This version prepared 6/30/2003 15

Lecture 4: Public key encryption

4.1 Classical crypto

The classical setup for secure communication
sees Alice trying to communicate with Bob, while ~ *@
an eavesdropper called Eve tries to listen or look @ =
at the communication learning anything she can.

One setup with some historical justification is a
“book code”, which will be used here principally E’
to introduce vocabulary.

Alice and Bob are given copies of the same book. They are told that messages from
one to the other will be made secure by looking at a page on the book and adding each
letter in a message with a corresponding letter on the page, mod 26. So if Alice wants
to send Bob a message beginning “MAY WE MEET SOON ...” and the first words on
the page are “ONCE UPON A TIME ...” then the first letter Eve would send would
be B. That’s because M is the thirteenth letter in the alphabet, O is the fifteenth, and
13 4+ 15 = 28 = 2 mod 26, and B is the second letter in the alphabet.

In this case the entire arrangement (sending each letter, adding letter values mod 26,
selecting pages, etc.) would be called a cryptosystem. We could think of Eve with various
abilities. Minimally, Eve might just know the transmitted letter. Eve might be more
powerful, and might know the entire system, and might even know the book used. She
might not know the specific page of the book selected, and that would be called the key
of the system. Generally it is assumed that an attacker knows the cryptosystem, but does
not know the key. This assumption, formulated explicitly about a century ago, is called
“Kerckhoft’s maxim” and is named after a Dutch cryptographer who spent most of his life
in France Look at http://www.cl.cam.ac.uk/ fapp2/kerckhoffs/ which has a link to
a copy of the original article (written in French, published in 1883).

Now much communication is digital. The assumption is frequently made that the
cryptosystem is implemented via computer, and that Eve has much greater computer
resources (both speed and storage) than Alice and Bob. This corresponds with some real
situations, where Eve might be a government agency or a large corporation.

4.2 Public key encryption*

Much cryptography is done with high-speed machines using clever programs. A con-
stant problem is to make sure that the machines can talk to each other. These machines
should have the same keys. Key distribution has historically been a problem: in the 1500’s,
a country might need to tell its ambassadors which pages in a book to use on which days,
or communication might be seriously impaired. A critical question might be phrased: how
can keys be distributed “publically” without compromising security?

* Some of this material follows notes written by Sasa Radomirovié¢, a math grad student.
See http://www.math.rutgers.edu/ greenfie/teaching/display/diary.html. Links
there have information about the course he helped with during spring 2000.

This version prepared 6/30/2003 16

In the digital environment this is even more important. Hundreds of thousands of
users might want to communicate securely with each other, and reality is that, effectively,
there can be little prearrangement of keys. The users might agree on cryptosystems, but
for a long time transactions were obstructed by a lack of ability to communicate keys
securely.

The problem is: Alice wants to send Bob a message (the key). Eve will listen, Eve will
know the protocols, and Eve has much greater computer resources than Alice and Bob. Is
it possible for Alice and Bob to exchange information securely in spite of these obstacles?
The surprising and perhaps unintuitive answer is “Yes”. There are several solutions, and
here we discuss RSA*. Another solution in widespread use is the Diffie-Hellman method,
and there have been a number of other proposals.

4.3 Introducing RSA

If P and @ are distinct primes, Euler’s generalization of Fermat’s Little Theorem

states
(.) qlany integer)(P—1)(Q—1) — 1 y0d PQ

for certain integers, a. T’ll forget temporarily about the restriction on a until later. It
will turn out that no (operational) problem will occur. Notice that if 7" is a number with
T =1mod (P —1)(Q — 1), then a = a mod PQ. Suppose Alice chooses a number e for
encryption. The linear equation ex = 1 mod (P — 1)(Q — 1) can be efficiently solved by
the Euclidean algorithm. Suppose d is a solution of this equation. Then (ae)d = gt =
ac? = qlan integer)(P=1)(@=1)+1 This is a consequence of the mod equation (e). But mod
PQ the complicated stuff in the exponent vanishes, and result of all the computation is
just a® = a! So take a, compute b = a® mod PQ, compute b? mod PQ, and the result
must be a. Here is a step-by-step description of RSA, a public key encryption protocol.

