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1 Background

Suppose we are a given a coin. Flipping the coin yields two possible events:
the coin either lands on heads or tails. We designate the probability that the
coin lands on heads as P (H) and the probability that the coin lands on tails
as P (T ) = 1−P (H). Because P (H) and P (T ) are probabilities, their values
lie in the real interval [0, 1]. We call the coin unbiased if P (H) = P (T ) = 1/2.
Naturally, we call the coin biased if P (H) 6= P (T ). Furthermore, we assume
that repeated flips of the coin are independent, that is P (H) and P (T ) are
fixed.

We say an event almost always occurs if it occurs with probability one.
For example, suppose we have an experiment where a person flips an unbi-
ased coin until the coin lands on heads. It is possible that the coin always
lands on tails. In this single case, the experiment does not end. However,
the probability of this event is limx→∞ P (T )x. So, the probability that the
experiment ends is 1 − limx→∞ P (T )x = 1 − limx→∞(1/2)x = 1. Therefore,
we say that this experiment almost always ends.

In 1951, John von Neumann is reported to have initially proposed and
solved the following question1: given a biased coin with 0 < P (H) < 1 is
there a procedure to simulate an unbiased coin that almost always ends?
John von Neumann answers in the affirmative. His procedure is as follows:
Let P (H) be the probability of a biased coin. At each step i, flip the coin
twice and examine the four possible sequences. If the sequence is (Heads,
Tails), report Heads. If the sequence is (Tails, Heads), report Tails. If
the sequence is either (Heads, Heads) or (Tails, Tails), go to step i + 1.
Thus, for each step, the Prob{reporting Heads} = P (H) ∗ P (T ) = P (T ) ∗
P (H) = Prob{reporting Tails}. Furthermore, this algorithm has probability
2 ∗ P (H) ∗ P (T ) of terminating at each step. So, the probabilty that this
algorithm terminates is 1, and the expected running time in terms of number
of coin flips is 1

P (H)∗P (T )
.

Professor Greenfield proposes the ”reverse” of the John von Neumann
problem - that is, given an unbiased coin and a number p with 0 < p < 1,
is there a procedure to simulate a biased coin with P (H) = p that almost
always ends? In the following, I answer in the affirmative by demonstrating
an algorithm that has an expected running time of 2 flips.
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2 Reverse John von Neumann Problem

Let p ε [0, 1]. If p = Σ∞i=1(xi ∗ 2−i) and where xi ε {0, 1} ∀iεN then we say
the infinite sequence of x1, x2, x3, ... is the binary representation of p. Often,
for convenience, the binary representation will be written as .x1x2x3...

Lemma 1 Every p ε [0, 1] has a binary representation.

The following algorithm may be used to recursively determine each xj:

Step j:
If p− (Σj−1

i=1 (xi ∗ 2−i) + 2−j) ≥ 0, then xj = 1
Otherwise, xj = 0
Go to step j + 1

Obviously, this algorithm can always be executed at every step. Suppose, for
sake of contradiction, that p 6= Σ∞i=1(xi∗2−i) . First observe, Σj

i=1(xi∗2−i) < p
∀jεN. So, ∃ε such that Σj

i=1(xi ∗ 2−i) < p− ε ∀jεN. Furthermore, it follows
from the Archimedean Principle that ∃nεN such that 2−n < ε < 2−n+1. Be-
cause Σn

i=1(2−i) = 1− 2−n and p− 1 + 2−n < ε, ∃kε[n] such that xk = 0 and
xl = 1 ∀lε([n] \ [k]). Observe that by binary addition, Σn

i=1(xi ∗ 2−i) + 2−n

= Σk−1
i=1 (xi ∗ 2−i) + 2−k < p . Yet this violates our choice of xk. Hence, we

have reached a contradiction and every real in the unit interval has a binary
representation.

Example 1 Construct the binary representation of 5/8.

Step 1: 5/8− 1/2 ≥ 0, so x1 = 1;
Step 2: 5/8− (1/2 + 1/4) < 0, so x2 = 0;
Step 3: 5/8− (1/2 + 1/8) = 0, so x3 = 1;

So, 5/8 = .101

Example 2 Construct the binary representation of 1/π.

Step 1: 1/π - (1/2) < 0, so x1 = 0;
Step 2: 1/π - (1/4) ≥ 0, so x2 = 1;
Step 3: 1/π - (1/4 + 1/8) < 0, so x3 = 0;
Step 4: 1/π - (1/4 + 1/16) ≥ 0, so x4 = 1;
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Step 5: 1/π - (1/4 + 1/16 + 1/32) < 0, so x5 = 0;
Step 6: 1/π - (1/4 + 1/16 + 1/64) < 0, so x6 = 0;

And so forth. 1/π = .010100...

Problem 1 Given an unbiased coin and a number p with 0 < p < 1, con-
struct a procedure to simulate P (H) = p that almost always ends.

