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Lecture 9: Probably ...

9.1 Vocabulary

A real-world experiment has various outcomes. The collection of all possible out-
comes is called the sample space. This vocabulary discussion will be accompanied by
two simple examples. Then more complicated examples will be considered.

Example 1 Flipping coins. The outcomes are heads (H) or tails (T ). We simplify by
ignoring coins which land on their edges, lost coins, etc. The sample space is fH;Tg.

Example 2 Tossing a die (singular of dice). The outcomes can be labeled by the number
of dots showing when the die stops moving. So there are 6 outcomes: f1; 2; 3; 4; 5; 6g.

We can collect the outcomes in various ways, and these collections are called events.
Example 1 doesn't have too many events: fHg and fTg and fH;Tg. The last event is the
entire sample space. We also record the event with no outcomes, the empty event: ;.

Although example 2 is still somewhat small, it has many events. Here are some.

The even throws: f2; 4; 6g; the squares: f1; 4g.

There are exactly 26 di�erent events. Each event corresponds to a decision to include or
exclude one of the 6 particular outcomes.

We could further complicate example 2 by, say, throwing the die twice. The outcomes
of that \experiment" would be classi�ed by ordered pairs (i; j) with 1 � i � 6 and 1 �
j � 6. Here are some events of that experiment.
� I, the increasing tosses: pairs (i; j) with i < j, so the outcome whose �rst toss is 3
and whose second toss is 5 is in I. I contains 5+4+3+2+1 = 15 distinct outcomes.
The \4" in the sum corresponds to the outcomes (2; 3), (2; 4), (2; 5), and (2; 6).

� Sum4, those tosses whose dots sum to 4. The toss 1 followed by the toss 3 is in Sum4,
which contains 3 distinct outcomes.

This experiment would have 236 � 1010:8 di�erent events.

Probability assigns numbers to events. The number represents the chance that the
event happens. We should believe that if the experiment is repeated many times, the ratio
of the times that the outcomes are in the event divided by the number of experimental
runs should generally \approach" the probability of the event. The reason for the quotes
on the word is that I can't be more precise, and \approach" (written with !) is an
indication of how well the abstractions considered here model reality. So if an experiment
is run N times, and A is an event, the ratio (sometimes called the relative frequency)
outcomes in A

N
! P (A) as N gets large.

If A is an event, then the probability P (A) is a number which is between 0 and 1:
0 � P (A) � 1. This assignment of numbers to events should obey some rules. These rules
in turn evolved from the origins of probability, which seems to have been discussions of
gambling problems during the 1600's.

The rules of the game

� The probability of anything (or, perhaps, everything!) happening
is 1: P (the whole sample space) = 1.
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� The empty set, ; (which has no outcomes as members), has proba-
bility 0.

� Disjoint events, which are events which have no outcomes in com-
mon, have probabilities which add: if A and B are events sharing no
outcomes, P (A)+P (B) = P (an outcome in either A or B occurs) :

This can be rewritten using set notation*. A \ B means the intersection of events
(the outcomes in both A and B) and A [ B means the union of events (the outcomes in
at least one of A and B).

If A \B = ;, then P (A [B) = P (A) + P (B):
Of course this can be extended to more than two events and even to sequences of events.

This equation has several consequences. First, as events get \larger" (have more
outcomes), their probabilities increase. My language here is imprecise. I really mean that
their probabilities don't have to strictly increase, but they can't decrease. That is, if A � C

(A is a subset of C, so every outcome in the event A is also an outcome in the event C),
then P (A) � P (C). This is because C is the disjoint union of the events A and C n A
(outcomes in C and not in A) with P (A n C) � 0.

We can take apart A [ B when A and B are not disjoint: A [ B = (A n B) [
(B n A) [ (A \ B). The three sets on the right side of the equation are disjoint, so
P (A[B) = P (AnB)+P (BnA)+P (A\B). Since P (AnB) � P (A) and P (BnA) � P (B),
P (A [ B) � P (A) + P (B).

The simplest example is a fair coin with P (fHg) = P (fTg) = 1
2 : not much to

discuss. A fair die gives each event a probability equal to the number of outcomes in the
event divided by 6.

9.2 Fair from unfair

But there is no reason our imaginary coin or die should be fair. We can already start
to analyze an interesting problem.

Problem JvN Suppose we're given a biased (or unfair) coin, so that P (fHg) = p

(with 0 < p < 1) and P (fTg) = q = 1� p. How can we use the tosses of this coin
to generate a random sequence which simulates a sequence of fair coin tosses?

I call this problem \JvN" because the solution below is said to be due to John von Neu-
mann. I hope you can see applications of this problem to cryptography and creating
random bitstreams. Think about the problem before you read more.

