- $\begin{array}{ll} \text{(14)} & 1. \text{ Use the method of partial fractions to verify that } \int_{0}^{1} \frac{1}{(x+1)(x^{2}+1)} \, dx = \frac{1}{4} \ln 2 + \frac{1}{8} \pi \, . \\ & \mathbf{Answer Write } \frac{1}{(x+1)(x^{2}+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^{2}+1} = \frac{A(x^{2}+1)+(Bx+C)}{(x+1)(x^{2}+1)}, \text{ so } 1 = A(x^{2}+1) + (Bx+C)(x+1). \text{ When } x = -1 \text{ we get } A = \frac{1}{2}. \text{ Comparing } x^{2} \text{ coefficients of both sides, we see } B = -\frac{1}{2}. \text{ Finally, comparing constant coefficients on both sides, we see that } 1 = A + C \text{ so } C = \frac{1}{2}. \text{ Compute: } \int_{0}^{1} \frac{1}{(x+1)(x^{2}+1)} \, dx = \int_{0}^{1} \frac{\frac{1}{2}}{x+1} + \frac{-\frac{1}{2}x+\frac{1}{2}}{x^{2}+1} \, dx = \frac{1}{2}\ln(x+1) + -\frac{1}{4}\ln(x^{2}+1) + \frac{1}{2}\arctan(x) \Big]_{0}^{1} = \frac{1}{2}\ln(2) + -\frac{1}{4}\ln(2) + \frac{1}{2}\arctan(1) \\ & -\left(\frac{1}{2}\ln(1) + -\frac{1}{4}\ln(1) + \frac{1}{2}\arctan(0)\right) = \frac{1}{4}\ln(2) + \frac{1}{2}\frac{\pi}{4} = \frac{1}{4}\ln 2 + \frac{\pi}{8}. \text{ Whew! All done.} \end{array}$
- (8) 2. Suppose \mathcal{R} is the region bounded by $y = \frac{1}{x}$, x = 1, x = 2, and y = 0. a) Find the volume of the solid that results from rotating \mathcal{R} around the *x*-axis. **Answer** $\pi \int_{1}^{2} \pi \left(\frac{1}{x}\right)^{2} dx = \pi \cdot \left(\frac{-1}{x}\right) \Big]_{1}^{2} = \frac{\pi}{2}$. **b**) Find the volume of the solid that results from rotating \mathcal{R} around the *y*-axis. **Answer** $2\pi \int_{1}^{2} x \left(\frac{1}{x}\right) dx = 2\pi$.

(12) 3. a) Carefully sketch $y = \sin x$ and $y = \sin 2x$ on the axes given for $0 \le x \le \pi$. Be sure to label each of the curves.

Answer The dashed curve is $y = \sin 2x$ and the solid curve is $y = \sin x$.

b) Find **all** points of intersection of the curves sketched in part a).

Answer The sketch has three intersection points. Since $\sin 2x = 2 \sin x \cos x$, these occur when $2 \sin x \cos x = \sin x$: when $\sin x = 0$, which occurs x = 0 or $x = \pi$ in the sketch, or when $\cos x = \frac{1}{2}$ which happens when $x = \frac{\pi}{3}$.

c) Find the area enclosed between the curves sketched in part a). Give an exact answer in terms of mathematical constants such as π and e.

Answer In $[0, \frac{\pi}{3}]$, the top curve is $\sin 2x$. The enclosed area there is $\int_0^{\frac{\pi}{3}} \sin 2x - \sin x \, dx = -\frac{1}{2} \cos 2x + \cos x \Big]_0^{\frac{\pi}{3}} = \frac{1}{4}$. In $[\frac{\pi}{3}, \pi]$, the top curve is $\sin x$. The enclosed area there is $\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \sin x - \sin 2x \, dx = -\cos x + \frac{1}{2} \cos 2x \Big]_{\frac{\pi}{2}}^{\frac{\pi}{3}} = \frac{9}{4}$. So the total area is $\frac{1}{4} + \frac{9}{4} = \frac{5}{2}$.

