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1 Introduction

In his lecture Relativity theory as a stimulus in mathematical research [Wey4], Her-

mann Weyl says that “Frobenius and Issai Schur’s spadework on finite and compact

groups and Cartan’s early work on semi-simple Lie groups and their representations

had nothing to do with it [relativity theory]. But for myself I can say that the wish to

understand what really is the mathematical substance behind the formal apparatus of

relativity theory led me to the study of representations and invariants of groups, and

my experience in this regard is probably not unique.”

Weyl’s first encounter with Lie groups and representation theory as a tool to

understand relativity theory occurred in connection with the Helmholtz-Lie space

problem and the problem of decomposing the tensor product ⊗kCn under the mutu-

ally commuting actions of the general linear group GL(n,C) (on each copy of Cn)

and the symmetric group Sk (in permuting the k copies of Cn).1 He later described

the tensor decomposition problem in general terms [Wey3] as “an epistemological

principle basic for all theoretical science, that of projecting the actual upon the back-

ground of the possible.” Mathematically, the issue was to find subspaces of tensor

space that are invariant and irreducible under all transformations that commute with

Sk . This had already been done by Frobenius and Schur around 1900, but appar-

ently Weyl first became aware of these results in the early 1920’s. The subspaces in

question, which are the ranges of minimal projections in the group algebra of Sk,

are exactly the irreducible (polynomial) representations of GL(n,C), and all irre-

ducible representations arise this way for varying k by including multiplication by

integral powers of det(g) in the action. It seems clear from his correspondence with

Schur at this time that these results were Weyl’s starting point for his later work in

representation theory and invariant theory.

1see [Haw, §11.2-3]
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Near the end of his monumental paper on representations of semisimple Lie

groups [Wey1, Kap. IV, §4], Weyl considers the problem of constructing all the irre-

ducible representations of a simply-connected simple Lie groupG such as SL(n,C).
This had been done on a case-by-case basis by Cartan [Car1], starting with the defin-

ing representations for the classical groups (or the adjoint representation for the ex-

ceptional groups) and building up a general irreducible representation by forming

tensor products. By contrast, Weyl, following the example of Frobenius for finite

groups, says that “the correct starting point for building representations does not lie

in the adjoint group, but rather in the regular representation, which through its reduc-

tion yields in one blow all irreducible representations.” He introduces the infinite-

dimensional space C(U) of all continuous functions on the compact real form U of

G (U = SU(n) when G = SL(n,C)) and the right translation representation of

U on C(U). He then obtains the irreducible representations of U and their char-

acters by using the eigenspaces of compact integral operators given by left convo-

lution with positive-definite functions in C(U), in analogy with the decomposition

of tensor spaces for GL(n,C) using elements of the group algebra of Sk . The de-

tails are spelled out in the famous Peter–Weyl paper [Pe-We], which proves that the

normalized matrix entries of the irreducible unitary representations of U furnish an

orthonormal basis for L2(U), and that every continuous function on U is a uniform

limit of linear combinations of these matrix entries.

In the introduction to [Car2], É. Cartan says that his paper was inspired by the

paper of Peter and Weyl, but he points out that for a compact Lie group their use

of integral equations “gives a transcendental solution to a problem of an algebraic

nature” (namely, the completeness of the set of finite-dimensional irreducible repre-

sentations of the group). Cartan’s goal is “to give an algebraic solution to a problem

of a transcendental nature, more general than that treated by Weyl.” Namely, to find

an explicit decomposition of the space of all L2 functions on a homogeneous space

into an orthogonal direct sum of group-invariant irreducible subspaces.

