1. Use the method of partial fractions to verify that $\int_{0}^{1} \frac{1}{(x+1)\left(x^{2}+1\right)} d x=\frac{1}{4} \ln 2+\frac{1}{8} \pi$.

Answer Write $\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}=\frac{A\left(x^{2}+1\right)+(B x+C)}{(x+1)\left(x^{2}+1\right)}$, so $1=A\left(x^{2}+1\right)+(B x+C)(x+1)$. When $x=$ -1 we get $A=\frac{1}{2}$. Comparing x^{2} coefficients of both sides, we see $B=-\frac{1}{2}$. Finally, comparing constant coefficients on both sides, we see that $1=A+C$ so $C=\frac{1}{2}$. Compute: $\int_{0}^{1} \frac{1}{(x+1)\left(x^{2}+1\right)} d x=\int_{0}^{1} \frac{\frac{1}{2}}{x+1}+\frac{-\frac{1}{2} x+\frac{1}{2}}{x^{2}+1} d x=$ $\left.\int_{0}^{1} \frac{\frac{1}{2}}{x+1}+\frac{-\frac{1}{2} x}{x^{2}+1}+\frac{\frac{1}{2}}{x^{2}+1} d x=\frac{1}{2} \ln (x+1)+-\frac{1}{4} \ln \left(x^{2}+1\right)+\frac{1}{2} \arctan (x)\right]_{0}^{1}=\frac{1}{2} \ln (2)+-\frac{1}{4} \ln (2)+\frac{1}{2} \arctan (1)$ $-\left(\frac{1}{2} \ln (1)+-\frac{1}{4} \ln (1)+\frac{1}{2} \arctan (0)\right)=\frac{1}{4} \ln (2)+\frac{1}{2} \frac{\pi}{4}=\frac{1}{4} \ln 2+\frac{\pi}{8}$. Whew! All done.
2. Suppose \mathcal{R} is the region bounded by $y=\frac{1}{x}, x=1, x=2$, and $y=0$.
a) Find the volume of the solid that results from rotating \mathcal{R} around the x-axis.
b) Find the volume of the solid that results from rotating \mathcal{R} around the y-axis.
Answer $\left.\pi \int_{1}^{2} \pi\left(\frac{1}{x}\right)^{2} d x=\pi \cdot\left(\frac{-1}{x}\right)\right]_{1}^{2}=\frac{\pi}{2}$.
Answer $2 \pi \int_{1}^{2} x\left(\frac{1}{x}\right) d x=2 \pi$.
3. a) Carefully sketch $y=\sin x$ and $y=\sin 2 x$ on the axes given for $0 \leq x \leq \pi$. Be sure to label each of the curves.
Answer The dashed curve is $y=\sin 2 x$ and the solid curve is $y=\sin x$.
b) Find all points of intersection of the curves sketched in part a).

Answer The sketch has three intersection points. Since $\sin 2 x=2 \sin x \cos x$, these occur when $2 \sin x \cos x=\sin x$: when $\sin x=0$, which occurs $x=0$ or $x=\pi$ in the sketch, or when $\cos x=\frac{1}{2}$ which happens when $x=\frac{\pi}{3}$.

