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Lecture 3: Fermat and Euler

3.1 Multiplying the �rst row mod 7

We will work out the � table for mod 7. [CLASS WORK] The �rst non-zero row is

0 1 2 3 4 5 6

What is the product of the (non-zero) entries of this row? That is, what is 1 �2 �3 �4 �5 �6? I
want to multiply mod 7. Or, if you know the notation, what is 6!, mod 7? This computation
can be done several ways.

Direct computation is one way. 6! = 720, and we can discard the 700 immediately.
Then 20 is one away from 21, so the answer is �1 or 6 mod 7.

Some thought Maybe a little bit of information about the answer is enough. Actually,
all we'll need is that 6! is not zero mod 7. I can conclude this almost immediately by \pure
thought". The numbers I'm multiplying are all not zero. Since 7 is prime, there are no
\interior" zeros in the multiplication table for 7. So the product, whatever it is, will be
obtained by repeatedly looking up numbers inside the table, and it can't be zero.

Even more thought Here's a slightly stronger version of the pure thought argument,
which gives the actual value. Remember that every non-zero number in f1; 2; 3; 4; 5; 6g
actually has a multiplicative inverse. Let's pair up the inverses: 2 and 4 are inverses; 3 and
5 are inverses. 1 and 6 are slightly di�erent. Each of 1 and 6 are their own multiplicative
inverses. That's because these are the solutions of x2 = 1mod 7. The solutions of x2�1 = 0
can be gotten by factoring: x2 � 1 = (x� 1)(x+ 1). The only x's solving this are gotten
either by setting x� 1 = 0 or x+ 1 = 0 (this is again because the multiplication table has
no interior zeros). So x = 1 or x = �1. The latter means x = 6, of course. Now consider
the product 1 � 2 � 3 � 4 � 5 � 6 again. The inside numbers from 2 to 5 all cancel out, since we
can pair up the pairs of numbers and multiplicative inverses. What's left? Only 1 and 6.
So the product is 6.

3.2 Multiplying more rows: some theorems

Exactly the same approach will work with any prime number, P . The product of the
non-zero numbers in the �rst row is (P � 1)! and the mod P value of this product can be
exactly computed by realizing that almost all of the numbers can be matched up with their
multiplicative inverses. The only ones which can't be canceled are 1 and P � 1. Discard
the 1, since it doesn't e�ect the answer. And we now know (P � 1)! is �1 mod P . This
is called Wilson's Theorem, and is about 250 years old. It is nice to note that Wilson's
Theorem was �rst proved by Lagrange. In my own career, I am trying to write as many
theorems as possible, and hoping other people then will prove them so many \Green�eld's
Theorem" citations will occur. By the way, the converse is true: if N is an integer so that
(N�1)! is �1 mod N , then N must be prime. It isn't practical to use this characterization
of prime numbers since many multiplications must be done to compute the factorial.

What we'll need is merely that (P � 1)! isn't 0 mod P . Understanding that is easy,
as remarked above. But what about the other rows in the mod 7 table? For example, the
row attached to 4 is the following:
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0 4 1 5 2 6 3

What is the product of the non-zero entries of this row? I'll bet it is 6! because multipli-
cation is commutative. But, wait, notice that the �rst non-zero entry is 4 � 1, the second is
4 �2, the third is 4 �3, the fourth is 4 �4, the �fth is 4 �5, and the sixth is 4 �6. If we organize
the computation e�ectively, remembering how to manipulate exponents* then the result
is 46 � 6!. But now we see that 46 � 6! = 6! mod 7. Since 6! isn't 0 mod 7 we can divide
by it (I'm supposed to write: multiply by its multiplicative inverse). This is why I wanted
to know 6! wasn't 0 mod 7, so I can conclude 46 = 1 mod 7. By the way, 46 in usual
arithmetic is 4096. You can divide by 7 and verify that the result is 585, with remainder
1, exactly as predicted.

3.3 Fermat's Little Theorem

The result described here is called Fermat's Little Theorem because it was �rst
written on the head of a pin, and smuggled out of France in a tailor's sewing kit.
Results derived from it were used to win the war for England against France : : :

Well, that's all ludicrous, but in fact cryptography, which we're edging closer and closer to,
became extremely important during the Second World War. The clever use of information
derived from making and breaking secure communications systems has become exceedingly
important. More later about this, but here is a result from the year 1640:

Fermat's Little Theorem

If P is prime, and a is an integer between 0 and P , then aP�1 = 1 mod P .

It is called the Little Theorem to contrast it with the famous Last Theorem, proven quite
recently after many people worked on it for many years.