Imagine the sequence of tosses of the biased coin occurring as pairs of tosses. So
the sequence of coin tosses, which might be HTHHTHHHTTTHTHTT : : : could be
rewritten as HT HH TH HH TT TH TH TT : : :. What should the probability of these

* Mathematicians are like a certain type of Frenchman: when you talk to them they
translate it into their own language, and then it soon turns into something completely
di�erent. This is Maxim #1278 by Goethe (1749-1832), appearing in his Maxims and

Reections. It is useful to remember when reading and learning mathematics. See
http://www.kirjasto.sci.fi/goethe.htm for information about Goethe.
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various pairs of coin tosses be? There are four possible outcomes: HT , TT , TH, and HH.
We believe that the coin tosses are independent. This is an important technical word in
probability. Here it means that the �rst coin toss shouldn't inuence the second one. If the
�rst toss results in heads some portion p of the time, then the next toss should result in a
tail a qth portion of that time. So P (fHTg) should be pq. And P (fTHg) should be qp (the
same as pq, of course). Here's von Neumann's scheme: when a successive pair of biased
coin ips is HT , signal heads for the imaginary fair coin. If the pair is TH, signal tails
for the imaginary fair coin. Otherwise, ip another two times. Of course it is possible that
the coin will never have successive pairs of ips HT or TH. The probability of TT is q2

and the probability of HH is p2. Since p + q = 1, we know that p2 + 2pq + q2 = 12 = 1,
so 0 < p2 + q2 < 1. The probability of a sequence composed only of HH's and TT 's
is certainly at most (p2 + q2)high power (again independence is being used here, so the
probabilities multiply), and this ! 0 as the \high power" grows. The strategy of von
Neumann will win \almost all" of the time. Later I'll try to analyze how expensive or
eÆcient this strategy is. That is, we will discover how may coin ips of the biased coin are
needed, on average, to get the report of one \unbiased" H or T using this method.

Can one reverse the von Neumann trick? In particular, describe a strategy to solve
the following problem:

Problem NvJ Suppose you have a fair coin. Describe how to simulate a sequence
of H's and T 's so that the probability of H is 2

3 and the probability of T is 1
3 .

Once you've done this, try describe how to simulate a sequence of tosses of an \arbitrary"
biased coin. That is, suppose p is between 0 and 1. Use a fair coin to simulate a string of
tosses so the probability of a head is p and the probability of a tail is 1� p.

Before going on, here's an important formal de�nition:

Events A and B are independent if P (E \ F ) = P (E) � P (F ).
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Lecture 10: Gambling

10.1 Fair entry fees

It may be more interesting to use an extended gambling example to explain more
about probability. So: suppose that we have a \spinner" as below:

o

o

o

Green

Red

Blue

180

60

120

What's the chance an \honest" or \fair" spin
lands on Green? I think it is 180Æ

360Æ
, or 1

2
. Simi-

larly, we can easily see that the chance of Blue
is 120Æ

360Æ , or
1
3 , while the chance of Red is 1

6 . So
P (Green) = 1

2 ; P (Blue) =
1
3 ; P (Red) =

1
6 .

So 0 � P (something) � 1 and the sum of all the
\somethings" that could happen is 1.

Now a new ingredient: what could one win
in such a game? For example, suppose a Green
spin pays $30, a Blue spin pays $15, and a Red
spin pays $75. What's an average spin worth?

Phrased a bit di�erently, how much should someone be willing to pay to play this
game? One naive answer might be: since there are three possible outcomes, and three
possible rewards, the average reward of a spin is the average of the three outcomes, or $
30+15+75

3 = $40. Some consideration of extreme cases might show that's too simple. If

Green were worth $10,000 and the other two colors were worth nothing, then we'd expect
about half of our spins to be Green in the long run, and about half the time to win
$10,000 per spin, so that the average winning per spin would be $5,000. In our 30{15{75
payo� plan, we must compute a weighted average, and the weights are the chances, the
probabilities, that each color will occur.

Outcome Probability Payo� per spin Expected winnings

Green 1
2 $30 $15.00

Blue 1
3 $15 $5.00

Red 1
6 $75 $12.50

The total expected winnings (the expectation) will be $32.50, the correct weighted
average of the probabilities and the payo�s. An entry \fee" of less than $32.50 would,
in the long run, over many plays, yield a pro�t to the player. An entry fee greater than
$32.50 would, in the long run, over many plays, pro�t the \proprietor" of the spinner.

10.2 A game with many ips

Your friendly gambler

Let's try some real gambling. A gentleman comes to you with a
smile. He carries a fair coin, with two di�erent sides, one side heads,
H, and one side tails, T . He o�ers to play a game with you. He will
toss the coin. If H appears, he will pay you $1. If T appears, he will
toss the coin again. If, on the second toss, H appears, he will pay you
$2. If T appears again, he will toss another time. And so on : : :.
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Let's specify this \game" more carefully. The set of outcomes is the collection of coin
tosses, TTT : : : TH. That is, for each non-negative integer, n, one possible outcome is
(n � 1) T 's followed by an H. Let's call this Sn. What's the probability of Sn? We're
asking for n straight speci�ed tosses of a fair coin, so P (Sn) must be

�
1
2

�n
(independence of

the tosses). The gambler will pay n dollars if Sn occurs. The sample space here is in�nite
{ very di�erent from examples 1 and 2. Some questions we should consider follow.

� What if the coin never lands heads?

The probability of n tosses of tails is
�
1
2

�n
, and surely the event of the outcome

\never heads" will be less than this for any positive integer n. The probability
should be 0. This may be an example of a conceivable (?) event which never
happens (??). In our probability modeling, it is more precisely a non-empty
event with probability 0. The user of the model must decide if this makes sense.*

� Would you pay the gambler, an honest, genial individual, 50 cents to play this game?