(10) 4. a) Suppose w is a positive number. Define A(w) to be the average value of $(\cos x)^2$ on the interval $0 \le x \le w$. Compute A(w), and show how the integral is calculated. Answer $\int_0^w (\cos x)^2 dx = \int_0^w \frac{1}{2}(1 + \cos 2x) dx = \frac{1}{2}(x + \frac{1}{2}\sin 2x)\Big]_0^w = \frac{1}{2}(w + \frac{1}{2}\sin 2w) - \frac{1}{2}(0 + \sin 0)$. The average value is the integral divided by the length of the interval, which is w, so $A(w) = \frac{1}{2} + \frac{1}{4}\frac{\sin 2w}{w}$.

b) What is the limit of A(w) as $w \to 0^+$? Answer The limit of $\frac{\sin 2w}{w}$ can be computed using L'Hospital's rule. It is $\lim_{w\to 0^+} \frac{2\cos 2w}{1} = 2$. So the limit requested is $\frac{1}{2} + \frac{1}{4} \cdot 2 = 1$. The limit can also be computed by noticing that $\sin 2w = 2\sin w \cos w$, and $\lim_{w\to 0^+} \frac{\sin w}{w} = 1$, familiar from earlier calculus study.

(12) 5. a) Explain why ∫₁[∞] 1/(x² + e^{2x}) dx converges. Answer 1/(x² + e^{2x}) is positive on the interval [1,∞), and is certainly less than either 1/x² or 1/(e^{2x}). Either of those integrals converges on that interval, so by comparison, the integral given converges.
b) Explain why the value of the integral in a) is less than 1/2. Answer In a) either integral is "good enough" to show convergence. Here, however, since ∫₁[∞] 1/(x²) dx = lim_{A→∞} - 1/x]₁^A = 1 and ∫₁[∞] 1/(e^{2x}) dx = lim_{A→∞} - 1/2 e^{-2x}]₁^A = 1/(2e^{2x}) dx = lim_{A→∞} - 1/2 e^{-2x} = lim_{A→∞} = lim_{A→∞} - 1/2 e^{-2x} = lim_{A→∞} - 1/2 e^{-2x} = lim_{A→∞} = lim_{A→∞} - 1/2 e^{-2x} = lim_{A→∞} = lim_{A→∞} - 1/2 e^{-2x} = lim_{A→∞} = lim_{A→∞}

(12) 6. Calculate the following integrals, showing your work. a) $\int \frac{dx}{\sqrt{1+x^2}}$ Answer If $x = \tan \theta$, then $dx = (\sec \theta)^2 d\theta$ and $\sqrt{1+x^2} = \sec \theta$. So $\int \frac{dx}{\sqrt{1+x^2}} = \int \sec \theta \, d\theta = \ln(\sec \theta + \tan \theta) + C = \ln(\sqrt{1+x^2} + x) + C$.

b) $\int \frac{dx}{2e^x + 1}$ Answer If $u = e^x$, then $du = e^x dx$ so dx is $\frac{du}{u}$. The integral given becomes $\int \frac{1}{u(2u+1)} du$. Rewrite the integrand using partial fractions: $\frac{1}{u(2u+1)} = \frac{A}{u} + \frac{B}{2u+1}$ giving 1 = A(2u+1) + Bu. When u = 0, we get A = 1. When $u = -\frac{1}{2}$ we get B = -2. Then antidifferentiating: $\int \frac{1}{u} + \frac{-2}{2u+1} du = \ln u - \ln(2u+1) + C$. Converting back to x's, the answer becomes $\ln(e^x) - \ln(2e^x + 1) + C$. (Yes, $\ln(e^x)$ is x.)

7. Use a substitution followed by integration by parts to verify that $\int_{1}^{1} e^{\sqrt{x}} dx = 2$. (10)

Answer Try $w = \sqrt{x}$ and therefore $w^2 = x$ with $2w \, dw = dx$. The integral changes: $\int e^{\sqrt{x}} dx = \int e^w 2w \, dw$. This integral is a well-known candidate for integration by parts. Let's do it (I'll save the 2 until later):

$$\int e^w w \, dw = w e^w - \int e^w \, dw = w e^w - e^w + C \quad \text{with} \quad u = w \\ \int u \, dv = uv - \int v \, du \quad dv = e^w \, dw \\ \text{titution so the indefinite integral becomes (with the 2l)} = 2 \left(\sqrt{x} e^{\sqrt{x}} - e^{\sqrt{x}} \right) + C \quad \text{Therefore } \int^1 e^{\sqrt{x}} \, dx = e$$

stitution so the indefinite integral becomes (with the 2!) $2(\sqrt{x}e^{\sqrt{x}}-e^{\sqrt{x}})+C$. Therefore, $\int_0^1 e^{\sqrt{x}} dx =$

$$2\left(\sqrt{x}e^{\sqrt{x}} - e^{\sqrt{x}}\right)\Big|_{0} = (2(e-e)) - (2(0-1)) = 2.$$