Step 1: Alice prepares Alice selects distinct primes P and (). She computes
N = PQ, selects e and d so that ed =1 mod (P —1)(Q — 1). Alice makes public
only N and e, so everyone knows N and e. Please note: here again there may
appear to be an operational difficultly — selecting e and finding d. I'll address
this later, also. It is not a serious problem.

Step 2: Bob encrypts Bob wants to send a message, a, to Alice. He computes
b= a® mod N and sends that to Alice.

Step 3: Alice decrypts Alice computes b% mod N and gets the message, a.

That’s it, a communications revolution, one which has made governments very annoyed
for several decades.
4.4 An example

In “the real world” nobody would ever use numbers as small as what is here. This is
just a toy which I hope will help you understand the steps above.

* R=Ron Rivest, S=Adi Shamir, and A=Len Adleman, and, yes, this is the same Shamir
as in the secret sharing section. They published a description of this system in 1977. It
had likely been discovered by other people earlier. See the bibliography.

This version prepared 6/30/2003 17

Step 1: Alice prepares Alice chooses 11 and 5 as her primes, and computes
N =11-5 = 55. She chooses e = 3 and finds that d = 27. She finds d by solving
3-x=1mod 10 - 4. Alice “publishes” N = 55 and e = 3.

Step 2: Bob encrypts Bob knows N = 55 and e = 3. Suppose Bob’s message
is a = 9. He computes a® mod N, which is 9% mod 55 = 14. He sends b = 14 to
Alice.

Step 3: Alice decrypts Alice gets 14 from Bob. She computes 1427 mod 55.
Her answer is 9, which is Bob’s message. That’s no surprise, since (93)?7 = 981 =

9120+1 — (920)*. 91 — 14.9 — 9 mod 55 by Euler’s Theorem.

4.5 How to break it

Is RSA any good? Any serious cryptosystem should be evaluated critically, and such
evaluation such probably be redone fairly often. What does Eve know and can she “break”
RSA? We assume that Eve knows that Alice and Bob are using this system. In the example
above, Eve knows N = 55, e = 3, and the encrypted message, b = 14. Eve also knows the
Alice and Bob are using RSA. Solving a® = 14 mod 55 might take some time. There’s an
easier way, as Eve tries to imitate Alice’s decryption.

Eve must know d to decrypt this easily. But to find d efficiently, she has to know P
and Q! In this example, Eve has little problem factoring 55 as 5-11. Then her computer
solves 3x = 1 mod 4 - 10 rapidly, and gets the answer 27 for d. Eve can now decrypt every
message sent to Alice the same way that Alice does.

Much effort has been devoted to finding ways to break RSA. Some special cases can
be attacked easily, but there are defenses against these. Factoring the modulus is the best
known general attack on RSA, and some people believe it is the only general attack.

4.6 The real world

In the real world the primes P and () which are currently used each have about 170
digits Many people are trying to factor numbers which are the product of two big primes.
The largest such number factored so far is a product of two 78 digit primes and is known
as RSA-155. This result was announced on August 22, 1999 by Dr. H. J. J. te Riele at the
CWI in Amsterdam (which is the national research institute for mathematics and computer
science in the Netherlands) and was a result of joint work involving many organizations
and people.

The factoring process for RSA-155 took about 7 months and more than 300 work-
stations were involved. At the end, a Cray supercomputer was needed. The amount of
computer time needed was about the equivalent of 800 years on a standard PC. This com-
parison is not useful because the amount of memory needed was almost 20 times as much
as a standard PC has. Some details: 2048 MB of RAM and up to 3.7 GB of hard disk space
were needed. The factoring process had various stages. At the end a huge system of linear
equations had to be solved. This part required an enormous amount of memory, because
there were about 6,700,000 equations with 6,700,000 unknowns to be solved. The primes
are 102 63959 28297 41105 77205 41965 73991 67590 07165 67808 03806 68033 41933 52179 07113 07779 and
106 60348 83801 68454 82092 72203 60012 87867 92079 58575 98929 15222 70608 23719 30628 08643.