Of course. You've got to win at least a dollar.

� Would you pay the gambler, an honest, genial individual, one dollar to play this game?

Surely, for the same reason as the previous question.

� Would you pay the gambler, an honest, genial individual, one million dollars to play
this game?

The gambler asserts that there are many, many positive integers. Only �nitely
many of these integers are less than one million, and in�nitely many of them are
more than one million. Therefore (according to the gambler) there has in�nitely
more chances of paying more than one million than you have of losing one million.
(!!!) So pay the million and play the game. (The gambler is, of course, ignoring
the fact that di�erent outcomes occur with di�erent probabilities.)

We can try to compute this game's average payo� (its \expectation") in a way that's
similar to the spinner game. So:

Outcome Probability Payo� per game Expected winnings

H 1
2 $1 $0.50

TH 1
4 $2 $0.50

TTH 1
8 $3 $0.375

. . . . . : : : : : : : : :

Sn
1
2n $n $ n

2n

. . . . . : : : : : : : : :

* A literary note Such coin-ipping is described and analyzed with much imagination
in the �rst few pages of the play Rosencrantz & Guildenstern Are Dead by Tom Stoppard.
More than 30 years after it was written, R & G is in the top 6500 at Amazon.com.
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There's several observations we can make about this table. The sum of the probabil-
ities of the various outcomes (an in�nite list of outcomes which is abbreviated!) is

1X
n=1

P (Sn) =
1X
n=1

1

2n
= 1

Although we've got an \in�nite series", we have the friendliest of such series, a geometric
series. A geometric series is one whose terms are created by taking a �rst term, a, and
multiplying that term repeatedly by one �xed number, r, the ratio, to create a+ar+ar2+
ar3 + : : :. If S is the sum of this series, then

S = a+ ar + ar2 + ar3 + : : : = a+ r(a+ ar + ar2 + : : :) = a+ rS

and this linear equation in S can be solved to get the formula S = a
1�r . Our speci�c

geometric series has both a and r equal to 1
2 , so its sum is 1, as we should hope, since

we've made a list of all (non-negligible) possible outcomes.

What about the average payo�? If the entry fee is less than the average payo�, in the
long run, over repeated plays, we'd expect to pro�t, and the honest gambler tossing the
coin for us would expect to lose money. If the entry fee is more than the average payo�,
in the long run, over repeated plays, we'd expect to loose, and our honest, genial friend
would expect to pro�t.

We need to look at the sum of the expected winnings:

1

2
+

2

22
+

3

23
+

4

24
+ : : : =

1X
n=1

n

2n

It is perfectly possible that the expectation could be in�nite. To emphasize this,
modify the game to one in which the gambler o�ers to pay 2n dollars if the �rst head
occurs on the nth toss: that is, outcome Sn. Then every play of the game o�ers us a

chance to win (on average)
1P
n=1

2n

2n = 1 dollars { quite a lot! But what does the result

1 mean? Certainly no one play or coin toss sequence will win in�nitely many dollars.
It really means that there's no upper bound on the average amount of winnings in the
changed game. There's no fair entry fee that the gambler could charge { the gambler
would always lose money in the long run.

Return to the original game, where the payo� is
1P
n=1

n
2n . This series is more compli-

cated than the �rst. It is not a geometric series since the ratio between successive terms
changes. For example, the ratio between the �rst and second terms is 1, and the ratio
between the second and third terms is 3

4 . Let's see how to compute the average payo�.

10.3 Computing the payo� with algebra & magic

We can use the geometric series formula to write the following:
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1 =
1

2
+

1

22
+

1

23
+

1

24
+ : : :

1

2
=

1

22
+

1

23
+

1

24
+ : : :

1

22
=

1

23
+

1

24
+ : : :

1

23
=

1

24
+ : : :

...

If we add this array vertically we'll get an equation whose left-hand side is 2 (because it
is just the sum of another geometric series with a = 1 and r = 1

2), and whose right-hand

side magically is 1
2 + 2

�
1
2

�2
+ 3

�
1
2

�3
+ 4

�
1
2

�4
+ : : : This sum can also be evaluated using

calculus, but calculus isn't needed for everything!
The average payo� from the coin-ipping game is therefore 2. So an entry fee of less

than $2 will result, over the long term, in pro�t for the player, while a fee of more than $2
will give the gambler an edge.

10.4 JvN eÆciency

We can now evaluate the likely eÆciency of von Neumann's solution, converting a
biased bitstream to an unbiased bitstream. I'll be more precise. We have a biased or
unfair coin which when ipped is heads with probability p with 0 < p < 1 and is tails
with probability q = 1� p. We begin ipping this coin, and consider the outcome of pairs
of ips. If the coin lands HH or TT we try again. If the ordered pair of ips is HT we
conclude that our imaginary fair coin has landed H. If the ordered pair of ips is TH,
then we imagine it has landed T . How many ips are necessary, on average, for us to make
one imaginary toss of our fair coin? That is, what is the expectation of the number of coin
tosses for one decision?