c) Find the area enclosed between the curves sketched in part a). Give an exact answer in terms of mathematical constants such as π and e.
Answer In $\left[0, \frac{\pi}{3}\right]$, the top curve is $\sin 2 x$. The enclosed area there is $\int_{0}^{\frac{\pi}{3}} \sin 2 x-\sin x d x=-\frac{1}{2} \cos 2 x+$ $\cos x]_{0}^{\frac{\pi}{3}}=\frac{1}{4}$. In $\left[\frac{\pi}{3}, \pi\right]$, the top curve is $\sin x$. The enclosed area there is $\int_{\frac{\pi}{3}}^{\pi} \sin x-\sin 2 x d x=-\cos x+$ $\left.\frac{1}{2} \cos 2 x\right]_{\frac{\pi}{3}}^{\pi}=\frac{9}{4}$. So the total area is $\frac{1}{4}+\frac{9}{4}=\frac{5}{2}$.
4. a) Suppose w is a positive number. Define $A(w)$ to be the average value of $(\cos x)^{2}$ on the interval $0 \leq x \leq w$. Compute $A(w)$, and show how the integral is calculated. Answer $\int_{0}^{w}(\cos x)^{2} d x=\int_{0}^{w} \frac{1}{2}(1+$ $\left.\cos 2 x) d x=\frac{1}{2}\left(x+\frac{1}{2} \sin 2 x\right)\right]_{0}^{w}=\frac{1}{2}\left(w+\frac{1}{2} \sin 2 w\right)-\frac{1}{2}(0+\sin 0)$. The average value is the integral divided by the length of the interval, which is w, so $A(w)=\frac{1}{2}+\frac{1}{4} \frac{\sin 2 w}{w}$.
b) What is the limit of $A(w)$ as $w \rightarrow 0^{+}$? Answer The limit of $\frac{\sin 2 w}{w}$ can be computed using L'Hospital's rule. It is $\lim _{w \rightarrow 0^{+}} \frac{2 \cos 2 w}{1}=2$. So the limit requested is $\frac{1}{2}+\frac{1}{4} \cdot 2=1$. The limit can also be computed by noticing that $\sin 2 w=2 \sin w \cos w$, and $\lim _{w \rightarrow 0} \frac{\sin w}{w}=1$, familiar from earlier calculus study.
5. a) Explain why $\int_{1}^{\infty} \frac{1}{x^{2}+e^{2 x}} d x$ converges. Answer $\frac{1}{x^{2}+e^{2 x}}$ is positive on the interval $[1, \infty)$, and is certainly less than either $\frac{1}{x^{2}}$ or $\frac{1}{e^{2 x}}$. Either of those integrals converges on that interval, so by comparison, the integral given converges.
b) Explain why the value of the integral in a) is less than $\frac{1}{2}$. Answer In a) either integral is "good enough" to show convergence. Here, however, since $\left.\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{A \rightarrow \infty}-\frac{1}{x}\right]_{1}^{A}=1$ and $\left.\int_{1}^{\infty} \frac{1}{e^{2 x}} d x=\lim _{A \rightarrow \infty}-\frac{1}{2} e^{-2 x}\right]_{1}^{A}=\frac{1}{2 e^{2}}$ we'd better use the second, exponential integral (decaying exponentials $\rightarrow 0$ much more rapidly than any inverse power of $x)$. So the value of the integral given is less than $\frac{1}{2 e^{2}}$ which is certainly less than $\frac{1}{2}$.
6. Calculate the following integrals, showing your work. a) $\int \frac{d x}{\sqrt{1+x^{2}}}$ Answer If $x=\tan \theta$, then $d x=$ $(\sec \theta)^{2} d \theta$ and $\sqrt{1+x^{2}}=\sec \theta$. So $\int \frac{d x}{\sqrt{1+x^{2}}}=\int \sec \theta d \theta=\ln (\sec \theta+\tan \theta)+C=\ln \left(\sqrt{1+x^{2}}+x\right)+C$.
b) $\int \frac{d x}{2 e^{x}+1}$ Answer If $u=e^{x}$, then $d u=e^{x} d x$ so $d x$ is $\frac{d u}{u}$. The integral given becomes $\int \frac{1}{u(2 u+1)} d u$. Rewrite the integrand using partial fractions: $\frac{1}{u(2 u+1)}=\frac{A}{u}+\frac{B}{2 u+1}$ giving $1=A(2 u+1)+B u$. When $u=0$, we get $A=1$. When $u=-\frac{1}{2}$ we get $B=-2$. Then antidifferentiating: $\int \frac{1}{u}+\frac{-2}{2 u+1} d u=\ln u-\ln (2 u+1)+C$. Converting back to x 's, the answer becomes $\ln \left(e^{x}\right)-\ln \left(2 e^{x}+1\right)+C$. (Yes, $\ln \left(e^{x}\right)$ is x.)
7. Use a substitution followed by integration by parts to verify that $\int_{0}^{1} e^{\sqrt{x}} d x=2$.

Answer Try $w=\sqrt{x}$ and therefore $w^{2}=x$ with $2 w d w=d x$. The integral changes: $\int e^{\sqrt{x}} d x=\int e^{w} 2 w d w$. This integral is a well-known candidate for integration by parts. Let's do it (I'll save the 2 until later):

$$
\begin{aligned}
\int e^{w} w d w & \left.=w e^{w}-\int e^{w} d w=w e^{w}-e^{w}+C \quad \begin{array}{rl}
u & =w \\
d u & =e^{w} d w
\end{array}\right\}\left\{\begin{aligned}
d u & =d w \\
v & =e^{w}
\end{aligned}\right. \text {. We can reverse the sub- }
\end{aligned}
$$