8. a) Suppose m and n are positive integers. Find a reduction formula for $\int x^m (\ln x)^n dx$. (Here the aim (12)is to have an equation with the integral given here on one side and a similar integral with reduced n on the other side, since if we can push n to 0 we'll just have a polynomial to integrate, which is easy.)

Answer Again, integrate by parts.
$$\int x^m (\ln x)^n dx = \left(\frac{x^{m+1}}{m+1}\right) \cdot (\ln x)^n - \int n (\ln x)^{n-1} \cdot \left(\frac{1}{x}\right) \left(\frac{x^{m+1}}{m+1}\right) dx + C$$
$$\int u dv = uv - \int v du$$

with $\begin{aligned} u &= (\ln x)^n \\ dv &= x^m dx \end{aligned}$ $\begin{cases} u &= n(2m) \\ v &= \frac{x^{m+1}}{m+1} \end{cases}$. I'll clean this up a bit since the formula will be used in part b): $\int x^m (\ln x)^n dx = \left(\frac{x^{m+1}}{m+1}\right) (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx + C.$

b) Use the formula obtained in a) to compute $\int x^{20} (\ln x)^2 dx$.

Answer Since
$$n = 2$$
 we need the formula above twice.

$$\int x^{20} (\ln x)^2 dx = \frac{x^{21}}{21} (\ln x)^2 - \frac{2}{21} \int x^{20} \ln x \, dx = \frac{x^{21}}{21} (\ln x)^2 - \frac{2}{21} \left(\frac{1}{21} x^{21} \ln x - \frac{1}{21} \int x^{20} \, dx \right) = \frac{x^{21}}{21} (\ln x)^2 - \frac{2}{21} \left(\frac{1}{21} x^{21} \ln x - \frac{1}{21} \cdot \frac{x^{21}}{21} \right) + C$$
I doubt whether I would "simplify" anything here except under duress

"simplify" anything here except under duress.

9. The integral $\int_{0}^{2} (x^{3}+1)^{7/2} dx$ is approximated using the Trapezoidal Rule by dividing [0,2] into n (10)segments of equal length. How large should n be in order to guarantee that the error is at most 10^{-6} ?

Note You must give some reason explaining why any overestimates of derivatives you make are valid on the entire interval.

Answer We will need to overestimate |f''(x)| for all x's in [0,2] and for $f(x) = (x^3 + 1)^{7/2}$. So $f'(x) = \frac{7}{2}(x^3 + 1)^{5/2}(3x^2)$ and $f''(x) = \frac{7}{2} \cdot \frac{5}{2} \cdot (x^3 + 1)^{3/2}(3x^2)^2 + \frac{7}{2}(x^3 + 1)^{5/2} 6x$. Notice that $x^3 + 1$ is increasing in [0,2] since its derivative, $3x^2$, is positive there. So the value of $x^3 + 1$ for any x in [0,2] is less than the value of $x^3 + 1$ at the right-hand endpoint, which is 9. The other pieces of f'' are also increasing and positive, so f''(2) will be an appropriate overestimate of |f''(x)| for all x in [0, 2].

Now $f''(2) = \frac{7}{2} \cdot \frac{5}{2} \cdot (2^3 + 1)^{3/2} (3 \cdot 2^2)^2 + \frac{7}{2} (2^3 + 1)^{5/2} (6 \cdot 2)$. This is 44,226, which I will "plug into" $M_2(b-a)^3/12n^2$ in place of M_2 . Of course a = 0 and b = 2, so the Trapezoid Rule error will be less than $44,226 \cdot 8/12n^2$. This is less than 10^{-6} when $n \ge 172,000$ (the approximate result my calculator reports). The number is large and, to me, rather unimpressive.

Detailed partial credit information is available on the web: look at the Exam material page, please.