Differential equations-separation of variables. Factor one side of the equation so that dy/dx = f(x)g(y). Then dy/g(y) =f(x)dx. Integrate, not forgetting the constant C of integration. Use the initial condition $(x,y)=(x_0,y_0)$ to find C.

EX: For dy/dx = x + xy, with y = 2, when x = 0, then dy/dx = x(1 + y), or dy/(1 + y) = x dx. Integrating,

Exponential population growth: P = 2, when x = 0, then dy/dx = x(1+y), or dy/(1+y) = x dx. Integrating, $\ln(1+y) = x^2/2 + C$. So $1+y = e^{x^2/2+C}$, or $y = Ae^{x^2/2} - 1$, with $A = e^C$. Set x = 0, y = 2, 2 = A - 1 and $y = 3e^{x^2/2} - 1$. Exponential population growth: $P = P_0e^{kt}$, where P_0 is the initial population and k is a constant. $\lim_{n \to \infty} \frac{n^a}{b^n} = 0$, if b > 1; $\lim_{n \to \infty} \frac{a^n}{n!} = 0$; f, g poly., $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{an^j + \text{lower terms}}{bn^k + \text{lower terms}} = \begin{cases} a/b, & \text{if } j = k; \\ 0, & \text{if } j < k; \pm \infty, \text{if } j > k. \end{cases}$ $\lim_{n \to \infty} c^{1/n} = 0$, if c > 0; $\lim_{n \to \infty} n^{1/n} = 0$; $\lim_{n \to \infty} (1 + (1/n))^n = e$. Use L'Hospital's Rule to verify these results.

Geometric series $\sum_{n=0}^{\infty} x^n = 1/(1-x)$, if |x| < 1. $\sum_{n=1}^{\infty} 1/n^p$ converges if p > 1, diverges if $p \le 1$.

Divergence Test: The series $\sum a_n$ diverges if either $\lim_{n\to\infty} a_n$ does not exist or exists and is not 0

Integral Test: Suppose that f is a positive, continuous, decreasing function. Let $a_n = f(n)$ for each positive integer n. Then the integral $\int_{1}^{\infty} f(x) dx$ and the series $\sum_{n=1}^{\infty} a_n$ converge or diverge together. Use for $\sum 1/n^p$, $\sum 1/(n(\ln n)^p)$. EX: For $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$, find $\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln x}} = \int_{\ln 2}^{\infty} \frac{du}{\sqrt{u}} = 2\sqrt{u}\Big|_{\ln 2}^{\infty} = \infty$, using $u = \ln x$, $du = \frac{dx}{x}$. The series diverges. Comparison Test: Assume $0 \le a_n \le b_n$. If $\sum b_n$ converges, so does $\sum a_n$. If $\sum a_n$ diverges, so does $\sum b_n$. EX: Note that $\frac{1}{n^2 \ln n} \le \frac{1}{n^2}$, if $n \ge 3$, as $\ln n \ge 1$, if $n \ge 3$. Since $\sum \frac{1}{n^2}$ converges, so does $\sum \frac{1}{n^2 \ln n}$. Limit Comparison: If $a_n, b_n > 0$, $\lim_{n \to \infty} (a_n/b_n) = L$, with $L \ne 0, \infty$, $\sum a_n$ and $\sum b_n$ both converge or diverge.

EX: Compare $\sum \frac{\sqrt{n}}{n+1}$ to $\sum \frac{1}{\sqrt{n}}$, since $\left(\frac{\sqrt{n}}{n+1}\right) / \left(\frac{1}{\sqrt{n}}\right) = \frac{n}{n+1} \to 1$, as $n \to \infty$. Since $\sum \frac{1}{\sqrt{n}}$ diverges, both diverge.

Alternating Series: If $\sum_{n=0}^{\infty} (-1)^n a_n$ is a series with $a_n \ge 0$, $a_{n+1} \le a_n$ for all n and $\lim_{n\to\infty} a_n = 0$, the series converges.

Absolute Convergence: The series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges. Then $\sum a_n$ converges also.

Conditional Convergence: The series $\sum a_n$ converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Ratio Test: Suppose $\lim_{n\to\infty} |a_{n+1}/a_n| = L$. If L < 1, $\sum a_n$ converges. If L > 1, $\sum a_n$ diverges. If L = 1, the test fails. Often useful for series involving a^n or n!. Root Test: Similar but with $\lim_{n\to\infty} |a_n|^{1/n} = L$. These tests can be used to find radius of convergence for power series. EX: For $\sum \frac{3^n}{n!}$, $\frac{|a_{n+1}|}{|a_n|} = \frac{3^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n} = \frac{3}{n+1} \to 0$, as $n \to \infty$. As L = 0 < 1, the series converges absolutely.

