Function Derivative C0 nx^{n-1} x^n e^x e^x 1/x $\ln x$ $\sin x$ $\cos x$ $\cos x$ $-\sin x$ $\tan x$ $(\sec x)^2$ $\arctan x$ $\arcsin x$

If $\lim_{x \to a^{(\pm)}} f(x) = \pm \infty$ then x = a is a **vertical asymptote** of y = f(x) and if $\lim_{x \to \pm \infty} f(x) = b$ then y = b is a **horizontal asymptote** of y = f(x).

Function	Derivative
Kf(x)	Kf'(x)
	f'(x) + g'(x)
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$ f'(x)g(x) - g'(x)f(x)
f(x)	f'(x)g(x) - g'(x)f(x)
$\overline{g(x)}$	$g(x)^2$
f(g(x))	$f'(g(x)) \cdot g'(x)$

Function	Domain	Range	Graph
x^2	all x	$y \ge 0$	\bigvee
x^3	all x	all y	1
\sqrt{x}	$x \ge 0$	$y \ge 0$	
x	all x	$y \ge 0$	\checkmark
1/x	$x \neq 0$	$y \neq 0$	1
$\sin x$	all x –	$1 \le y \le 1$	\
$\cos x$	all x –	$1 \le y \le 1$	4
$\tan x x_{7}$	≠ (odd int)	$\frac{\pi}{2}$ all y	111
$\ln x$	x > 0	all y	\vdash
e^x	all x	y > 0	\perp
$\arctan x$	all x –	$-\frac{\pi}{2} < y < \frac{\pi}{2}$	+
$\arcsin x$ -	$-1 \le x \le 1$	$\frac{\pi}{2} \le y \le \frac{\pi}{2}$	\neq

$\begin{array}{c} \textbf{Logarithmic properties} \\ \ln(a \cdot b) = \ln a + \ln b \ \ln(a^b) = b \ln(a) \\ \ln(a/b) = \ln(a) - \ln(b) \ \ln(\frac{1}{b}) = -\ln(b) \\ \ln(e^a) = a \ \ln(1) = 0 \ \ln(e) = 1 \end{array}$

Exponential properties
$$a^{b+c}=a^b\cdot a^c\quad a^{-b}=1/a^b\ \left(a^b\right)^c=a^{bc}\ e\approx 2.718\ a^0=1\quad e^{\ln a}=a\ {
m if}\ a>0$$

$$\begin{array}{c|c} \textbf{Triangle things} & 360^{\rm o} \ (\rm degrees) = 2\pi \ radians \\ & \sin \theta = \frac{OPP}{HYP} & \textbf{Pythagoras} \\ & \theta & \cos \theta = \frac{ADJ}{HYP} & (ADJ)^2 + (OPP)^2 = (HYP)^2 \\ & \tan \theta = \frac{OPP}{ADJ} & (\sin \theta)^2 + (\cos \theta)^2 = 1 \end{array}$$

$\begin{array}{c|c|c|c} \theta & \sin \theta & \cos \theta & \tan \theta \\ \hline 0 & 0 & 1 & 0 \\ \hline \frac{\pi}{6} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{3}} \\ \hline \frac{\pi}{4} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ \hline \frac{\pi}{3} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{3} \\ \hline \frac{\pi}{2} & 1 & 0 & NONE \\ \hline \pi & 0 & -1 & 0 \\ \hline \end{array}$

More formulas
The roots of $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Distance from (a,b) to (c,d): $\sqrt{(a-c)^2 + (b-d)^2}$.

Circle center (h,k) & radius r: $(x-h)^2 + (y-k)^2 = r^2$.

Line y = mx + b and $m = \frac{y_2 - y_1}{x_2 - x_1}$ (slope of the line)

Addition $\sin(A+B) = \sin A \cos B + \cos A \sin B$ formulas $\cos(A+B) = \cos A \cos B - \sin A \sin B$ Periodicity $\sin(x+2\pi) = \sin x$ and $\cos(x+2\pi) = \cos x$ and $\tan(x+\pi) = \tan x$ for all x

Area and Volume Formulas Triangle $A=\frac{1}{2}$ base-height Rectangle A=Length-Width Circle $A=\pi$ radius² Circle $C=2\pi$ radius Box V=Length-Width-Height Cylinder $V=\pi$ radius²-height Cone $V=\frac{1}{3}\pi$ radius²-height Sphere $A=4\pi$ radius² Sphere $V=\frac{4}{3}\pi$ radius³

w in f's domain is a **critical number** if **either** f'(w) = 0: could look like $\pm \frac{1}{2}$ or $\pm \frac{1}{2}$ or $\pm \frac{1}{2}$ or even like $\pm \frac{1}{2}$ if f isn't continuous at w.