Cartan’s paper [Car2] then stimulated Weyl [Wey2] to treat the same problem

again and write “the systematic exposition by which I should like to replace the two

papers Peter–Weyl [Pe-We] and Cartan [Car2].” In his characteristic style of finding

the core of a problem through generalization, Weyl takes the finite-dimensional irre-

ducible subspaces of functions (which he calls the harmonic sets by analogy with the

case of spherical harmonics) on the compact homogeneous space X as his starting

point.2 Using the invariant measure on the homogenous space, he constructs integral

operators that intertwine the representation of the compact group U on C(X) with

the left regular representation on C(U).
In this paper we approach the Weyl–Cartan results by way of algebraic groups.

The finite functions on a homogeneous space for a compact connected Lie group

(that is, the functions whose translates span a finite-dimensional subspace) can be

viewed as regular functions on the complexified group (a complex reductive alge-

2Weyl’s emphasis on function spaces, rather than the underlying homogeneous space, is in the spirit

of the recent development of quantum groups; his immediate purpose was to make his theory sufficiently

general to include also J. von Neumann’s theory of almost-periodic functions on groups, in which the

functions determine a compactification of the underlying group.
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braic group). Irreducible subspaces of functions under the action of the compact

group correspond to irreducible subspaces of regular functions on the complex re-

ductive group—this is Weyl’s unitarian trick. We describe the algebraic group ver-

sion of the Peter–Weyl decomposition and geometric criterion for simple spectrum of

a homogeneous space (due to E. Vinberg and B. Kimelfeld). We present R. Richard-

son’s algebraic group version of the Cartan embedding of a symmetric space, and the

celebrated results of Cartan and S. Helgason concerning finite-dimensional spherical

representations.

We then turn to more recent results of J.-L. Clerc [Cle] concerning the complex-

ified Iwasawa decomposition and zonal spherical functions on a compact symmetric

space, and S. Gindikin’s construction ([Gin1], [Gin2], [Gin3]) of the horospherical

Cauchy–Radon transform, which shows that compact symmetric spaces have canon-

ical dual objects that are complex manifolds.

We make frequent citations to the extraordinary books of A. Borel [Bor] and T.

Hawkins [Haw], which contain penetrating historical accounts of the contributions

of Weyl and Cartan. Borel’s book also describes the development of algebraic groups

by C. Chevalley that is basic to our approach. For a survey of other developments

in harmonic analysis on symmetric spaces from Cartan’s paper to the mid 1980’s

see Helgason [Hel3]. Thanks go to the referee for pointing out some notational

inconsistencies and making suggestions for improving the organization of this paper.

2 Algebraic Group Version of Peter–Weyl Theorem

2.1 Isotypic Decomposition of O[X]

The paper [Pe-We] of Peter and Weyl considers compact Lie groups U ; because the

group is compact left convolution with a continuous function is a compact operator.

Hence such an operator, if self-adjoint, has finite-dimensional eigenspaces that are

invariant under right translation by elements of U . The finiteness of the invariant

measure on U also guarantees that every finite-dimensional representation of U car-

ries a U -invariant positive-definite inner product, and hence is completely reducible

(decomposes as the direct sum of irreducible representations).3

Turning from Weyl’s transcendental methods to the more algebraic and geomet-

ric viewpoint preferred by Cartan, we recall that a subgroup G ⊂ GL(n,C) is an

algebraic group if it is the zero set of a collection of polynomials in the matrix en-

tries. The regular functions O[G] are the restrictions to G of polynomials in matrix

entries and det−1
. In particular, G is a complex Lie group and the regular functions

on G are holomorphic. A finite-dimensional complex representation (π, V ) of G is

rational if the matrix entries of the representation are regular functions on G. The

groupG is reductive if every rational representation is completely reducible.

Let g be a complex semisimple Lie algebra. From the work of Cartan, Weyl, and

Chevalley, one knows the following:

3This is the Hurwitz “trick” (kunstgriff) that Weyl learned from I. Schur; see Hawkins [Haw, §12.2].
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(1) There is a simply-connected complex linear algebraic group G with Lie algebra

g.

(2) The finite-dimensional representations of g correspond to rational representa-

tions of G.