For example, with probability 2pq the �rst pair is either HT or TH. So 2 � 2pq = 4pq
is part of the sum for the expectation. The �rst \2" comes from the 2 unbiased ips and
the 2pq is really pq + qp, the probabilities of HT and TH, respectively.

How can we wind up with 4 tosses? The �rst two could be HH or TT . The probability
of these exclusive events is p2 + q2. Then we would need to multiply by 2pq for the third
and fourth tosses of the biased coin. And, �nally, we'd need to multiply by 4 for the
number of ips needed. So another piece of the sum for the expectation is 8pq(p2 + q2).

Now to go for 6 tosses. The �rst 4 tosses must be HH HH or HH TT or TT HH or

TT TT . These exclusive events have probability p4 + p2q2 + q2p2 + q4. This is
�
p2 + q2

�2
.

Then we multiply by 2pq and then by 6 to get 12pq
�
p2 + q2

�2
.

Now assemble the beginning of the sum for the expectation.

4pq + 8pq(p2 + q2) + 12pq
�
p2 + q2

�2
+ : : :
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I hope the pattern is clear. The expectation for the average number of biased coin ips

needed to simulate one fair coin ip is E =
1P
n=1

4npq
�
p2 + q2

�n�1
. The

�
p2 + q2

�a power

comes from a collection of double heads and double tails (in any order) preceding either
HT or TH. All the ways of multiplying out the p2 and q2 each represent one path of
HH's and TT 's. Then the same ideas we've already seen can be used to �nd the sum of

this series, which is
4pq

(1� (p2 + q2))2
.

Here's a di�erent way to do this problem. Suppose E is the expectation we want to
compute. We can get a simple equation for E by \pure thought". Either we succeed with
the �rst pair of coin tosses and the number of tosses needed is 2, or we do not succeed with
the �rst pair. If we do not, then the number of coin tosses increases by 2. So: the chance
of success with the �rst pair of tosses is 2pq. The chance of failure with the �rst pair of
tosses is 1� 2pq. Therefore E = 2pq � 2+ (1� 2pq) � (2+E) and we can solve this equation
for E. We can multiply and get E = 4pq+2+E� 4pq� 2pqE so that E = 1

pq
. Is this the

same as the answer above? Since p + q = 1, p2 + 2pq + q2 = 1 and 2pq = 1 � (p2 + q2).

Then
�
1� (p2 + q2)

�2
= (2pq)2 and

4pq

(1� (p2 + q2))2
=

4pq

(2pq)2
=

1

pq
. The two answers

are the same. The second method (\conditioning on the �rst pair of ips") is very clever*.
If the biased coin is only slightly defective (so p and q are both about 1

2 ), then the
sum is about 4. If, though, p = :99 (a very biased coin!) on average about 101 tosses of
the biased coin will be needed to get one \fair" toss simulated. This seems wasteful. Is
there a more eÆcient solution?

* A comment about logic: the second method computes E after �rst assuming (without
proof) that it exists and is �nite. Some people �nd this uncomfortable.
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Lecture 11: The transmission network

11.1 Two models

We'll apply the logic developed to study some models of computer networks, and to
evaluate their chance of failure or inaccuracy. We'll begin by examining a very simple
network. We can imagine a computer at #0 transmitting some information, say, for
simplicity, just a bit (0 or 1). Ideally the information is received by computer #1 which
retransmits it to #2 etc.: a sequence of computers or switches relaying information.

Transmission network

#0 #1 #2 #3 #4 (etc.)

11.2 Model #1: things break

Suppose each link has a probability q = 1�p, a number between 0 and 1, of breaking.
What's the long-term e�ect on the network? The network is unbroken up to computer n if
all of the �rst n links are unbroken. We assume that broken links between the computers
occur independently. Therefore the probability that the �rst n links are unbroken is pn:
the probabilities multiply because of the independence assumption. As n increases, this
probability goes to 0. For example, if p = :999 (so one would assume the network is rather
reliable), then there's 1 chance in 20 that the network is broken after about 50 links since
(:999)50 � :95121. It is highly unlikely that the network stays unbroken link after link.

11.3 Model #2: bit ipping

Here's a di�erent model of the transmission network. The �rst computer transmits
a bit (0 or 1). Assume that there is some probability q = 1 � p between 0 and 1 that
the bit gets ipped: if 0 is received, then 1 gets transmitted; if 1 is received, then 0 gets
transmitted. Now the network never \fails" in the sense of not transmitting something,
but it may not transmit correct information. We also may get lucky: if the bit gets ipped
twice (or, in fact, an even number of times) the true message will be transmitted.

Suppose Tn is the probability that the True value of the bit has been transmitted
through the nth link, and Fn is the probability that the opposite bit (a False bit) is
transmitted. Tn and Fn are both between 0 and 1, and Tn + Fn = 1. Let's compute a few
Tn's and Fn's to gain some familiarity.