This version prepared 6/30/2003 18

respectively.
Surely writing RSA-155 itself would just be a silly adolescent display.
10941 73864 15705 27421 80970 73220 40357 61200 37329 45449 20599 09138 42131 47634 99842 88934
78471 79972 57891 26733 24976 25752 89978 18337 97076 53724 40271 46743 53159 33543 33897

Let me return to commenting on the operational difficulties disclosed earlier. We need
a, the “message”, to be an integer between 0 and PQ which is not divisible by P or Q.
In practice, P and @) are primes, each with many digits. In order to guarantee that the
message a is not divisible by P or () require that a be less than both P and (). For example,
require that a be less than 10'°° when P and @ are in the range mentioned above. That
allows many possible messages.

In Alice’s step 1, there’s another possible difficulty. Alice must select e and d so
that ed = 1 mod (P — 1)(Q — 1). Generally, the linear equation (constant)z = 1 mod N
has a unique solution if the constant and N have no common factors. Some condition is
necessary: for example, the equation 3x = 1 mod 6 has no solution. But Alice needs e
and d so that ed = 1 mod N. She can select e at random and try to solve the equation
er = 1 mod N using the Euclidean algorithm, which is very rapid (polynomial time:
see section 5.5). If e and N do have a common factor, the algorithm will terminate
unsatisfactorily. Another choice of e can be tried repeatedly until one having no common
factor with N is found.

4.7 Authentication

A public key system like RSA can serve other social goals in addition to confidential
communication. Here’s one: Bob gets the message, “I love you.” It is supposedly signed
by Alice. Is there some way he can be sure she sent it? If you are less romantic, you can
contemplate financial transactions or, perhaps, diplomatic or military scenarios where the
issue of authentication is important: securely identifying the sender as well as the message.

Alice could take her message, a, and compute b = a® mod N. She then sends b
to Bob. Recall that no one else knows d or could discover it easily. Bob receives b
and computes b mod N. This is possible since e and N are known to everyone. But
(a?)® = a® = a® = a mod N just as before. So Bob gets the message a =*“I love you.”
Since he decrypted it using Alice’s public information (e and N), he is fairly sure it was
sent by Alice, using Alice’s private information, d.

If Alice wished to keep her message private and share it only with Bob, she could
encrypt it with Bob’s public key. She could then take the resulting message and “sign
it” as described above, by using her d. This double layer method then sends the message
securely and authenticates it as well. But things can get very complicated rapidly when
using these methods. For all of these uses, a collection of of public keys has to be available,
and somehow these public keys must themselves be truthful, and users must somehow be
guaranteed correctness.

The type of message authentication discussed here is a source for what are called
“digital signatures”, now permitted by U.S. law. It also allows good verification for such
processes as voting and auctions. Maybe Lessig’s quote given earlier (“encryption ... the
most important technological breakthrough”) isn’t that exaggerated!

This version prepared 6/30/2003 19
4.8 Bibliography

The original paper on RSA:

[1] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, February 1978 issue of the Communications of the ACM (this
is the Association for Computing Machinery), volume 21, pages 120-126. You can get it
on the web in Postscript at http://theory.lcs.mit.edu/ rivest/rsapaper.ps or pdf
at http://theory.lcs.mit.edu/ rivest/rsapaper.pdf.

You can read about factoring RSA-155 and also see further factoring challenges here:
[2] http://www.rsasecurity.com/rsalabs/challenges/factoring/index.html.

Members of British secret government communications agencies found the commonly used
public key systems before the public academic community. Here’s a link to some informa-
tion. Also see section 0.5’s reference [2].

