very, very thin graph. O.k.: relax. Let's draw another graph.

$$
\operatorname{plot}(\sin (100 / x), x=.1 . .1) \mathbf{R E T}
$$

This graph is attempting to illustrate some well-known misbehavior since $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{100}{x}\right)$ doesn't exist. The graph should bounce around a lot when x is close to 0 . It certainly seems to, but notice (by pure thought) that between each root or x-intercept of the function, there must alternatively be a place where the function is +1 and where the function is -1 . The graph doesn't show that! (Look carefully, please.) maple doesn't think. It plots points and connects the dots to produce the graph. The default performance is fairly simple-minded (more sophisticated alternatives can be specified) and the plotted points can be seen by clicking on Style and then on Point - you'll see just the computed points on the curve with no connections drawn. If you increase the number of points to be plotted, you will probably get a better picture, but computation time for the graph's creation increases. Here's another type of bad picture. Please look closely at the graph resulting from

$$
\operatorname{plot}\left(1 /\left(10^{\wedge} 3 \mathrm{x}\right), \mathrm{x}=-1 . .1\right) \mathbf{R E T}
$$

and you can try to determine the range of the function based only on the appearance of the graph. The range, deduced from the displayed graph, seems approximately to be the interval $[-1,2.5]$. Of course this is incorrect. I know that $\frac{1}{10^{3} x}$ on $[-1,1]$ is not
defined at 0 and is also unbounded. So maple may have difficulty graphing functions with discontinuities. Some of the options for plot may be useful. The help screen for plot is long and has many entries.
By the way, any of the programs (Mathematica, Maple, graphing calculators, etc.) can be "spoofed" and made to draw bad graphs. Devices with finite memories can hardly imitate all aspects of the real numbers accurately.
Try the command (but you may want to guess the result before completing the input):

$$
\operatorname{plot}\left(\left\{x^{\wedge} 2, x^{\wedge} 3\right\}, x=4 . .5\right) \mathbf{R E T}
$$

Therefore you can plot collections of functions, certainly useful sometimes.
Define your own function and plot it: try to define $P(w)=\frac{e^{w}}{1+w^{2}}$ and then remember that maple finds the derivative function of P with the character string $D(P)$. Try this: $\operatorname{plot}(\{P(t), D(P)(t)\}, t=-2 . .5)$ RET
As long as the variable (here t) is used consistently, maple will have no difficulty. Compare the two graphs. Where $D(P)$ is 0 then P must have a horizontal tangent. What happens to the graph of P when the graph of $D(P)$ has a maximum?
We can graph curves implicitly defined by equations. For example, try implicitplot ($x^{\wedge} 3-5 x^{*} y^{\wedge} 2=7, x=-5 . .5, y=-5 . .5$)
and notice the result: nothing happens! Well, maple is such a huge program that most of it is stored "asleep", and these parts must be specifically recalled to active memory. In this case, we need to load the routines in the plots package. This is done with the command with(plots)
Now after you have loaded the plots package, please try again
implicitplot ($x^{\wedge} 3-5 x^{*} y^{\wedge} 2=7, x=-5 . .5, y=-5 . .5$)
the result should be a nice picture. Implicit curve plotting is very difficult and due to problems with discontinuities frequently may give pictures which are untrue. Look at implicitplot($x^{\wedge} 3-5 x^{*} y^{\wedge} 2=7, x=-50 . .50, y=-50 . .50$)
which asks for the same algebraic curve in a 100×100 window. The result seems to have some corners and wiggles which I doubt are correct.
Let's conclude by attempting to locate a root.

$$
\operatorname{plot}\left(\mathrm{x}^{*} \ln (\mathrm{x})-\sin (\mathrm{x}), \mathrm{x}=0 . .3\right) \mathbf{R E T}
$$

This function seems to have a root. Right click on this graph and then investigate the Manipulator. The capabilities of Point probe, $\underline{\mathbf{S} c a l e, ~ a n d ~ P a n ~ w o r k ~ v e r y ~ m u c h ~ l i k e ~}$ "zooming" and "tracing" with a graphing calculator. I can easily find an approximate location of the root (about 1.77, I think).
We can check the picture with a numerical computation:

$$
\text { fsolve }\left(\mathrm{x}^{*} \ln (\mathrm{x})-\sin (\mathrm{x}), \mathrm{x}\right) \mathbf{R E T}
$$

reports 1.75267781 , fairly close to where we located the root graphically. You can, of course, read about fsolve with the help command.
Continue to explore, please. And thank you for working through this.

