(20) 1. Compute  $\int_B \frac{z^4}{(z - (1 + i))^3} dz$  where *B* is the simple

closed curve shown: the line segment from 0 to 3, followed by the quarter-circular arc centered at 0 from 3 to 3i, followed by the line segment from 3i to 0.

Answer  $-24\pi$ 



(20) 2. Use the Residue Theorem to compute  $\int_0^\infty \frac{\sqrt{x}}{x^2+4} dx$ .

**Comment Maple** reports that the answer is  $\frac{\pi}{2}$ .

You must show details of any estimates required to apply the Residue Theorem to earn full credit here, in addition to the computation of any residues necessary.

(20) 3. Suppose  $H(z) = \frac{1}{\sin z} - \frac{1}{z}$ .

Identify as precisely as possible the type of the isolated singularity at 0 of H(z): is it removable, a pole, or essential? If it is a pole, find the order of the pole. Find the first two non-zero terms of the Laurent series of H(z) at 0. Find the residue of H(z) at 0.

> Type of singularity \_\_\_\_\_ First two terms \_\_\_\_\_ Residue at 0 \_\_\_\_\_

- (20) 4. Show that u(x, y) = xy + y is a harmonic function and find a harmonic conjugate v(x, y) of u(x, y). Write the resulting complex analytic function u(x, y) + iv(x, y) in terms of the complex variable z = x + iy.
- (20) 5. Suppose  $G(z) = z^5 + 5z^2 + e^z$ . How many zeros (counting multiplicity) does G have in the annular region 1 < |z| < 2?
- (20) 6. a) Use geometric series to find a simple expression, S(x), for  $\sum_{n=1}^{\infty} \frac{e^{inx}}{2^n}$  when x is a real number, and explain briefly why the series converges.
  - b) Take imaginary parts of both sides of the equation  $S(x) = \sum_{n=1}^{\infty} \frac{e^{inx}}{2^n}$  and verify that

$$\frac{2\sin x}{5 - 4\cos x} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{2^n} \,.$$

(20) 7. Here D is the open unit disc in the complex plane: z's with |z| < 1, and Q is the open first quadrant in the complex plane: z's with  $\operatorname{Re} z > 0$  and  $\operatorname{Im} z > 0$ .

Find a conformal mapping M(z) from D onto Q so that

- M(0) = 1 + i.
- M(z) extends continuously to map the upper semicircle (|z| = 1 and Im z > 0) to the positive real axis.
- M(z) extends continuously to map the lower semicircle (|z| = 1 and Im z < 0) to the positive imaginary axis.

These requirements are indicated in the picture below.



Hint Write M(z) as a composition of two simpler conformal mappings. (20) 8. This problem has two parts with equal values.

a) Compute  $\int_C \text{Log } z \, dz$  where C is the curve shown. Briefly explain your answer.

b) Describe all solutions of  $z^4 = -1$  algebraically in rectangular form. Sketch these solutions on the axes provided.

**Comment** Your answer(s) should be exact. Answers may use traditional mathematical constants such as  $\pi$  and e and operations involving arithmetic and root extraction of positive real numbers.



(20) 9. Find the radius of convergence of the Taylor series expansion centered at z = i of the function  $W(z) = \frac{e^z - 1}{z(z - 1)}$ . Give an exact answer. Justify why the series must converge with at least that radius <u>and</u> why it can't have a larger radius. (Actual computation of the series is not practical and is not requested.)

**Comment** Watch for the tricky part! Don't assume ...

(20) 10. Suppose F(z) is an analytic function defined in an open disc centered at 0 and

$$|F^{(k)}(0)| \le 7$$

for every positive integer k. Explain why F(z) must actually be an entire function: it can be extended to a function defined and analytic for all z in  $\mathbb{C}$ .

**Extra credit** (5 points) Suppose that F(z) is defined in a connected open set containing 0 with the same estimates on the derivatives. Explain why the same conclusion still holds, and explain why the word "connected" is needed.

## Final Exam for Math 403, section 1

May 12, 2002

NAME \_\_\_\_\_

Do all problems, in any order. Show your work. An answer alone may not receive full credit. No notes or calculators may be used on this exam.

| D 11                 | ווי ת                   |                         |
|----------------------|-------------------------|-------------------------|
| Problem              | Possible                | $\operatorname{Points}$ |
| Number               | $\operatorname{Points}$ | Earned:                 |
| 1                    | 20                      |                         |
| 2                    | 20                      |                         |
| 3                    | 20                      |                         |
| 4                    | 20                      |                         |
| 5                    | 20                      |                         |
| 6                    | 20                      |                         |
| 7                    | 20                      |                         |
| 8                    | 20                      |                         |
| 9                    | 20                      |                         |
| 10                   | 20                      |                         |
| Total Points Earned: |                         |                         |