Name \qquad
Find $\frac{d y}{d x}$ in each case. Please do not simplify your answers. For example, you may (and should!) write the derivative of $37 x^{46}$ as (46) $37 x^{45}$.

1. $y=17^{4 x}+\ln \left(x^{3}-7 x^{2}+44\right)$

Answer $17^{4 x} \ln (17) 4+\left(\frac{1}{x^{3}-7 x^{2}+44}\right)\left(3 x^{2}-7 \cdot 2 x+0\right)$.
2. $y=x^{3} \arctan (2-x)$

Answer $3 x^{2} \arctan (2-x)+x^{3}\left(\frac{1}{1+(2-x)^{2}}\right)(-1)$.

I believe that very little analysis of "how to do this problem" is possible. Please: you should know the Chain Rule, the Product Rule, the derivative of various functions, etc. That's all.