(3) There is a real form u of g and a simply-connected compact Lie group U ⊂ G
with Lie algebra u.

(4) The finite-dimensional unitary representations of U extend uniquely to ratio-

nal representations ofG, and U -invariant subspaces correspond toG-invariant

subspaces.4

(5) The irreducible rational representations of G are parameterized by the positive

cone in a lattice of rank l (Cartan’s theorem of the highest weight).5

The highest weight construction is carried out as follows: Fix a Borel subgroup

B = HN+ of G (a maximal connected solvable subgroup). Here H ∼= (C×)l, with

l = rank(G), is a maximal algebraic torus in G, and N+ is the unipotent radical of

B associated with a set of positive roots of H on g. Let B̄ = HN− be the opposite

Borel subgroup. We can always arrange the embedding G ⊂ GL(n,C) so that H
consists of the diagonal matrices inG,N+ consists of the upper-triangular unipotent

matrices in G, and N− consists of the lower-triangular unipotent matrices in G. Let

h be the Lie algebra of H and Φ ⊂ h∗ the roots of h on g. Write P (Φ) ⊂ h∗ for

the weight lattice of H and P++ ⊂ P (Φ) for the dominant weights, relative to the

system of positive roots determined by N+. For λ ∈ P (Φ) we denote by h 7→ hλ

the corresponding character of H . It extends to a character of B by (hn)λ = hλ for

h ∈ H and n ∈ N+.

An irreducible rational representation (π, E) of G is then determined (up to

equivalence) by its highest weight. The subspace EN+

of N+-fixed vectors in E
is one-dimensional, and H acts on it by a character h 7→ hλ where λ ∈ P++. The

subspace EN−

of N−-fixed vectors in E is also one-dimensional, and H acts on it

by the character h 7→ h−λ∗ where λ∗ = −w0 · λ. Here w0 is the element of the Weyl

group of (g, h) that interchanges positive and negative roots.

For each λ ∈ P++ we fix a model (πλ, Eλ) for the irreducible rational represen-

tation with highest weight λ. Then (πλ∗ , E
∗
λ) is the contragredient representation.

Fix a highest weight vector eλ ∈ Eλ and a lowest weight vector fλ∗ ∈ E∗
λ, normal-

ized so that

〈eλ, fλ∗〉 = 1.

Here we are using 〈v, v∗〉 to denote the tautological duality pairing between a vector

space and its dual (in particular, this pairing is complex linear in both arguments). For

dealing with matrix entries as regular functions on the complex algebraic group G

4This is Weyl’s unitary trick.
5The first algebraic proofs of this that did not use case-by-case considerations were found by Chevalley

and Harish-Chandra in 1948; see [Bor, Ch. VII, §3.6-7].
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this is more convenient than using a U -invariant inner product on Eλ and identifying

E∗
λ with Eλ via a conjugate-linear map.

Let X be an irreducible affine algebraic G space. Denote the regular functions

on X by O[X]. There is a representation ρ of G on O[X]:

ρ(g)f(x) = f(g−1x) for f ∈ O[X] and g ∈ G.

Because the G-action is algebraic, Span{ρ(G)f} is a finite-dimensional rational G-

module for f ∈ O[X]. There is a tautological G-intertwining map

Eλ ⊗ HomG(Eλ,O[X]) → O[X],

given by v ⊗ T 7→ Tv. For λ ∈ P++ let

O[X]N
+

(λ) = {f ∈ O[X] : ρ(hn)f = hλf for h ∈ H and n ∈ N+}. (1)

The key point is that the choice of a highest weight vector eλ gives an isomorphism

HomG(Eλ,O[X]) ∼= O[X]N
+

(λ). (2)

Here a G-intertwining map T applied to the highest weight vector gives the function