Finding max/min on a closed interval If f is continuous on $a \le x \le b$ then f's max/min values must occur either at a or at b or at a critical number inside the interval.

The First Derivative Test A critical number w is a relative max if f'(left of w) > 0 & f'(right of w) < 0; relative min if f'(left of w) < 0 & f'(right of w) > 0. Important No other critical numbers should be between w and where the sign of f' is checked!

If both are positive or both are negative, then w is an inflection point of f.

The Second Derivative Test A critical number w is a relative min if f''(w) > 0 & relative max if f''(w) < 0.

f has an **inflection point** at w if w is in f's domain and if the concavity of f's graph is different on either side of w: $\pm \frac{1}{2} \text{ (here } f''(w) = 0 \text{) or } \pm \frac{1}{2} \text{ (here } f''(w) \text{ doesn't exist)}.$

f is **continuous** at w if $\lim_{x\to w} f(x)$ exists and equals f(w) or check $\lim_{x\to w^+} f(x)$ and $\lim_{x\to w^-} f(x)$ both exist and = f(w). f is **differentiable** at w if $\lim_{h\to 0} \frac{f(w+h)-f(w)}{h}$ exists. This is f'(w): the rate of change of f with respect to w or the slope of the tangent line to y=f(x) at x=w.

Implicit differentiation/related rates

Key point Differentiate a whole equation. Don't forget what's varying, chain rule, product rule, etc. **Example** If $xy^2 = \sin(x+y) + 3x$ then $\frac{d}{dx}$ the equation. Get $1 \cdot y^2 + x \cdot 2yy' = \cos(x+y)(1+y') + 3$. **Solve** for y'.

f defined in a < x < b has a **relative maximum** at w in the interval if $f(w) \ge f(x)$ for x's near w on both sides. f defined in a < x < b has a **relative minimum** at w in the interval if $f(w) \le f(x)$ for x's near w on both sides. Relative max and min must occur at **critical numbers**.

Differential or tangent line approximation

 $f(x+h) \approx f(x) + f'(x)h$. The graph's bending causes **error**: the true value is larger when the graph is concave up and smaller when the graph is concave down.

Intermediate Value Theorem If f is continuous in $a \le x \le b$, f's values include all numbers between f(a) and f(b): a continuous function's graph has no jumps. **Mean Value Theorem** If f is differentiable in $a \le x \le b$, there are some c's in the interval with $f'(c) = \frac{f(b) - f(a)}{b - a}$: some tangent lines of a differentiable function's graph must be parallel to any chord. **Rolle's Theorem** MVT with f(a) = f(b) = 0.

f is increasing in a < x < b if $f(x_1) \le f(x_2)$ for any $x_1 \le x_2$ in the interval. If f'(x) > 0 always in a < x < b then f is increasing there. f is **decreasing** in a < x < b if $f(x_1) \ge f(x_2)$ for any $x_1 \le x_2$ in the interval. If f'(x) < 0 always in a < x < b then f is decreasing there. f is **concave up** if lines connecting the graph are above the graph: it bends up. If f''(x) > 0 always in a < x < b, f is concave up. f is **concave down** if lines connecting the graph are below the graph: it bends down. If f''(x) < 0 always in a < x < b, f is concave down.

Function	Antiderivative
f(x)	F(x) + C
Kf(x)	
f(x) + g(x)	F(x) + G(x)
x^n	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$
$\frac{1}{x}$	$ \ln x + C \ (x > 0) $
e^x	$e^x + C$
$\sin x$	$-\cos x + C$
$\cos x$	$\sin x + C$
$\tan x$	$\ln(\sec x) + C$

Newton's method

A way to improve a guess for a root of f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

L'Hopital's Rule

A way to evaluate certain limits: if $\lim_{x \to a} \frac{f(x)}{g(x)}$ has the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ and if $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.