T1 = p and F1 = q. What about T2? Two disjoint events could occur giving us the
correct output. First, the truth could be transmitted twice. This has probability p2. Or we
could be lucky and both links could ip the bit. This has probability q2. So T2 = p2 + q2.
To get an error after the second link, there had to be just one error (either in the �rst
computer or the second, but not both). So F2 = qp+pq = 2pq. For T3 there can be exactly
0 or 2 errors, so T3 = p3 + 3pq2. The 3 appears because there are 3 distinct outcomes
with 2 errors, so there must be one \true" transmission in each of 3 positions. F3 occurs
when there are exactly 1 or 3 errors, so F3 = 3p2q + q3. Here the 3 occurs because the 1
error or bit ip can occur in one of 3 links. This should help you understand the general
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answer. Tn happens when we sprinkle an even number of errors in the network, and Fn,
when there's an odd number of errors. The binomial coeÆcients describe the total number
of ways of distributing the errors.

Here's a more systematic way to get the formulas. We know that

Tn =pTn�1 + qFn�1

Fn =qTn�1 + pFn�1

because the event whose probability is Tn occurs when the truthful bit obtained with
probability Tn�1 is transmitted truthfully and when the false bit previously obtained is
ipped. There's parallel logic for the equation giving Fn. So Tn�Fn = (p� q)Tn�1+(q�
p)Fn�1 = (p � q)(Tn�1 � Fn�1). We know that T1 � F1 = p � q, so Tn � Fn = (p � q)n.
The name for the oÆcial proof technique needed here is \mathematical induction" but I
hope convincing evidence has been given. Since Tn + Fn must be 1, we see that Tn =
1 + (p� q)n

2
. If p = :999, then 50 links give about 95:2% reliability (slightly more than

the �rst model, which gives 95:1% reliability).
Both transmission models get unreliable when the number of links increases. The �rst

one is quite likely to be broken, and, under the conditions of the second model, Tn !
1
2

as n gets large because jp� qj < 1 so powers of p� q go to 0. This means that the chance
of detecting the original value of the transmitted bit is heading towards 50%, a random
guess.

Comment The Binomial Theorem for positive integer exponents states that

(A+ B)n =
nP

k=0

�
n

k

�
An�kBk with

�
n

k

�
= n!

(n�k)!k!

and the binomial coeÆcients
�
n

k

�
have some interesting interpretations such as \the

number of ways of choosing k distinct objects from n distinct objects".
For example, suppose we have �ve animals: Lion, Tiger, Elephant, Horse, and Goat.

How many di�erent collections of three animals could we get from these �ve? There are
�ve ways of selecting the �rst animal, then four ways of selecting the second, and �nally
three ways of selecting the third. One selection is fT; H; Lg, in that order. There are
5 � 4 � 3 = 60 such ordered selections. But we could also have chosen (in order) fL; H; Tg.
There are several di�erent ways of ordering each of the collections of three animals. How
many? The �rst animal could be chosen in one of three di�erent ways, and then the second
animal could be chosen in one of two di�erent ways, and the third animal is determined
by the other choices. So for each collection of three animals, there are 3 � 2 � 1 = 6
choices of order. Therefore to count the number of distinct and di�erent collections of
three animals from the �ve animals named, we should take 60 and divide by 6. Let's see:
60
6 = 5�4�3

3�2�1 = 5�4�3�2�1
3�2�1�2�1 = 5!

3!�2! =
�
5
3

�
= 10. You could check this calculation by listing all 10

collections of these animals.
We did not prove the Binomial Theorem. A direct proof can be given using mathe-

matical induction.

What's above suggests that
(A+B)n + (A� B)n

2
is equal to that part of the sum

written about which involves only even powers of B and that's true also. In the case we
analyzed above, A = p and B = q so A+B = p+ q = 1 and (p+ q)n = 1.
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Lecture 12: Broadcasting { statement & heuristics*

There are other networks where, probabilistically, the truth will prevail. Here is one
of them. First, we give a description of the ideal behavior of this network. The computer
at #0 broadcasts a bit. The bit is received by two computers, labeled here as #11 and
#12. Each of these then broadcasts the bit to two distinct computers, and each of these
in turn to two others, etc.

Binary broadcasting network

#0

#11 #12

#21 #22 #23 #24

#31 #32 #33 #34 #35 #36 #37 #38

(etc.)

This is a more complicated model. We will analyze only the \links breaking" behav-
ior. Bit ipping is de�nitely harder to understand (it is discussed in [5]). The structure
presented here is oÆcially called a rooted binary tree of depth n. Each path from the root
(labeled #0) down to a leaf has n edges, and there are 2n leaves on the nth level.

So we suppose that a link breaks with probability q = 1 � p, with q and p strictly
between 0 and 1. Therefore the link is unbroken with probability p. We also require that
breaking of links occurs independently.

QuestionWhat is the probability that there is an unbroken path from
the root to some computer at the nth level?

Here the probabilities of various paths are not independent, so we must be careful. For
example, if the link from #11 to #22 breaks, both #33 and #34 can't get information
from the root.

I used Maple to create some data about this complicated model. The model is de-
scribed by several variables. One variable is p, the probability that a link does not break.

* The dictionary says \heuristic" means \allowing or assisting to discover" (as an ad-
jective). The word is frequently extended to a noun. Here I mean exploring a complicated
situation with computer simulation, trying to guess what the correct, precise answer is.
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Another variable is L, the number of levels in the \tree" of computers which we are trying
to understand.