stitution so the indefinite integral becomes (with the 2 !) $2\left(\sqrt{x} e^{\sqrt{x}}-e^{\sqrt{x}}\right)+C$. Therefore, $\int_{0}^{1} e^{\sqrt{x}} d x=$ $\left.2\left(\sqrt{x} e^{\sqrt{x}}-e^{\sqrt{x}}\right)\right]_{0}^{1}=(2(e-e))-(2(0-1))=2$.
8. a) Suppose m and n are positive integers. Find a reduction formula for $\int x^{m}(\ln x)^{n} d x$. (Here the aim is to have an equation with the integral given here on one side and a similar integral with reduced n on the other side, since if we can push n to 0 we'll just have a polynomial to integrate, which is easy.)
Answer Again, integrate by parts. $\int x^{m}(\ln x)^{n} d x=\left(\frac{x^{m+1}}{m+1}\right) \cdot(\ln x)^{n}-\int n(\ln x)^{n-1} \cdot\left(\frac{1}{x}\right)\left(\frac{x^{m+1}}{m+1}\right) d x+C$
with $\left.\begin{array}{rl}u & =(\ln x)^{n} \\ d v & =x^{m} d x\end{array}\right\}\left\{\begin{array}{cc}d u d v \quad u v \quad-\quad \int v d u \\ v & =\frac{x^{m+1}}{m+1}\end{array} \quad\right.$. I'll clean this up a bit since the formula will be used in part b):

$$
\int x^{m}(\ln x)^{n} d x=\left(\frac{x^{m+1}}{m+1}\right)(\ln x)^{n}-\frac{n}{m+1} \int x^{m}(\ln x)^{n-1} d x+C
$$

b) Use the formula obtained in a) to compute $\int x^{20}(\ln x)^{2} d x$.

$$
\begin{aligned}
& \text { Answer Since } n=2 \text { we need the formula above twice. } \\
& \int x^{20}(\ln x)^{2} d x=\frac{x^{21}}{21}(\ln x)^{2}-\frac{2}{21} \int x^{20} \ln x d x=\frac{x^{21}}{21}(\ln x)^{2}-\frac{2}{21}\left(\frac{1}{21} x^{21} \ln x-\frac{1}{21} \int x^{20} d x\right)= \\
& \frac{x^{21}}{21}(\ln x)^{2}-\frac{2}{21}\left(\frac{1}{21} x^{21} \ln x-\frac{1}{21} \int x^{20} d x\right)=\frac{x^{21}}{21}(\ln x)^{2}-\frac{2}{21}\left(\frac{1}{21} x^{21} \ln x-\frac{1}{21} \cdot \frac{x^{21}}{21}\right)+C
\end{aligned}
$$

I doubt whether I would "simplify" anything here except under duress.
9. The integral $\int_{0}^{2}\left(x^{3}+1\right)^{7 / 2} d x$ is approximated using the Trapezoidal Rule by dividing [0,2] into n segments of equal length. How large should n be in order to guarantee that the error is at most 10^{-6} ?
Note You must give some reason explaining why any overestimates of derivatives you make are valid on the entire interval.
Answer We will need to overestimate $\left|f^{\prime \prime}(x)\right|$ for all x^{\prime} 's in $[0,2]$ and for $f(x)=\left(x^{3}+1\right)^{7 / 2}$. So $f^{\prime}(x)=$ $\frac{7}{2}\left(x^{3}+1\right)^{5 / 2}\left(3 x^{2}\right)$ and $f^{\prime \prime}(x)=\frac{7}{2} \cdot \frac{5}{2} \cdot\left(x^{3}+1\right)^{3 / 2}\left(3 x^{2}\right)^{2}+\frac{7}{2}\left(x^{3}+1\right)^{5 / 2} 6 x$. Notice that $x^{3}+1$ is increasing in $[0,2]$ since its derivative, $3 x^{2}$, is positive there. So the value of $x^{3}+1$ for any x in $[0,2]$ is less than the value of $x^{3}+1$ at the right-hand endpoint, which is 9 . The other pieces of $f^{\prime \prime}$ are also increasing and positive, so $f^{\prime \prime}(2)$ will be an appropriate overestimate of $\left|f^{\prime \prime}(x)\right|$ for all x in $[0,2]$.
Now $f^{\prime \prime}(2)=\frac{7}{2} \cdot \frac{5}{2} \cdot\left(2^{3}+1\right)^{3 / 2}\left(3 \cdot 2^{2}\right)^{2}+\frac{7}{2}\left(2^{3}+1\right)^{5 / 2}(6 \cdot 2)$. This is 44,226 , which I will "plug into" $M_{2}(b-a)^{3} / 12 n^{2}$ in place of M_{2}. Of course $a=0$ and $b=2$, so the Trapezoid Rule error will be less than $44,226 \cdot 8 / 12 n^{2}$. This is less than 10^{-6} when $n \geq 172,000$ (the approximate result my calculator reports). The number is large and, to me, rather unimpressive.
Detailed partial credit information is available on the web: look at the Exam material page, please.