ϕ = Teλ ∈ O[X]N
+

(λ), and conversely every such function ϕ defines a unique

intertwining map T by this formula.6 From (2) we see that the highest weights of

the G-irreducible subspaces of O[X] comprise the set

Spec(X) = {λ ∈ P++ : O[X]N
+

(λ) 6= 0} (the G spectrum of X)

Using the isomorphism (2) and the reductivity of G, we obtain the decomposition of

O[X] under the action of G, as follows:

Theorem 2.1. The isotypic subspace of type (πλ, Eλ) in O[X] is the linear span of

the G-translates of O[X]N
+

(λ). Furthermore,

O[X] ∼=
⊕

λ∈Spec(X)

Eλ ⊗O[X]N
+

(λ) (algebraic direct sum) (3)

as a G-module, with action πλ(g) ⊗ 1 on the λ summand.

The action ofG on O[X] is not only linear; it also preserves the algebra structure.

Since O[X]N
+

(λ) · O[X]N
+

(µ) ⊂ O[X]N
+

(λ + µ) under pointwise multiplication

and O[X] has no zero divisors (X is irreducible), it follows from (3) that

Spec(X) is an additive subsemigroup of P++.

The multiplicity of πλ in O[X] is dimO[X]N
+

(λ) (which may be infinite). All

of this was certainly known (perhaps in less precise form) by Cartan and Weyl at

the time [Pe-We] appeared. We now consider Cartan’s goal in [Car2] to determine

the decomposition (3) when G acts transitively on X; especially, when X is a sym-

metric space. This requires determining the spectrum and the multiplicities in this

decomposition.

6Weyl uses a similar construction in [Wey2], defining intertwining maps by integration over a compact

homogeneous space.
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2.2 Multiplicity Free Spaces

We say that an irreducible affine G-space X is multiplicity free if all the irreducible

representations ofG that occur in O[X] have multiplicity one. Thanks to the theorem

of the highest weight, this property can be translated into a geometric statement (see

[Vi-Ki]). For a subgroupK ⊂ G and x ∈ X write Kx = {k ∈ L : k · x = x} for

the isotropy group at x.

Theorem 2.2 (Vinberg–Kimelfeld). Suppose there is a pointx0 ∈ X such thatB ·x0

is open in X. Then X is multiplicity free. In this case, if λ ∈ Spec(X) then hλ = 1
for all h ∈ Hx0

.

Proof. If B · x0 is open in X, then it is Zariski dense in X (since X is irreducible).

Hence f ∈ O[X]N
+

(λ) is determined by f(x0), since on the dense set B · x0 it

satisfies f(b · x0) = b−λf(x0). In particular, if f 6= 0 then f(x0) 6= 0, and hence

hλ = 1 for all h ∈ Hx0
. Thus

dimO[X]N
+

(λ) ≤ 1 for all λ ∈ P++.

Now apply Theorem 2.1. �

Remark. The converse to Theorem 2.2 is true; this depends on some results of

Rosenlicht [Ros] and is the starting point for the classification of multiplicity free

spaces (see [Be-Ra]).

Example: Algebraic Peter–Weyl Decomposition

Theorem 2.2 implies the algebraic version of the Peter-Weyl decomposition of the

regular representation of G. Consider the reductive group G ×G acting on X = G
by left and right translations. Denote this representation by ρ:

ρ(y, z)f(x) = f(y−1xz), for f ∈ O[G] and x, y, z ∈ G.

Take H × H as the Cartan subgroup and B̄ × B as the Borel subgroup of G × G.

Let x0 = I (the identity in G). The orbit of x0 under the Borel subgroup is

(B̄ ×B) · x0 = N−HN+ (Gauss decomposition) (4)

This orbit is open inG since g = n−+h+n+ . HenceG is multiplicity free as aG×G
space. TheG×G highest weights (relative to this choice of Borel subgroup) are pairs

(w0µ, λ), with λ, µ ∈ P++. The diagonal subgroup H̃ = {(h, h) : h ∈ H} fixes

x0, so if (w0µ, λ) occurs as a highest weight in O[X], then

hw0µ+λ = 1 for all h ∈ H .