I had a Maple program use the random number generator to consider all the links,
and cut each link, independently, with probability 1 � p. The program checked if there
was then at least one unbroken path to level L. I repeated this experiment N times and
divided the number of times that there was an path from the root to level L by N to get
the relative frequency. This could be an approximation to the probability that there is a
path from the root to level L.

For example, I asked Maple to look at a tree with L = 8 levels and with p = :3 one
hundred times. I got .01 and when I requested this again I got .02 and then .04 and .01
again. The results are di�erent because Maple's \random" number generator cut the tree
in many di�erent places. When I changed to p = :8 with the same number of levels again
with one hundred trials, .91 and .89 were the �rst two reported relative frequencies. When
I changed to L = 4 levels with p = :3, the �rst two reported relative frequencies were .09
and .11. With p = :8 and L = 4, they were .94 and .97. There are too many numbers.
What's going on and how can we understand these results and use them to help us rather
than confuse us?*

Suppose A(p; L;N) is the following \function":

Consider the binary tree from the root to level L. Cut links independently
with probability 1�p (and maintain them with probability p) using a pseudo-
random number generator. Do this N times. A(p; L;N) is the relative
frequency that there at least one path from the root to level L: divide by N
the total number of times that there is such a path.

There are quotes around the word \function" because the number A(p; L;N) will likely be
di�erent each time the relative frequency is computed. Sometimes we may be lucky and
there may be a large number of successes and sometimes we may be unlucky. But if there
is some acceptable probability, we expect that as N increases, unless we are fantastically
unlucky, the number A(p; L;N) would get close to that probability.

Experiment #1 For example, here is one computation for p = :4 and L = 5.
N = 10: .3; N = 100: .2; N = 1;000: .179; N = 10;000: .1882

And here is another computation with the same p and L.
N = 10: .2; N = 100: .18; N = 1;000: .193; N = 10;000: .1819

The results are di�erent since the random number generator cuts di�erent links.

Experiment #2 Change p to :6 but leave L at 5, unchanged.
N = 10: .4; N = 100: .68; N = 1;000: .634; N = 10;000: .6363

When I ran the program again I got these numbers.
N = 10: .7; N = 100: .67; N = 1;000: .635; N = 10;000: .6354

Theory We'll see shortly that theory predicts the true value of the �rst probability to be
.18516, and the true value of the second, .63785. We would hope, as I wrote before, that
as N increases, the numbers A(p; L;N) should \stabilize" near the true probability.

* A great applied mathematicians of the last century, Richard Hamming, wrote:
The purpose of computing is insight, not numbers.

Always remember this when doing computations.
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General behavior of A(p; L;N)

As p increases with L unchanged we should expect A(p; L;N) to increase. This is
because more links are likely to be left on the tree. As L increases with p unchanged we
should expect A(p; L;N) to decrease. Each additional level down the tree increases the risk
that a path could be cut. All of this is the same qualitative behavior as the transmission
models.

I computed more numbers. They are reported below. The computations were done
to 10 decimal places. The trailing zeros are omitted.

Some values of A(p; L;N) for L = 5 and L = 10 (N = 1;000 trials)

p 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

L = 5 0 0 .009 .053 .175 .385 .621 .84 .936 .986 1

L = 10 0 0 0 .003 .051 .269 .603 .825 .923 .993 1

The reported values for A(:9; 5; 1;000), .986, and A(:9; 10; 1;000), .993, are not in the
\correct" order: even with 1,000 repetitions, the simulation was just unlucky. Here's a
picture of this data which might be more instructive. The horizontal axis is p.
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The most interesting part of these experimental results is that some of the probabilities
don't seem to be getting close to 0 as the number of levels increases. This is strikingly
di�erent from the transmission models, where it seems that inevitably information is lost
as the number of links increases. Something di�erent is happening.
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Lecture 13: Broadcasting { problem analysis

Certainly the probability that there is some path from the root to a computer at the
nth level is � the sum over all paths of the probabilities that any speci�c path is unbroken
(this uses the rule P (A [ B) � P (A) + P (B)). But each speci�c path has n links, so
each speci�c path is unbroken with probability pn. There are 2n distinct paths, so the
probability at least one path is unbroken is overestimated by 2npn. If p < 1

2 then 2p < 1
and the overestimate is powers of 2p, a number between 0 and 1. These powers, as in the
transmission models, decay to 0 rapidly.

If p � 1
2 , we can't draw any conclusions based on what what's done so far, because the

overestimates don't go to 0, so they can't \force" the probabilities to have any asymptotic
behavior when n gets large. We need to work a bit more.

We de�ne Pn to be the probability that there is some unbroken path from #0 to an
nth level leaf. We will analyze Pn in detail, primarily by relating Pn and Pn+1. There can
be a path to a leaf at the (n+ 1)

st
level in two disjoint ways. Either both links from #0

are unbroken, or exactly one link from #0 is unbroken.