[3] http://www.research.att.com/ smb/nsam-160/

The National Security Agency (NSA) is the U.S. government’s chief agency charged with
communications security. Their website is

[4] http://www.nsa.gov

Twice I've given courses to introduce students with little mathematical background to
the math and computer science of cryptography, emphasizing some of the social and legal
questions surrounding this subject. A good high-school math background is sufficient to
understand the math parts of the course. Look at my homepage

[5] http://www.math.rutgers.edu/ greenfie

and follow the links to the two sections of Math 103. Two of our graduate students, Nina
Fefferman and Sasa Radomirovi¢, helped me teach these courses. There are links to a
wide variety of web pages discussing crypto and society. Even if the technical side is not
attractive, I’d hope that some of the issues discussed would be interesting to you. Some
discussion of these courses is also available at

[6] http://www.math.rutgers.edu/ greenfie/teaching/display/diary.html

A source of information on the policy and implementation problems regarding digital
signatures is

[7] http://www.epic.org/crypto/dss/.

This version prepared 6/30/2003 20

Lecture 5: How hard is arithmetic?

5.1 Adding numbers; multiplying numbers

Here let’s return to traditional integer arithmetic and not modular arithmetic. Most
of what will be said is still correct with minor modifications for modular arithmetic, too.
Let us begin by considering carefully two difficult problems.

34 566 463
+ 788 381 x 219

5.2 Counting operations

The specific answers to these computations are not too important here. What I'd
like is to analyze how many “elementary operations” are needed. In this case, I think
of elementary operations as the number of references to the standard base 10 one digit
addition and multiplication tables. This is one way to measure how “hard” a computation
is. I assume that the + and x tables are memorized, once and for all. Only looking things
up in these tables takes work.

Addition Let’s get an overestimate for the number of one digit operations required for
addition. If A and B have length m, the addition scheme for A + B might look approxi-
mately as shown here. A is written aaa...a, B is ‘
bbb...b, and A + B is ccc...c. There may be m
direct additions of digits of A and B. There may AAA . . a
also be carries. Maybe there are m additions from + ppbb... b
carries. So the total number of one digit additions
is about 2m.

m————|

Multiplication Now to get an overestimate for the ‘) m . ‘
number of one digit operations required for multi-
plication. This is a much more complicated scheme.
The idea of explaining it to students is tremendously * bob.................... b

Ihe idea of e o
infimidating! Now A and DIGITSDIGITSDIGITSDIGITSDIG ~ #
B are just as before, but

. DIGITSDIGITSDIGITSDIGITSDIG
A-Bisccc...c, the prod-
uct. There are less than DIGITSDIGITSDIGITSDIGITSDIG

2m? single digit multipli- °
cations in the box shown.
There could addition car-
ries inside the box: 2m?
is an overestimate of the DIGITSDIGITSDIGITSDIGITSDIG
possible single digit ad- DIGITSDIGITSDIGITSDIGITSDIG '
ditions (as carries). The
number of arithmetic op-
erations is less than 4m?. ‘=

This version prepared 6/30/2003 21

The number of digits seems to determine the work done. That is, multiplying 26 by
34 is about as much work as multiplying 45 by 37, even though both factors in the second
product are greater numbers. If A is an integer, let #(A) be the number of decimal digits
of A, the length of A. So #(427) is 3. #(A) is the log of A to the base 10, rounded up
to the nearest integer. #(A) = 3 occurs exactly when 102 = 100 < A < 999 = 103 — 1.
We’ve seen that if A and B both have length m, addition takes at most 2m elementary
operations, and multiplication takes at most 4m? such.

5.3 What’s an algorithm?

A precise definition of algorithm is difficult, which is interesting since the concept
has become central to much of mathematics and computer science during the last quarter
century. It is as vital and important to such study as the sonnet is to the history and
practice of poetry. Here are some quotes from Knuth’s The Art of Computer Programming.

From page 1:

The word “algorithm” itself is quite interesting; at first glance it may look at
though someone intended to write “logarithm” but jumbled up the first four letters.
... the true origin of the word . .. comes from the name of a famous Persian textbook
author, Abu Ja‘far Mohammed ibn Misa al-Khowéarismi (¢. 825) — literally, “father
of Ja‘far, Mohammed, son of Moses, native of Khowarizm.” Khowarizm is today
the small Soviet city of Khiva. Al-Khowarizmi wrote the celebrated book Kitab al
jabr w’al-mugabala (“Rules of restoration and reduction”); another word, “algebra”,
stems from the title of his book, although the book wasn’t really very algebraic.

