
Cracking an RSA Cipher Text
July 16, 2004

Dhruv Maheshwari
Adam Shapiro

Andrew Bulthaupt
Andy Ogden
Norman Yao

Our Solution

To successfully decipher the given cipher text, given the values e, N, and
encrypted message b, with no way of communicating with Freddy or Emily, we
could implement only one viable non-dictionary based brute-force technique:

• Factor N into P and Q.
• Use these values to solve the equation)1)(1(mod1 −−= QPex .

• Take the solution d, and decipher by performing Nba ed mod= , where a
is the resulting clear text.

Message 1:

 580883115667942931950785517613062106=N
23=e

 680706000432101790864398824939632821=b
(Clear Text: 16050114212019)
(Translation: PEANUTS)

To factor N into its constituent prime factors P and Q, we used Maple’s
ifactor() function:

With these values, we proceeded to solve for x in)1)(1(mod1 −−= QPex . This
was also accomplished using Maple’s msolve() function:

With the value of d, we moved to the final step: computing Nba ed mod= :

Interestingly enough, the values generated were beyond the capacity of
Maple’s data storage capabilities. Similar results were obtained with MatLab.
Mathematica and Derive were not available to attempt generation of clear
text. To compute such a large number, a different approach would be needed,
which was addressed when we tackled Message 2…

> ifactor(761306210631950785511156679429580883);
() 777332679307424393 ()979382741647047931

> msolve(23*x = 1, (777332679307424392)*(979382741647047930));
{ } = x 529604320439617936524828701547901607

> (493963282190864398820004321017680706 ^
529604320439617936524828701547901607) mod
761306210631950785511156679429580883;
Error, numeric exception: overflow

Message 2:
 00011773000000000000000000000080300000000000000000000000001000000000=N

123456789=e
 5907244029038999109342387914077999154642082201476727593897201982439=b

(Clear Text: 16091920010308091519)
(Translation: PISTACHIOS)

When we began our brute-force attack by ifactor(N), it became immediately
clear that Maple’s algorithm(s) were too slow. MatLab immediately declared
that the command factor(N) was invalid because 2^32 was the largest accepted
factorable number. We decided to do some research on factoring techniques.
Our search led us to this site. It provided a variety of factoring algorithms
that could be utilized. However, they relied on very large integers, not
supported (to our knowledge), by Maple or MatLab.

A search for implementation using “big integer” data types led us to a
cryptography library, Miracl (Multiprecision Integer and Rational Arithmetic
C/C++ Library). This provided big-integer utilities and implementations for
the previously mentioned factoring techniques. The zipped library can be
found here (v4.82). Using the factor utility, designed to factor numbers up
to 80 digits in length, we were able to get the two prime factors of N:
1000000000000000000000000000000061 and 10000000000000000000000000000000193. A
dump of the program execution can be found here.

Once again, msolve() was used:

Yet again, we were left at a point at which computation of the clear text was
virtually impossible given the current resources.

We initially tried to use the big integer library provided by the Miracl
library to compute the needed values, but our C++ compiler (MSVC++ .NET) was
not recognizing the proper .lib files. We then tried to use a library called
FreeLip, which was originally used to crack the RSA-129 system. However, we
were not able to download this library.

Finally, we resorted to using the BigInteger class provided by Sun’s Java
v1.4.2. We wrote a program that took values of N, b, and d from a file, and
used these values to compute the clear text, and “translate” it into English.
A copy of the code for this program can be found here. The input files we
used for messages 1 and 2 were:
Message 1 Input
Message 2 Input

> msolve(123456789*x = 1, (1000000000000000000000000000000061-
1)*(10000000000000000000000000000000193-1));

 = x 2024457723422565283145344076622791434317638052290506275843607112509{
}

http://www.csis.hku.hk/cisc/projects/va/fact_index2.htm
http://indigo.ie/~mscott/
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip
miracl_dump.txt
RSA.java
msg1in.txt
msg2in.txt