By Lemma 1, we can construct a binary representation for p. Let x1, x2, x3...
be a binary representation of p. I claim the following algorithm simulates an
unfair coin with P (H) = p.

Step j:
Flip unbiased coin and:

If coin lands on heads and xj = 1, report heads.
If coin lands on tails and xj = 0, report tails.
Otherwise go to step j + 1.

First, this algorithm terminates with probability 1/2 at each step. This
coincides with the geometric distribution with p = 1/2 and thus has expected
running time equal to 1/(1/2) = 2.

Notice that the probability of heads is the sum of the mutually exclusive
events that we report heads on the ith toss. Furthermore, we only report
heads on the ith toss if the procedure did not end in the previous i − 1
steps, the ith toss is heads, and xi = 1. So let X ′ := {xi|xi = 1}. Clearly,
P (H) = ΣiεX′(xi ∗ 2−i) = Σ∞i=1(xi ∗ 2−i) = p.

Example 3 Simulate a biased coin with P(H)=1/π by using an unbiased
coin.

¿From Example 2, we know that the binary representation of 1/π =
.010100... We flip the unbiased coin. If the coin lands on tails, we report
tails because x1 = 0. If the coin lands on heads, we flip again. Suppose on
the second flip, the coin lands on heads. Because x2 = 1, we report heads.
If the second flip is tails, we would flip again.

So, P (H) = Prob{Flipping Heads with fair coin, then Heads again}
+ Prob{Flipping Heads, then Tails, then Heads, then Heads}
+ ...

= 1/4 + 1/16 + ...

4



= .010100...
= 1/π

Problem 2 Given an biased coin and numbers p1 6= p2 with 0 < p1, p2 < 1,
construct a procedure to simulate a biased coin with P (H) = p2 from a biased
coin with probability P (H) = p1.

First, use the John Von Neumann algorithm to simulate a fair coin from
the biased coin. Then use the Reverse John Von Neumann algorithm to
simulate the new biased coin from the simulated fair coin.

Due to the independence of coin flips, this procedure has expected running
time 1

P (H)∗P (T )
∗2 = 2

P (H)∗P (T )
.

Problem 3 Given an unbiased coin and a rational number p in (0,1) con-
struct a procedure to simulate a biased coin with P (H) = p that does not use
the binary representation of p.

Let be p is a rational in (0,1). Then, ∃q, rεN such that p = q
r

and q
r

is
in lowest terms. Let xεN such that 2x−1 < r ≤ 2x. Observe that x flips of
an unbiased coin produce 2x distinct sequences of heads and tails that are
equally likely. Mark q of these as report heads, r − q as report tails, and the
remaining 2x − r as repeat.

Then, for each step i:
Flip the coin x times and call the resulting sequence X.

If X is marked as report heads, report heads.
If X is marked as report tails, report tails.
If X is marked as repeat, go to step i+ 1.

Given that we report heads or tails, the probability that heads is reported
is clearly the proportion q/r = p. The probability that we report heads or
tails for some step i, is 1 − limi→∞[ r

2x
( 2x−r

2x
)i−1] = 1. So, this algorithm

successfully simulates a coin with P (H) = p.
The expected running time of this algorithm depends on r. In the best

case, ∃xεN 2x = r, and, thus, there are no repeat sequences. In the worst case,
∃xεN 2x−1 + 1 = r, and, thus, there are 2x−1 − 1 repeat sequences. Observe
that limx→∞

2x−1−1
2x

=1
2
. The expected running time of this algorithm is in

the half-open interval [x, 2 ∗ x). However, the worst case running time is
either x or infinity.
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Example 4 Given an unbiased coin, construct a procedure to simulate a
biased coin with P (H) = 2/3 that does not use the binary representation of
2/3.

Observe that 21 < 3 ≤ 22, so x = 2. Mark (Heads, Heads) and (Heads,
Tails) as report heads. Mark (Tails, Heads) as report tails. Finally, mark
(Tails, Tails) as repeat. For each step i flip the coin twice and report heads,
report tails, or repeat for their respective sequence(s). The probability of
reporting heads at each step is 2

4
= 1

2
. The probability of going to the next

step is 1
4
. So, the probability of reporting heads is 2

3
Σ∞i=1[3

4
∗(1

4
)i−1] = 2

3
. The

expected running time is 2 ∗ Σ∞i=1[i ∗ (3
4
) ∗ (1

4
)i−1] = 8

3
≤ 4 = 2 ∗ x.

3 References

.
[1] L. Fortnow, http://people.cs.uchicago.edu/ fortnow/talks/nvti.pdf, Au-

gust 2002, 15 - 18.
[2] S. Greenfield, http://www.math.rutgers.edu/ greenfie/gs2003/pdfstuff/lect5.pdf,

June 2003, 40-42.

6