From pages 4, 5, and 6:

The modern meaning for algorithm is quite similar to that of recipe, process,
method, technique, procedure, routine, except that the word “algorithm” connotes
something just a little different. Besides merely being a finite set of rules which
gives a sequence of operations for solving a specific type of problem, an algorithm
has five important features:

1) Finiteness. An algorithm must always terminate after a finite number of steps.

2) Definiteness. Each step of an algorithm must be precisely defined; the actions
to be carried out must be rigorously and unambiguously specified for each case. ...

3) Input. An algorithm has zero or more inputs, i.e., quantities which are given to
it initially before the algorithm begins. These inputs are taken from specified sets
of objects. ...

4) Output. An algorithm has one or more outputs, i.e., quantities which have a
specified relation to the inputs. ...

5) Effectiveness. An algorithm is also generally expected to be effective. This
means that all of the operations to be performed in the algorithm must be sufficiently
basic that they can in principle be done exactly and in a finite length of time ...

Knuth continues on the same page to contrast his definition of algorithm with what could
be found in a cookbook:

This version prepared 6/30/2003 22

Let us try to compare the concept of an algorithm with that of a cookbook
recipe: A recipe presumably has the qualities of finiteness (although it is said that
a watched pot never boils), input (eggs, flour, etc.) and output (TV dinner, etc.) but
notoriously lacks definiteness. There are frequently cases in which the definiteness
is missing, e.g., “Add a dash of salt.” A “dash” is defined as “less than % teaspoon”;
salt is perhaps well enough defined; but where should the salt be added (on top,
side, etc.)? ...

He concludes his comparison by writing:
... a computer programmer can learn much by studying a good recipe book.

A description of the basic algorithms of arithmetic is usually done in the primary school
grades. Addition, multiplication, and subtraction are relatively easy to teach. Division
(“long division”) seems complicated to show and analyze.

5.4 Factoring

Let’s describe an algorithm which would decide if an integer were prime or not, and,
if it were not, would report factors of the integer. What is written here is emphatically
not the fastest or easiest (in terms of total work) way to answer this question. But it can
be described simply, and analyzed with what we’ve already done.

My factoring algorithm

For each pair of numbers (i,7) where ¢ and j are any integers between 2 and N,
compute the product ij. If this is equal to IV, report that ¢ and j are factors. If
this is never equal to NN, report that NV is a prime.

If N = 6, this algorithm would require 25 (that is, 52) multiplications of numbers between
2 and 6. To decide if a number N would be prime or can be factored, the algorithm would
require (N —1)? multiplications of numbers between 2 and N. The algebra is simpler if we
estimate that at most N? multiplications of pairs of numbers at most N will be required.

5.5 Polynomial time algorithms

If #(A) = #(B) = m, computing A+ B will require about 2m operations, computing
A - B will require about 4m? operations, and detecting factors of A will require about
4m?A? operations. Let’s try to do some proportions. Suppose A and B both have about
100 digits, and suppose the timing of solution of these three problems is as follows:
Computing A + B takes .0001 seconds;
Computing A - B takes .001 seconds;
Deciding Factoring for A takes 1 second.
How long would it take to decide these questions for 200 digit numbers? m gets doubled,
so 2m gets doubled. 4m?2, however, gets multiplied by 4. This still isn’t too bad. We can
report the following, based on our analysis and our assumptions:
Computing A + B takes .0002 seconds;
Computing A - B takes .004 seconds.
What about factoring? The time/work is proportional to 4(#(A4))2A2. When #(A) = 100,
the time is 1. If K is the constant of proportionality here, K (4(100)?(10%?)?) is 1. Doubling

This version prepared 6/30/2003 23
the length of A changes #(A) to 200 and A itself to 10'%?. The amount of time should be

approximately computable with the following ratio:

1
4(100)2(10%)

2 199\2
- - 4(200)%(101)

and therefore when A changes from 100 to 200 digits,

Deciding Factoring for A takes about 4 - 1 seconds.
This is a very large number. A century has about 10% seconds. Of course we made some
overestimates to come to this conclusion, but this number is unreasonably large. Maybe
from the human point of view is effectively eternity.

