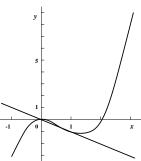
- 1. a) State the formal definition of the derivative, f'(x), of the function f(x). (12)Answer $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.
 - b) Use your answer to a) combined with algebraic manipulation and standard properties of limits to compute the derivative of $f(x) = \sqrt{5x+3}$.

Answer If $f(x) = \sqrt{5x+3}$, $f(x+h) = \sqrt{5(x+h)+3}$, and $\frac{f(x+h)-f(x)}{h} = \frac{\sqrt{5(x+h)+3}-\sqrt{5x+3}}{h}$. Multiply top and bottom by $\sqrt{5(x+h)+3} + \sqrt{5x+3}$. On top the result will be $(\sqrt{5(x+h)+3})^2 - (\sqrt{5x+3})^2 = \sqrt{5(x+h)+3}$ 5(x+h)+3-(5x+3)=5h. The bottom becomes $h(\sqrt{5(x+h)+3}+\sqrt{5x+3})$. So the difference quotient $\frac{f(x+h)-f(x)}{h}=\frac{5h}{h(\sqrt{5(x+h)+3}+\sqrt{5x+3})}=\frac{5}{\sqrt{5(x+h)+3}+\sqrt{5x+3}}.$ As $h\to 0$, $\sqrt{5(x+h)+3}\to \sqrt{5x+3}$ and the limit of the difference quotient is $\frac{5}{2\sqrt{5x+3}}$, which is f'(x).

- 2. Note that $x^2(x-2) = x^3 2x^2$. (10)
 - a) Find an equation for the line tangent to $y = x^3 2x^2$ when x = 1.

Answer $y' = 3x^2 - 4x$, so when x = 1, y' = -1. Also, when x = 1, y = -1. So an equation for the tangent line is y - (-1) = (-1)(x - 1).

- b) Sketch the line found in a) and the curve $y = x^3 2x^2$ on the axes given below as well as you can. The units on the vertical and horizontal axes are different. **Answer** To the right.
- c) For which x's are the tangent lines to the curve $y = x^3 2x^2$ horizontal? **Answer** $3x^2 - 4x = 0$ when x = 0 and $x = \frac{4}{3}$.



- (20)3. Find the limit, which could be a specific real number or $+\infty$ or $-\infty$. In each case, briefly indicate your

 - reasoning, based on algebra or properties of functions.

 a) $\lim_{x\to 2} \frac{\frac{1}{2} \frac{1}{x}}{x-2}$ Answer $\frac{\frac{1}{2} \frac{1}{x}}{x-2} = \frac{\frac{x-2}{2x}}{x-2} = \frac{1}{2x}$. As $x \to 2$, this $\to \frac{1}{4}$.

 b) $\lim_{x\to 4} \frac{4-x}{|4-x|}$. Answer If x > 4, then 0 > 4-x so |4-x| = -(4-x). Therefore $\frac{4-x}{|4-x|} = \frac{4-x}{-(4-x)} = -1$. So the limit is -1.
 - c) $\lim_{x\to 10^-} \frac{1}{100-x^2}$. **Answer** If x < 10 and close to 10, then $x^2 < 100$ and close to 100. So $100 x^2$ is a small positive number, and $\frac{1}{100-x^2}$ will be a large positive number. The limit is $+\infty$.
 - d) $\lim_{x\to\infty} \frac{1}{3e^x-2e^{-x}}$ Answer As $x\to +\infty$, e^x grows unboundedly and e^{-x} decays to 0. Therefore $\frac{1}{3e^x-2e^{-x}}\to 0$.
- 4. Suppose $f(x) = x^2 \frac{1}{x^3 + 12} + \sin(70x)$. (10)
 - a) There is at least one number x between 0 and 2 for which f(x) = 0. Explain why this is true using

complete English sentences together with appropriate references to results of this course. **Answer** $f(0) = 0 - \frac{1}{12} + \sin 0 = -\frac{1}{12} < 0$. $f(2) = 4 - \frac{1}{20} + \sin(140)$. Since $\sin(140) \ge -1$, we see that f(2) must be greater than $2\frac{19}{20}$, which is a positive number. Now f is a continuous function since rational functions in their domain and sine are continuous. Since f(0) < 0 < f(2), the Intermediate Value Theorem implies that f(x) = 0 for at least one x in the open interval 0 < x < 2.

b) If $x \ge 2$, f(x) must be positive. Again, explain why this is true.

