Unfair from Fair: Expectation

July 26, 2004
Dhruv Maheshwari
Norman Yao
The Solution
This was another expected payoff problem, where E, the expected number of flips, was the product of probability and flips summed from unity to infinity. To find the probability of successfully generating an unfair coin on the $n^{\text {th }}$ flipping, we considered the following:

- On the first flipping, the probability of success is $\frac{3}{4}$.
- On the second flipping, the probability of success is $\frac{1}{4} \cdot \frac{3}{4}$, since this probability is the product of one failure and a subsequent success.
- Through induction, the probability of success on the $n^{\text {th }}$ flipping is therefore $P(n)=\frac{1}{4^{n-1}} \cdot \frac{3}{4}=\frac{3}{4^{n}}$.

The payoff is consequently $D(n)=2 n$, since success on the $n^{\text {th }}$ flipping requires 2 n flips. The expected number of flips is therefore $E=6 \sum_{n=1}^{\infty} \frac{n}{4^{n}}$. This sum was evaluated using the following Maple command:

```
> 6*sum('n/4^n','n=1..infinity');
8
```

We decided to use Maple to generate this answer due to time and sleep constraints, and the assumption that this sum could be computed similar to the sum $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$. Our solution closely matches the approximations provided in the problem description, as well as a simulation we conducted with $1,000,000,000$ trials, which yielded an E of approximately 2.666706216 . The source for this poorly coded Java program can be found here.