In terms of the length of the input, the algorithms we have given for integer addition
and multiplication have work/time requirements which are polynomial functions of the
length of the input, and the miserable and silly algorithm we have given here for factoring
has work/time demand which is actually exponential in terms of the length of the input.
That is because A itself is approximately 10#(4) and 4m2?A4? is about 4m?210%>™.

A now-classical source (The Design and Analysis of Computer Algorithms by Aho,
Hopcroft, and Ullman, Addison-Wesley, 1974) declares (p. 364):

How much computation should a problem require before we rate the problem as
being truly difficult? There is general agreement that if a problem cannot be
solved in less than exponential time, then the problem should be considered com-
pletely intractable. The implication of this “rating scheme” is that problems having

0200

polynomial-time-bounded algorithms are tractable. ... we say that a problem is in-
tractable if all algorithms to solve that problem are of at least exponential time
complexity.

5.6 Computational complexity

Algorithms for arithmetic depend on polynomial multiples of their input length. The
specific solution to the factoring algorithm given here requires time which is exponential
in its input length. But there is no known polynomial-time algorithm for factoring.

Factoring seems to be very hard

Since the only known general attack on RSA depends on factoring, RSA seems reasonably
secure if the size of the modulus is large enough. The security of RSA depends on the long
record of failure to invent fast factoring algorithms!

The systematic study of the difficulty of computations only began in the late twentieth
century and is called Computational Complexity.

The factoring problem has the following interesting structure. It seems to be hard
to solve (exponential time). If a candidate for a solution is given (that is, two numbers
whose product is supposed to be the integer considered) then the answer can be checked in
polynomial time by multiplication. Factoring is a specific case of the fundamental problem
of Computational Complexity, called the P versus NP problem. Here is an approximate
statement:

Is there a problem whose suggested solutions all can be checked in time which is
polynomial in the input size, but which cannot be solved in polynomial time?

This version prepared 6/30/2003 24

No one knows the answer, and many people have worked on this problem. An ideal
crypto protocol would involve such a problem. Both Alice and Bob “solve” the problem in
polynomial time with their encryption and decryption steps, but Eve must check a more
than polynomial number of alternatives (hopefully, exponential!).
win ... win ... win ... win ... win
One million dollars!

Deciding if P and NP are the same or different is one of the seven problems which
the Clay Mathematical Institute has called the “Millennium Prize Problems”. Each of
these problems has a $1,000,000 prize for solution. You can read both an official problem
description and a “popular article” connecting P /NP to the minesweeper computer game at
the link http://www.claymath.org/Millennium Prize Problems/P_vs NP/ . The P/NP
problem is probably the only one of the seven Clay Institute problems which can be
understood without an extravagant amount of background.*

5.7 Big exponentiating

Part of the RSA scheme requires computation of A® mod C where A, B, and C are
large numbers. It seems that B — 1 multiplications of numbers between 0 and C' — 1 are
needed. This isn’t polynomial time in #(B). But there may be more than one way to
solve a problem (that’s why P versus NP is not “clear”!). Even though one algorithm may
not be polynomial time, another may be.

Let me do an example first, omitting the mod which doesn’t really matter here. The
idea is to drastically reduce the number of multiplications by using previous computations.

How could we compute A%®? Naively we could compute A% = A- A, A3 = A?. A,
A* = A3. A, etc. So A* requires three multiplications. But A* = (A42)2, so that computing
A* can be done with two multiplications. But repeated squaring is the clue to a more
efficient method. Consider the powers of 2: 1 =20 2 =21 4 =22 8 =23 16 = 2%, and
32 = 25. Since 46 = 32+ 8 +4 + 2, A0 = (A%)°. (4?)3 . (A?%)? . A2. Computing A? takes
one multiplication, (A42)? takes one additional multiplication, (A42)3 takes one additional
multiplication, and (A?)° takes two additional multiplications. Assembling the product
(counting the -’s) takes three additional multiplications. So computation of A%® can be
done in 8 multiplications, much less than 46 multiplications.