This means that µ = −w0λ = λ∗; hence Eµ = Eλ∗ is the contragredient representa-

tion of G.

Now set ψλ(g) = 〈πλ(g)eλ, fλ∗〉. This function satisfies ψλ(x0) = 1 and

ψλ(b̄−1gb) = 〈πλ(g)πλ(b)eλ, πλ∗(b̄)fλ∗〉 = bλb̄w0λ∗ψλ(g)
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for b ∈ B and b̄ ∈ B̄. Hence ψλ is a B × B̄ highest weight vector for G × G of

weight (w0λ
∗, λ). This proves that Spec(X) = {(w0λ

∗, λ) : λ ∈ P++}.

Theorem 2.3. For λ ∈ P++ let Vλ = Span{ρ(G× G)ψλ}. Then Vλ
∼= Eλ∗ ⊗ Eλ

as a G×G module. Furthermore,

O[G] =
⊕

λ∈P++

Vλ. (5)

In particular, O[G] is multiplicity free as a G×G module, while under the action of

G× 1 it decomposes into the sum of dimEλ copies of Eλ for all λ ∈ P++.

The function ψλ in Theorem 2.3 is called the generating function [Žel] for the

representation πλ. Since ψλ(n−hn+) = hλ and N−HN+ is dense in G, it is clear

that

ψλ(g)ψµ(g) = ψλ+µ(g). (6)

The semigroup P++ of dominant integral weights is free with generators λ1, . . . , λl,

called the fundamental weights.

Proposition 2.4. (Product Formula) Set ψi(g) = ψλi
(g). Let λ ∈ P++ and write

λ = m1λ1 + · · ·+mlλl withmi ∈ N. Then

ψλ(g) = ψ1(g)
m1 · · ·ψl(g)

ml for g ∈ G. (7)

Remark. From the product formula it is evident that the existence of a rational

representation with highest weight λ is equivalent to the property that the functions

n−hn+ 7→ hλi on N−HN+ extend to regular functions on G for i = 1, . . . , l.

Example. SupposeG = SL(n,C). Take B as the group of upper-triangular matri-

ces. We may identify P with Zn, where λ = [λ1, . . . , λn] gives the character

hλ = xλ1

1 · · ·xλn

n , h = diag[x1, . . . , xn].

Then P++ consists of the monotone decreasing n-tuples and is generated by

λi = [1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0] for i = 1, . . . , n− 1.

The fundamental representations are the exterior powers Eλi
=

∧i
Cn of the defin-

ing representation, for i = 1, . . . , n − 1. The generating function ψi(g) is the ith
principal minor of g. The Gauss decomposition (4) is the familiar LDU matrix fac-

torization from linear algebra, and

N−HN+ = {g ∈ SL(n,C) : ψi(g) 6= 0 for i = 1, . . . , n− 1 }.

Let K ⊂ G be a subgroup and let O[G]R(K) be the right K-invariant regular

functions on G (those functions f such that f(gk) = f(g) for all k ∈ K). This

subspace of O[G] is invariant under left translations by G.
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Corollary 2.5. Let EK
λ be the subspace of K-fixed vectors in Eλ. Then

O[G]R(K) ∼=
⊕

λ∈P++

Eλ ⊗ EK
λ∗ (8)

as a G module under left translations, with G acting by πλ ⊗ 1 on the λ-isotypic

summand. Thus the multiplicity of πλ in O[G]R(K) is dimEK
λ∗ .

For any closed subgroup K of G whose Lie algebra is a complex subspace of

g, the coset space G/K is a complex manifold on which G acts holomorphically,

and the elements of O[G]R(K) are holomorphic functions on G/K. When K is

a reductive algebraic subgroup, then the manifold G/K also has the structure of

an affine algebraic G-space such that the regular functions are exactly the elements

of O[G]R(K) (a result of Matsushima [Mat]; see also Borel and Harish-Chandra

[Bo-Ha]). Also, when K is reductive then dimEK
λ∗ = dimEK

λ , since the identity

representation is self-dual.

