Name _____

Name

Name

Name

Your goal here is to compute $\int_{-\infty}^{\infty} \frac{1}{x^2 + x + 1} dx$ using the Residue Theorem.

1 We may write $\int_{-\infty}^{\infty} \frac{1}{x^2 + x + 1} dx = \lim_{R \to \infty} \int_{I_R} f(z) dz$ where I_R is the interval from -R to R on the real line. f is an analytic function with two isolated singularities. It is given by a formula:

$$f(z) =$$

2 The isolated singularities of f are at the complex numbers $A = \underline{\underline{upper}}$ half plane and $B = \underline{\underline{lower}}$ half plane.

The type of the isolated singularity at A is (circle one)

A POLE A REMOVABLE SINGULARITY AN ESSENTIAL SINGULARITY

3 We can factor the denominator of f and rewrite its formula as follows:

$$f(z) =$$

4 The function f has an isolated singularity at A in the upper half plane. Since f has a (insert here a useful and precise descriptive phrase about f's singularity at A), the residue of f at A is easy to compute.

That residue is

5 Suppose S_R is the counterclockwise oriented semicircle of radius R in the upper half plane centered at 0. We will write $I_R + S_R$ to mean the simple closed curve obtained by following I_R by S_R . If R is large enough (as shown) so A is inside $I_R + S_R$, the Residue Theorem tells us that

OVER

6 If |z| = R where R is a large positive number, then the "reverse triangle inequality" applied to the original formula for f allows us to <u>underestimate</u> the denominator of |f(z)| in terms of R (note that there will be several expressions that are subtracted):

So the <u>denominator</u> of $|f(z)| \ge$ ______.

7 The length of S_R is _____. The ML inequality allows us to overestimate the modulus of $\int_{S_R} f(z) \; dz$ in terms of R.

$$\left| \int_{S_R} f(z) \ dz \right| \le \underline{\hspace{1cm}}.$$

- 8 We therefore conclude that $\lim_{R\to\infty}\int_{S_R}f(z)\ dz=$ ______.
- **9** Combine the results of **8** and **5** to compute the value of $\lim_{R\to\infty}\int_{I_R}f(z)\ dz$.

The value of this limit is

10 Putting it all together, we finally can write

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + x + 1} \ dx = \underline{\qquad}.$$

Maple reports that this quantity is approximately $3.62759\ 87284\ 68435\ 7012.$