What’s going on? Repeated squaring means writing the exponent (here 46) as a sum
of powers of 2. This is called binary notation. So 4619 = 1001105 where 101110, =
1-2540-244+1-2241-2240-2° The method repeatedly squares A until the power
corresponding to the highest 1 in the binary expansion of A is reached. Then assemble A
from what’s already been computed by including any powers of A which correspond to 1’s
in the binary expansion of A. Actually things can even be done more efficiently, relying
on questions of parity (even/odd) of A and A/2 recursively.

Why does this method allow us to compute A® in polynomial time? It certainly allows
the number of multiplications which are each polynomial time to be reduced essentially to
the twice the length of the binary expansion of B. But the length of the binary expansion

* See www.cs.umd.edu/ gasarch/papers/poll.ps which reports a recent (2002) poll
of professionals: their opinions of P/NP and when the problem might be solved (and how!).

This version prepared 6/30/2003 25

of B is between three and four times the length of the base 10 expansion of B since
23 < 10 < 2%. The number of multiplications needed is no more than 8#(B).

Please note that exponentiation is at the core of many encryption algorithms, so there
has been much research in how to exponentiate FAST. The bibiliography contains a link
to recently written survey of this problem.

5.8 Finding primes

How can we get prime numbers? How can we get BIG prime numbers? For example,
2134 66917 _ 1 which has over four million digits, is prime*. Large prime numbers are useful
for both RSA and secret sharing. It would be silly in the latter application to use a smal
prime, since then “brute force search” would be good enough to reveal the secret.

An old timef proof

There are an infinite number of primes. This is because if there were only a finite list of
primes, {p1,p2,-..,pt}, the number p; - ps - - - p;y + 1 gotten by multiplying the contents of
this list together and adding 1 would have to be divisible by some other prime number.
This contradicts the original assumption of a finite list of primes.

Current practice

There are many prime numbers, but how can they be found? Many cryptographic appli-
cations need blg prime numbers. For example, PGP (“pretty good privacy”) is a widely
used collection of programs implementing RSA-like algorithms. The original developer,
Phil Zimmermann, wanted to allow everyone to generate their own public and private
keys. But large primes are needed for such applications. Advanced number theory sug-
gests that eight and a half percent of 5 digit numbers are prime, more than four percent
of 10 digit numbers are prime, and more than two percent of 20 digit numbers are prime.
The primes do thin out as numbers get larger, but still more than .4% of 100 digit numbers
are prime. What people do in practice is based on the existence of fast (polynomial time!)
tests that report if a number is probably prime. Choose a random 100 digit number. Check
a few times with independent tests to see if it is probably prime. If it fails a test, take
another number. Continue to do this until success results. This “bit flipping” may be
unsatisfactory to those who love certainty, but it works in the real world.

PRIMES is in P

The problem of testing whether a specific integer is prime is called PRIMES by the-
oretical computer scientists. The mathematical world was surprised 11 months ago when
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (“AKS”) of the Indian Institute of
Technology in Kanpur, India, found a polynomial time algorithm for testing primality.
Their algorithm is described in a remarkably brief (9 pages!) paper available on the web.
I would certainly expect you to be able to understand the introduction. Please see the
bibliography for precise references.

This paper does not itself threaten the security of RSA encryption. Many people
believe breaking RSA is equivalent to the difficulty of factoring as previously discussed.

* See http://www.utm.edu/research/primes/ for further information
T Euclid’s Elements again, written more than two thousand years ago.

This version prepared 6/30/2003 26

The discovery of the AKS algorithm has not yet led to major changes in how encryption
is done. The probabilistic algorithms still seem to be a lot faster for the range of primes
in use.

5.9 Bibliography

Here’s the major reference for algorithms in computer science. The second volume has
a discussion of long division extending over 4 pages, with further problems later — the
algorithm s intricate!

