
How to compute integrals of powers of cosine

Define In to be
∫ π/2

−π/2
(cos θ)n dθ.

What do we know? The whole sequence of numbers {In} is a decreasing sequence.
This is actually not too hard to see. Remember that In is the integral of (cos x)n over
the interval

[

−π
2
, π

2

]

. In this interval, the values of cosine are between 0 and 1. Therefore
the integral will be less than the area of the box whose base is π long and whose height
is 1. But, in fact, the higher the power, the smaller the value of the function except at
those places where cosine is either 1 (x = 0) or 0 (x = ± π

2
). Higher powers make smaller

integrals. Here is a graph of two powers of cosine over the interval. The larger one is
(cos x)6, with integral (approximately) .982, and the smaller one is (cos x)10 with integral
(approximately) .773. The picture and the computations were both produced by Maple).

(cosx)6 and (cosx)10 on the interval
[

−π
2
, π

2

]

We’ll use integration by parts for the computation. The parts used aren’t totally
obvious, but they eventually yield a nice reduction formula.

∫ π/2

−π/2

(cos θ)n dθ = (cos θ)n−1 · sin θ

]π/2

−π/2

+ (n − 1)

∫ π/2

−π/2

(cos θ)n−2(sin θ)2 dθ

∫

u dv = uv −

∫

v du

u = (cos θ)n−1

dv = cos θ dθ

}{

du = (n − 1)(cos θ)n−2(− sin θ) dθ

v = sin θ

Note first that we get + in the actual application of integration by parts here because
there are two minus signs, one from the integration by parts formula and one from the
derivative of cosine. Also, the “penalty term” (what we pay for the privilege of exchanging
the integrals – the stuff with the ]) is actually 0 because sin θ is 0 when θ is ±π/2.

We can continue to massage the integral we’ve gotten by using (sin θ)2 = 1− (cos θ)2

and by dropping the term which equals 0. We then get:
∫ π/2

−π/2

(cos θ)n dθ = (n − 1)

∫ π/2

−π/2

(cos θ)n−2
(

1 − (cos θ)2
)

dθ

= (n − 1)

∫ π/2

−π/2

(cos θ)n−2 dθ − (n − 1)

∫ π/2

−π/2

(cos θ)n dθ
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Now we can “solve” for cn, the desired integral, by taking the second term on the right
side of the equation to the left, adjusting the sign, and dividing by the resulting coefficient,
n. We get:

∫ π/2

−π/2

(cos θ)n dθ =
n − 1

n

∫ π/2

−π/2

(cos θ)n−2 dθ

We can translate this:

In =
n − 1

n
In−2

This reduction formula is valid if n ≥ 2. We certainly know that I0 =
∫ π

2

−

π

2

(cos x)0 dx =
∫ π

2

−

π

2

1 dx = π and I1 =
∫ π

2

−

π

2

(cos x)1 dx = 2. With these two values and the reduction

formula we can exactly compute all of the In’s. For example,

I5 =
4

5
· I3 =

4

5
·
2

3
· I1 =

(

4 · 2

5 · 3

)

2

and

I6 =
5

6
· I4 =

5

6
·
3

4
· I2 =

5

6
·
3

4
·
1

2
· I0 =

(

5 · 3 · 1

6 · 4 · 2

)

π

These two computations provide examples of descriptions for In. The descriptions
depend on the parity (even or odd) of n.

Computing π strangely: an unexpected reward

We know I5 and I6:

I5 =

(

4 · 2

5 · 3

)

2

I6 =

(

5 · 3 · 1

6 · 4 · 2

)

π

And here are I7 and I8:

I7 =

(

6 · 4 · 2

7 · 5 · 3

)

2

I8 =

(

7 · 5 · 3 · 1

8 · 6 · 4 · 2

)

π

We also know that the integrals of higher powers are smaller:

I8 ≤ I7 ≤ I6

Let’s look at the values of just these definite integrals:

(

7 · 5 · 3 · 1

8 · 6 · 4 · 2

)

π ≤

(

6 · 4 · 2

7 · 5 · 3

)

2 ≤

(

5 · 3 · 1

6 · 4 · 2

)

π
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Now “simplify” the first two expressions, putting π
2

on the left-hand side:

UP
π

2
≤

2 · 2 · 4 · 4 · 6 · 6 · 8

1 · 3 · 3 · 5 · 5 · 7 · 7

Now “simplify” the last two expressions, putting π
2

on the right-hand side:

DOWN
2 · 2 · 4 · 4 · 6 · 6

1 · 3 · 3 · 5 · 5 · 7
≤

π

2

Incidentally, if you don’t believe this, maple reports that the overestimate of π
2

shown in
UP is approximately 1.672, and the underestimate of π

2
shown in DOWN is approximately

1.463; note that 1.571 is a three-decimal place approximation of π
2
.

The quotient of the UP overestimate divided by the DOWN underestimate is

2 · 2 · 4 · 4 · 6 · 6 · 8
1 · 3 · 3 · 5 · 5 · 7 · 7
2 · 2 · 4 · 4 · 6 · 6
1 · 3 · 3 · 5 · 5 · 7

=
8

7

We can extend this reasoning by looking at the formulas for I2n and I2n+1 and I2n+2.
The discrepancy between the over– and underestimates will be 2n+2

2n+1
which surely ap-

proaches 1 as n gets large. Therefore [!!!],

π

2
=

2

1
·
2

3
·
4

3
·
4

5
·
6

5
·
6

7
. . .

This “infinite product formula” is attributed to John Wallis (1616–1703). It converges
very slowly to its limit. This isn’t the formula used by the well-publicized computations
which get billions of digits of π!

Some sample computations

I asked a silicon friend to compute some “partial products” (well, they’re only part of
the whole product). The command mul asks Maple to multiply out a formula over a given
range. So, for example, mul(j,j=1..5) requests 1 · 2 · 3 · 4 · 5, and returns 120, which is 5!,
5 factorial. Below I’ve organized the Wallis product in groups of two fractions at a time.
So the first computation actually found the 400th partial product, and the third, which
took a bit more than a tenth of a second, found the 20,000th partial product. Darn, the
Wallis product converges very slowly. I need to put in the evalf’s because otherwise I’ll
just get a fraction of some really big integers.

> evalf(2*mul((2*j*2*j)/((2*j-1)*(2*j+1)),j=1..200));

3.137677901

> evalf(2*mul((2*j*2*j)/((2*j-1)*(2*j+1)),j=1..1000));

3.140807746

> evalf(2*mul((2*j*2*j)/((2*j-1)*(2*j+1)),j=1..10000));

3.141514119

I honestly report that I needed four attempts to write the Maple instructions correctly!
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