Series Test	Series	Test	Series	Test
$\sum \frac{1}{n(lnn)^4}$ Integral	$\sum \frac{(n!)^2}{(2n)!}$	Ratio	$\sum \frac{1}{(\ln n)2^n}$	Comp: $\sum \frac{1}{(\ln n)2^n} \le \sum \frac{1}{2^n}$
$\sum \frac{n^2}{(n+1)2^n}$ Ratio	$\sum \frac{n^2+1}{n^2+n}$	Divergence	$\sum \frac{\ln n}{n}$	Comp: $\sum \frac{1}{n} \le \sum \frac{\ln n}{n}$
$\sum \frac{(-1)^n n}{n^2+1}$ Alter. Ser.	$\frac{\sum \frac{n^2+n}{n^4+1}}{\sum \frac{n^2+n}{n^4+1}}$	Lim. Comp. to $\sum \frac{1}{n^2}$	$\sum \frac{\sin n}{n^2}$	Comp: $\sum \frac{ \sin n }{n^2} \le \sum \frac{1}{n^2}$

Estimating Sums with the Integral Test: The error in approximating $\sum_{n=1}^{\infty} a_n$ with $\sum_{n=1}^{N} a_n$ is at most $\int_{N}^{\infty} f(x) dx$. EX: How large should N be to insure that $\sum_{n=1}^{N} ne^{-n^2}$ is within $1/10^{10}$ of $\sum_{n=1}^{\infty} ne^{-n^2}$? We need $\int_{N}^{\infty} xe^{-x^2} dx \le 1/10^{10}$. Integrating, $e^{-N^2}/2 \le 1/10^{10}$, or $10^{10}/2 \le e^{N^2}$, or $10 \ln 10 + \ln 2 \le N^2$, or $\sqrt{10 \ln 10 + \ln 2} \le N$, N an integer. With Alternating Series: The error in approximating $\sum_{n=0}^{\infty} (-1)^n a_n$ with $\sum_{n=0}^{N} (-1)^n a_n$ has absolute value at most a_{n+1} .

Radius of convergence: For the power series, $\sum c_n(x-a)^n$, there is a number $R \geq 0$ so that if |x-a| < R, the series converges absolutely and if |x-a| > R, the series diverges. If |x-a| = R, the series may converge or diverge. Find R with the ratio test. The interval of convergence I is the set of points where the series converges. I contains the interval (a-R, a+R) and may or may not contain the boundary points a-R and a+R.

EX: For $\sum \frac{nx^{2n}}{3^n}$, $\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)|x|^{2n+2}}{3^{n+1}} \cdot \frac{3^n}{n|x|^{2n}} = \left(\frac{n+1}{n}\right) \cdot \frac{|x|^2}{3} \to \frac{|x|^2}{3}$, as $n \to \infty$. The series converges absolutely if $|x|^2/3 < 1$, or $|x|^2 < 3$, or $|x| < \sqrt{3}$. If $|x| = \sqrt{3}$, the series is $\sum n$ and diverges. Then, $R = \sqrt{3}$ and $I = (-\sqrt{3}, \sqrt{3})$.

EX: Use power series integration to find the power series of x and x at x and x are x and x at x and x and x are x and x at x and x are x and x and x are x and x are x and x and x are x and x and x are x are x and x are x are x and x are x and

 $\frac{1}{1+t^2} = \sum_{n=0}^{\infty} (-1)^n t^{2n} \text{ and } \arctan x = \int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{n=0}^{\infty} (-1)^n t^{2n} dt = \sum_{n=0}^{\infty} (-1)^n \int_0^x t^{2n} dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}.$ Taylor Polynomials: The *n*-th Taylor poly. of *f* is $T_n(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + \dots + f^n(a)(x-a)^n/n!$,

assuming f has n derivatives at a. Also $f(x) = T_n(x) + R_n(x), |R_n(x)| \le M|x-a|^{n+1}/(n+1)!$, with M an upper bound of $|f^{n+1}(t)|$ with t in the interval with endpoints a and x. EX: Find $T_2(x)$ of $f(x) = (1+x)^{1/2}$ at a=0. Estimate $|R_2(x)|$ with x in [0, .1]. Here, $f(x) = (1+x)^{1/2}$, $f'(x) = (1/2)(1+x)^{-1/2}$, $f''(x) = (-1/4)(1+x)^{-3/2}$, $f'''(x) = (3/8)(1+x)^{-5/2}$. Then, f(0) = 1, f'(0) = 1/2, f''(0) = -1/4. Thus, $T_2(x) = 1 + x/2 - x^2/8$. Also, $|R_2(x)| \le M|x|^3/3!$, with M an upper bound of $|f'''(t)| = (3/8)(1+t)^{-5/2}$, with t in [0, .1]. Since 1+t is increasing, $(3/8)(1+t)^{-5/2}$ is decreasing on [0, .1] and

its maximum value occurs at t = 0 and is 3/8. Thus, M = 3/8, $|x| \le .1$, and $|R_2(x)| \le (3/8)(.1)^3/6 = (.1)^3/16$. $e^x = \sum_{n=0}^{\infty} x^n/n!$; $\sin x = \sum_{n=0}^{\infty} (-1)^n x^{2n+1}/(2n+1)!$; $\cos x = \sum_{n=0}^{\infty} (-1)^n x^{2n}/(2n)!$; $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n x^{n+1}/(n+1)$. Parametric curves: If x = f(t), y = g(t), then the slope of the tangent line is given by $\frac{dy}{dx} = \left(\frac{dy}{dt}\right)/\left(\frac{dx}{dt}\right) = \frac{g'(t)}{f'(t)}$. The arc

length from t = a to t = b is $\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2} dt$. Polar Coordinates: $x = r \cos \theta$, $y = r \sin \theta$. $r = \sqrt{x^2 + y^2}$, $\theta = \arctan(y/x)$. The area bounded by $y = f(\theta)$, $\theta = a$, $\theta = b$ is $\int_a^b \frac{1}{2} r^2 d\theta = \int_a^b \frac{1}{2} (f(\theta))^2 d\theta$.