[1] Donald Knuth, The Art of Computer Programming, Addison-Wesley, published over
the last 30 years or so. (Three volumes, lots and lots of pages, $135 and worth every

penny).
Another classical reference about algorithms:

[2] Alfred Aho, John Hopcroft, and Jeffrey Ullman, The Design and Analysis of Computer
Algorithms 1974, Addison-Wesley ($55 and 470 pages).

And here is a link to an English translation of the major work of “the leading mathematics
teacher of antiquity or perhaps of all time” (Euclid). I believe the results discussed here
appear in Books VII, VIII, and IX.

[3] http://aleph0.clarku.edu/"djoyce/java/elements/elements.html

Much has been learned about algorithms in the last 20 years, and about teaching them.
More contemporary references follow. The first is usually used as a graduate level text.
The next two are used in undergraduate courses.

[4] Thomas Cormen, Charles Leiserson, and Ronald Rivest, Introduction to Algorithms,
MIT Press (available in paperback in September 2001 for about $50, over a thousand

pages).

[5] Robert Sedgewick, An Introduction to the Analysis of Algorithms, Addison-Wesley,
1996 (about 500 pages, $45).

[6] Robert Sedgewick, Algorithms in C++ : Parts 1-4 : Fundamentals, Data Structures,
Sorting, Searching, Addison-Wesley, 1998 (about 730 pages, $50).

Want to find a big prime? Here’s a Java implementation of a fancy factoring algorithm.
[7] http://www.alpertron.com.ar/ECM.HTM

Or you can join GIMPS, the Great Internet Mersenne Prime Search.

[8] http://www.mersenne.org/prime.htm

[9] Richard Crandall and Carl Pomerance Prime Numbers: A Computational Perspective,
Springer Verlag, 2001 (545 pages, $50). Learn the latest about primes, factoring, etc. One
review on Amazon remarks: “While graduate-level, much of it should be accessible by an
undergraduate. ... It’s a good reference - no need to read the whole thing.”

This version prepared 6/30/2003 27

The classical view of “computational complexity” was presented here. Within the last
decade, a different model of computation has been investigated: quantum computing (and,
of course, quantum cryptography). This model uses some of the wonderful phenomena of
quantum mechanics to make NP computations more tractable. Much of this approach is
still hypothetical, however: people can’t get it to work satisfactorily yet! This web page
has references under the Tutorials link.

[10] http://www.qubit.org/
If you want to exponentiate FAST please see

[11] D. Gordon, A survey of fast exponentiation algorithms, Journal of Algorithms, volume
27 (1998), pages 129-146, or look at http://www.ccrwest.org/gordon/jalg.ps on the
web.

The AKS paper:

[12] M. Agrawal, N. Kayal, and N Saxena, Primes in in P, which can be obtained at
http://www.cse.iitk.ac.in/primality.pdf. The entire abstract of the paper follows:

We present a deterministic polynomial-time algorithm that determines
whether an input number n is prime or compositve.

The link http://www.cse.iitk.ac.in/news/primality_v3.pdf has a more recent (March
2003) version of the paper.

Here is a commentary on the AKS discovery:

[13] F. Bornemann, PRIMES is in P: A Breakthrough for “Everyman”, Notices of the
American Math. Soc., volume 50 (2003), pages 545-552. You can also get this on the web
at http://www.ams.org/notices/200305/fea-bornemann.pdf.

5.10 Appendix: finite fields

We decided that we should be able to add, subtract, multiply, and divide. It was also
very convenient that the standard algebraic rules hold, such as associativity, commutativity,
and distributivity, and that there were additive and multiplicative identities (0 and 1) and
inverses for addition and multiplication. A set with addition and multiplication obeying
all these rules is called a field. Examples of fields are the real numbers and the rational
numbers, but not the integers (you can divide by a non-zero integer!). Modular arithmetic
(with a prime modulus) allowed us to construct finite fields. These are not the only finite
fields. There are others whose rules of addition and multiplication are not quite as simple,
but which are really useful in certain signal processing applications. For example, there is
exactly one finite field having 49 elements, and maybe that’s the size needed for a certain
application. We’ll discuss this more when we get to coding theory.

