(1) Find the power series centered at 0 that represents $f(x)=\frac{1}{1+x^{4}}$. Determine the interval of convergence of this power series.
(2) Find the power series centered at 0 that represents $f(x)=\frac{1}{25+x^{2}}$.
(3) Find the power series centered at 0 that represents $f(x)=\frac{x^{3}}{1+25 x^{2}}$.
(4) Find the power series centered at 0 that represents $f(x)=\frac{1}{(x-2)(x-3)}$. Hint: Use partial fractions.
(5) Find the power series centered at 0 that represents $f(x)=\frac{x^{10}}{(4+x)^{2}}$. Hint: Use a function $g(x)$ such that $g^{\prime}(x)=\frac{1}{(4+x)^{2}}$, and later multiply by x^{10}.
(6) Express $\int \frac{x-x^{3} / 3-\tan ^{-1} x}{x^{5}} d x$ as a power series.
(7) Use a power series to approximate $\int_{0}^{1 / 2} \ln \left(1+x^{2}\right) d x$ with an accuracy better than 10^{-5}.