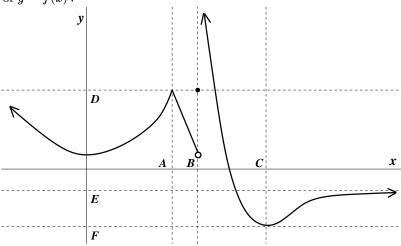
Answer If $x \ge 2$, f(x) is at least $2^2 - \frac{1}{12} - 1$. This is because the largest negative number sine can be is -1, and when x > 0, $\frac{1}{x^3 + 12}$ is at most $\frac{1}{12}$ and x^2 is at least 2^2 . But, as above, $2^2 - \frac{1}{12} - 1$ is positive, so f(x)must be positive for x > 2.

- 5. Find $\frac{dy}{dx}$. (20)
 - a) $y = 4x(5x^2 3)^7$ **Answer** $y' = 4(5x^2 3)^7 + 4x \cdot 7(5x^2 3)^6$ (10x). b) $y = \frac{\sin(4x)}{x^2 + 1}$ **Answer** $y' = \frac{\cos(4x) \cdot 4 \cdot (x^2 + 1) 2x \cdot \sin(4x)}{(x^2 + 1)^2}$.

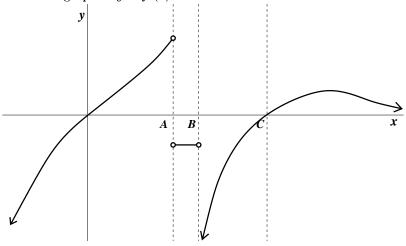
 - c) $y = \sqrt{e^x + \cos(3x)}$ **Answer** $y' = \frac{1}{2} (e^x + \cos(3x))^{-\frac{1}{2}} \cdot (e^x \sin(3x) \cdot 3)$.
 - d) $x^3 + x^2y + 4y^3 = 6$ Answer $\frac{d}{dx}$ the equation and get $3x^2 + 2xy + x^2y' + 12y^2y' = 0$. Then solve for y'and get $y' = \frac{-3x^2 - 2xy}{x^2 + 12y^2}$.

OVER

(18) 6. Here is a graph of y = f(x).



a) Use this graph to sketch a graph of y = f'(x) on the axes below.



- b) Are there x's for which f(x) is not continuous? If there are, list them. **Answer** Yes. x = B.
- c) Are there x's for which f(x) is not differentiable? If there are, list them. Answer Yes. x = B and x = A.
- d) Does y = f(x) seem to have any horizontal asymptotes? If it does, write equations for any lines which seem to be horizontal asymptotes. **Answer** Yes. y = E.
- e) Does y = f(x) seem to have any vertical asymptotes? If it does, write equations for any lines which seem to be vertical asymptotes. equations for them. **Answer** Yes. x = B.

(10) 7. Find all lines tangent to $y=\frac{1}{x}$ which pass through the point (-4,2). Answer Since $y'=-\frac{1}{x^2}$, and the slope of a line connecting $(x,y)=(x,\frac{1}{x})$ with (-4,2) is $\frac{\frac{1}{x}-2}{x-(-4)}$, we know that $-\frac{1}{x^2}$ should equal $\frac{\frac{1}{x}-2}{x-(-4)}$. If we cross-multiply, we get the equation $-(x-(-4))=x^2\left(\frac{1}{x}-2\right)$, and this becomes $-x-4=x-2x^2$ so that we need to solve $2x^2-2x-4=0$ or $x^2-x-2=0$. Amazingly (or not, since it is a problem on an exam!) the left-hand side factors into (x+1)(x-2) so the roots of the equation are -1 and 2. When x=-1, the point on $y=\frac{1}{x}$ is (-1,-1) and the slope is -1, so that the tangent line is (y+1)=(-1)(x+1). When x=2, the point on $y=\frac{1}{x}$ is $(2,\frac{1}{2})$ and the slope is $-\frac{1}{4}$, so that the tangent line is $(y-\frac{1}{2})=(-\frac{1}{4})(x-2)$. To the right is a picture of the two lines and the curve, a hyperbola, drawn by Maple.