� Both links are unbroken with probability p2 (multiplication again, since the breaking
events are independent). We now need to look at the subtrees branching from 11 and
12. At least one of them should have a path to a leaf n levels below. The probability
that one subtree will not have such a path is 1� Pn, so the event both will not have
a path has probability (1 � Pn)

2. Therefore at least one has a path to a terminal
leaf with probability 1 � (1 � Pn)

2. The cumulative chance that this happens is
p2
�
1� (1� Pn)

2
�
.

� One link from #0 is broken and one is unbroken with probability p(1� p). There are
two disjoint ways for this to happen, so the total probability is 2p(1� p). The subtree
from the unbroken link has a path to the bottom with probability Pn, so there is a
path to a terminal leaf in this case with probability 2p(1� p)Pn.

This discussion was an e�ort to convince you that the following equation is correct.

Pn+1 = p2
�
1� (1� Pn)

2
�
+ 2p(1� p)Pn

Now I'll do some algebraic massaging:

p2(1� (1�Pn)
2) + 2p(1� p)Pn = p2

�
1� 1 + 2Pn � (Pn)

2
�
+ 2pPn � 2p2Pn

= 2p2Pn � p2(Pn)
2 + 2pPn � 2p2Pn = 2pPn � p2(Pn)

2 = 1� (1� pPn)
2
.

so that

Pn+1 = 1� (1� pPn)
2.

Suppose that Pn has some nice behavior as n gets large: that is, Pn gets close to
P for n large. The equation above implies that P = 1 � (1 � pP)2 or P = 2pP � p2P2.
Either P is 0 or P = 2p�1

p2
. Remember that 1

2 � p � 1 so 2p � 1 is between 0 and 1. If

p < 1
2 then 2p� 1 < 0. P, a limit of non-negative probabilities, can't be 2p�1

p2
.

13.1 An example: p=.75 and n from 1 to 10

This is complicated. An particular example may give some insight and inspiration. If
p = :75 (so three-quarters of the time a link is not cut), then Pn+1 = 1� (1� :75Pn)

2 and
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the number 2p�1
p2

is just 8
9 or about :88889. Here is a table of values of the �rst 10 Pn's

gotten using my silicon friend, Maple.

n 1 2 3 4 5 6 7 8 9 10

Pn .93750 .91186 .90080 .89441 .89163 .89026 .88957 .88923 .88906 .88897

These Pn's seem to steadily decrease, and they seem to decrease towards P. Please note
that the numbers here are logically di�erent from the data presented before. These numbers
are computed from a theoretical \deterministic" model of the situation. The data shown
earlier was obtained by simulating probabilistic or random actions on the tree.

13.2 Detailed analysis of fPng

For any p between 1
2 and 1, some intricate algebra actually veri�es what is suggested

by the table above. The basic tool is again mathematical induction.

� What happens when n = 0

P0 = 1 since we can always reach #0 from #0 (!) and P1 = p2 + 2p(1 � p) = 2p � p2 =
p(2 � p), a quadratic whose maximum value is 1 (achieved when p = 1, halfway between
the roots). So we know P1 � P0. Also, 2p�1

p2
must be � P0 since 2p � 1 � p2 (because

p2 � 2p+ 1 = (p� 1)2 � 0). So
P1 � P0 and 2p�1

p2
� P0.

We combine these observations for n = 0 with the following facts.

� What happens with bigger n's

Fact 1 If Pn+1 � Pn then Pn+2 �
Pn+1.

Proof Take Pn+1 � Pn and multiply
by the positive number p to get pPn+1 �
pPn then multiply by �1 (reversing the
inequality) and add 1: 1�pPn+1 � 1�
pPn. These quantities are all between
0 and 1, so squaring doesn't change the
inequality: (1� pPn+1)

2 � (1� pPn)
2.

Multiply by �1 again (changing the in-

equality) and add 1: 1�(1� pPn+1)
2 �

1� (1� pPn)
2. This is exactly Pn+2 �

Pn+1.

Fact 2 If 2p�1
p2

� Pn then 2p�1
p2

� Pn+1.

Proof Take 2p�1
p2

� Pn and multiply by the

positive number p to get 2p�1
p

� pPn then mul-

tiply by �1 (reversing the inequality) and add 1:

1�
�
2p�1
p

�
� 1� pPn. Of course 1�

�
2p�1
p

�
=

1�p
p

These quantities are all between 0 and 1, so

squaring doesn't change the inequality:
�
1�p
p

�2
� (1� pPn)

2. Multiply by �1 again (changing

the inequality) and add 1: 1 �
�
1�p
p

�2
� 1 �

(1� pPn)
2. The right-hand side is p2�(1�p)2

p2
=

�1+2p
p2

, exactly what we wanted to prove.

The sequence fPng decreases as the integer n increases. Each of the terms is bounded
below by 2p�1

p2
. Such a sequence must converge to some P satisfying the equation P =

2pP � p2P2. We saw there were two choices, and certainly we must have P = 2p�1
p2

. What

can one say in (more-or-less) plain English about this model? The binary tree broadcasting
model each of whose links independently breaks less than half the time can successfully
transmit an initial bit to some computer at any level of the tree with positive probability.



This version prepared 7/25/2002 52

Lecture 14: Broadcasting { solution and discussion

1

1

.5

.50

P as a function of p

If p > 1
2 is the probability that an individual link does not

break, then the computer at the root of the tree can transmit to
a computer at every level of the tree with probability at least P,
where

P =

(
0 if 0 � p � 1

2
2p�1
p2

if 1
2 < p � 1

and a graph of P is shown to the right.