If you followed the discussion above, you can see we have proved this result. The a's
row of the mod P multiplication table is a rearrangement of the �rst row. The non-zero
entries in each row therefore have a non-zero product which is the same, but the entries
di�er by P � 1 multiplications of a, so that must mean that multiplication by aP�1 mod
P doesn't do much. It just multiplies by 1.

3.4 Crypto dreams . . .

One cryptographic goal is to send information secretly using a channel that is assumed
to be available to the opponent. We will in fact meet the most common personi�cations
of this soon: Alice and Bob trying to communicate securely, and Eve, trying to untangle
their disguises.

Just the multiplication table mod P when P is a \large" prime (9001?) already
begins to look interesting. Why not take a message, and have the sender interchange
the letters of the message according to a far-out row of the multiplication table, the row
corresponding to multiplication by, say, 433. Then the receiver would decode by using the
row corresponding to the multiplicative inverse of 433 mod 9001. What a great scheme!
The Euclidean algorithm allows us to easily �nd the multiplicative inverse, and then there

* OFFICIAL EXPONENT RULE 1: AB �AC = AB+C .
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would be no problem. Oops: the Euclidean algorithm also allows Eve to �nd the inverse
rapidly. Part of our goal should not be to make the eavesdropper's work easier!

So equations like 433x = 1 mod P can be solved easily. But experimentally and
theoretically, exponentiation seems much harder to undo. Look at Fermat's result again:
aP�1 = 1 mod P so aP = a mod P . Somehow, a gets fed into a messy exponential
machine, and then magically (mod P !) the original information, a comes right out:

!!!

a!
z}|{

aP ! a

A mystery occurs at !!!. If we could stop the exponentiation halfway through { then we'd
have a neat scheme. If somehow we could exponentiate twice, sending our message between
the two exponentiations, then we'd have a candidate for a neat \cryptosystem". Repeated
exponentiation* is certainly possible, but, darn it, the exponent here is a prime so that if
P is BC, one of B and C must be 1, so one of the exponentiations isn't doing much.

3.5 Euler's generalization of Fermat's result and some sociology

We will generalize Fermat's result in order to create a situation which is more useful for
cryptography. So given an integer N , we want to �nd another integer, magic(N) (which
may depend on N) so that for lots of integers, a, amagic(N) = 1 mod N . Euler thought
of this. The useful generalization is to numbers which are the products of two distinct
primes. Even here we must give up the freedom of choosing essentially any non-zero a.
If P = 3 and Q = 5 and a = 3, then the powers of a mod 15 are 3, 9, 9 � 3 = 27 = 12,
12 � 3 = 36 = 6, 6 � 3 = 18 = 3, etc. None of these powers are 1. More information is
needed about a in this case.

Euler's Theorem

If a is not divisible by P or Q then

a(P�1)(Q�1) = 1 mod PQ:

In a lovely book called A Mathematician's Apology, G. H. Hardy, one of the great math-
ematicians of the last (twentieth!) century, asserted that he selected the mathematics he
investigated solely because of its beauty. He stated with pride that almost nothing he had
done had any use.y Much of Hardy's work during the �rst half of the twentieth century
was in number theory, studying properties of prime numbers. Hardy's e�orts are quite
relevant to contemporary cryptography. Looking back at his comments one can see he was
as foolish as people who want to do only work that has immediate applications, and who
declare that theoretical work without applications is always unjusti�ed. Perhaps neither

* OFFICIAL EXPONENT RULE 2: (AB)
C
= ABC .

y He wrote: \: : : Real mathematics has no e�ects on war. No one has yet discovered
any warlike purpose to be served by the theory of numbers or relativity, and it seems very
unlikely that anyone will do so for many years."
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side of this discussion is always right, or even correct a great deal of the time. Both ab-
stract and applied investigations seem to be important. And maybe human beings can't
totally forecast the future.

An example for Euler's Theorem: suppose P = 3, Q = 5, and a = 2. Then (P �
1)(Q� 1) = 2 � 4 = 8 and 28 = 256. Since 256 = 255 + 1 = 15 � 17 + 1, 256 = 1 mod 15.
Of course, since powers of 1 are 1, we know that 25610 = 110 = 1 mod 15. Maple reports
that 25610 is 12089 25819 61462 91747 06176. It is not immediately clear to me that the
remainder resulting from dividing this number by 15 will be 1.

We will use the following equation repeatedly:

a(any integer)(P�1)(Q�1) = 1 mod PQ:

This follows from Euler's Theorem since 1any integer is 1.
Euler's Theorem can be proved in a fashion similar to Fermat's result. The proof is

more involved, since the multiplication table is more complicated: there are interior zeros.
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