- (24) 7. True or false? If false, give an example to show that the implication is not true. If true, briefly explain why.
 - a) If $\{a_k\}$ is a **sequence** of real numbers so that $\{|a_k|\}$ converges, then $\{a_k\}$ must converge.

b) If $\{a_k\}$ and $\{b_k\}$ are **sequences** of real numbers and L is a real number so that $\lim_{k\to\infty}a_k=L$ and $\lim_{k\to\infty}b_k=L$, then $\lim_{k\to\infty}\frac{a_k}{b_k}=1$.

c) If $\{a_k\}$ is a **sequence** of real numbers and L is a real number so that $\lim_{k\to\infty}a_k=L$, then $\lim_{k\to\infty}(a_{k+1}-a_k)=0$.

d) If $\{a_k\}$ is a **sequence** of real numbers so that $\lim_{k\to\infty} (a_{k+1}-a_k)=0$, then $\{a_k\}$ must converge.