This is a subtle result. Again, we've shown that when p � 1
2 the probability of a path

from the root to at least one nth leaf goes to 0 as n gets large. If p > 1
2
, the probability

remains strictly above 0 (indeed, above the corresponding value of P) as n grows. Here is
the answer to the question with which we began the discussion of the tree network.

Answer Suppose p is between 0 and 1. If Pn is the probability that
the root can access the nth level, then Pn ! 0 for 0 � p < 1

2 as n

increases, and Pn � 2p�1
p2

= P for p � 1
2 as n increases. In fact Pn

steadily decreases to P as n gets large in the latter case.

We wrote P1 explicitly earlier: it was 2p � p2. The equation
Pn+1 = 1� (1� pPn)

2 allows computation of any Pn. So the Pn's
are all polynomials in p, and students who know and love polynomi-
als may �nd their relationship to the \strange" graph above, a func-
tion whose graph has a corner, somewhat strange. What should the
graph of a nice \tame" polynomial look like? Certainly it should be
smooth. A polynomial occurring in this problem should increase
from left to right because the probability of having a path increases
as p increases, and it should go through (0; 0) and (1; 1).

0

1

1

A tame polynomial

Most of our experience is with degree 1 and 2 polynomials
(lines and parabolas). Maybe you've seen a few cubics and other
higher degree polynomials. P3 is a polynomial of degree 14:

�p14 + 8p13 � 24p12 + 28p11+8p10 � 48p9

+28p8 + 14p7 � 8p6 � 8p5 � 4p4 + 8p3

which seems l-o-n-g and complicated. Maple's picture of its graph
looks simple: a smooth curve, increasing from (0; 0) to (1; 1). 0
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P10 is more complicated. It has degree is 2,046 and it has 2,037
non-zero terms. I will not write it out! In general, Pn has degree
2n � 2. I don't know how many non-zero terms it has. Here is a
picture of P10. I hope you can see the resemblance to the graph of
P above. As n increases, the polynomial graph begins to resemble
more and more the strange broken graph above.
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Much of this mathematics was invented by physicists, who called the subject, \perco-
lation". The picture below shows a physical example, with drips between the stones. The
binary tree is supposed to be a model of the water trickling between the rocks.

{RAIN ON ROCKS}

The corner in the graph of P represents somethingMYSTERIOUS called a phase change.
Similar models are used to discuss changes of state from solid to liquid or from liquid to
gas: an abrupt change in the way a complex system behaves. The change can't be modeled
by some nice function. Phase changes appear in many studies of complex phenomena.

14.1 Thanks and bibliography

Many conversations helped me prepare this material. Several faculty members (Pro-
fessor Eugene Speer, whose specialty is mathematical physics, and Professor Charles Sims,
whose specialty is computer algebra) spent time talking with me so I could better un-
derstand what's going on. Several graduate students (David Galvin, Vincent Vatter, and
Jason Tedor) helped me with some of the computations. I wanted to show an \elemen-
tary" change-of-phase. Mr. Galvin and Professor Speer each suggested the speci�c example
analyzed here.

Now some references.

[1] Almost any book on probability will be useful, and will have easy exercises on the basic
vocabulary. The examples shown here aren't likely to appear in a basic book. The text
used at Rutgers for the introductory probability course is Sheldon Ross, A First Course in

Probability, 6th edition, 2002, $95. There are less expensive books covering this material.*

[2] Geo�ry Grimmett, Percolation, Springer-Verlag, 1989, 296 pages, $99. This is an
advanced text. Section 8.1 discusses percolation on a tree.

[3] Russell Lyons and Yuval Peres, Probability on Trees and Networks. The authors write:
\This book is still being written. Most parts that are available are in close-to-�nished form,
but some are de�nitely in progress. : : : The �nal product will be published by Cambridge
University Press. We hope that will be in the year 2003." A version is available on the
web: http://www.math.gatech.edu/~rdlyons/prbtree/prbtree.html

* Hint: See Dover Publications.
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[4] B. P. Watson and P. L. Leath, Conductivity in the two-dimensional-site percolation

problem, Phys. Rev. B 9, 4893-4896 (1974). This can be seen at
http://prola.aps.org/thumbnail/PRB/v9/i11/p4893 1?start=0. This classic physics
paper reports on a phase change problem similar to what is discussed here using a simple
(and witty!) experimental setup. Take a rectangular mesh window screen, and establish
a potential di�erence across diagonal corners. Start clipping (breaking) some of the wire
connections \at random", and observe how the resistance changes. A \change of state"
occurs after a portion of the wires are cut. The experiment reects phenomena very similar
to what was analyzed here.

[5] William Evans, Claire Kenyon, Yuval Peres, and Leonard J. Schulman, Broadcasting
on Trees and the Ising Model, Ann. Appl. Prob. 10, (2000), 410{433. This is #23 on
http://stat-www.berkeley.edu/~peres/recent.html. The paper discusses bit ipping
and information transmission on some networks, including binary trees.