The pair (G,K) is called spherical if

dimEK
λ ≤ 1 for all λ ∈ P++.

In this case, we refer to K as a spherical subgroup of G. When K is reductive, this

property is equivalent to G/K being a multiplicity-freeG-space, by Corollary 2.5.

3 Complexifications of Compact Symmetric Spaces

3.1 Algebraic Version of Cartan Embedding

Cartan’s paper [Car2] studies the decomposition of C(U/K0), where U is a com-

pact real form of the simply-connected complex semisimple groupG and K0 = Uθ

is the fixed-point set of an involutive automorphism θ of U . The compact symmetric

space X = U/K0 is simply-connected and hence the group K0 is connected.7 The

involution extends uniquely to an algebraic group automorphism of G that we con-

tinue to denote as θ. The algebraic subgroup groupK = Gθ is connected and is the

complexification ofK0 inG, hence reductive. By Matsushima’s theorem G/K is an

affine algebraic variety. It can be embedded into G as an affine algebraic subset as

follows (see [Ric1], [Ric2]):

Define

g ? y = gyθ(g)−1 , for g, y ∈ G.

We have (g ? (h ? y)) = (gh) ? y for g, h, y ∈ G, so this gives an action of G on

itself which we will call the θ-twisted conjugation action. Let

Q = {y ∈ G : θ(y) = y−1}.

Then Q is an algebraic subset of G. Since θ(g ? y) = θ(g)y−1g−1 = (g ? y)−1, we

have G ? Q = Q.

7This theorem of Cartan extends Weyl’s results for compact semisimple groups–see Borel [Bor, Chap.

IV, §2].
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Theorem 3.1 (Richardson). The θ-twisted action of G is transitive on each irre-

ducible component of Q. Hence Q is a finite union of Zariski-closed θ-twisted G-

orbits.

The proof consists of showing that the tangent space to a twisted G-orbit coin-

cides with the tangent space to Q.

Corollary 3.2. Let P = G?1 = {gθ(g)−1 : g ∈ G} be the orbit of the identity ele-

ment under the θ-twisted conjugation action. Then P is a Zariski-closed irreducible

subset of G isomorphic to G/K as an affine G-space (relative to the θ-twisted con-

jugation action of G).

There is a θ-stable noncompact real form G0 of G so that K0 is a maximal

compact subgroup of G0. The symmetric space G0/K0 is the noncompact dual

to U/K0 . The Cartan embedding is the map G0/K0 → P0 ⊂ G0, where P0 =
G0 ? 1 = exp p0 and p0 is the −1 eigenspace of θ in g0 (P0 is Cartan’s space E–see

Borel [Bor, Ch. IV, §2.4]).

3.2 Classical Examples

Let G ⊂ GL(n,C) be a connected classical group whose Lie algebra is simple. The

involutions and associated symmetric spaces G/K for G can be described in terms

of the following three kinds of geometric structures on Cn (in the second and third

type, G is the isometry group of the form and K is the subgroup preserving the

indicated decomposition of Cn):

(1) nondegenerate bilinear forms G = SL(n,C) andK = SO(n,C) or Sp(n,C)

(2) polarizations Cn = V+ ⊕ V− with V± totally isotropic subspaces for a bilinear

form (zero or nondegenerate)

(3) orthogonal decompositions Cn = V+ ⊕V− with V± nondegenerate subspaces

for a nondegenerate bilinear form

The proof that these structures give all the possible involutive automorphisms

of the classical groups (up to inner automorphisms) can be obtained from following

characterization of automorphisms of the classical groups:

Proposition 3.3. Let σ be a regular automorphism of the classical group G.

(1) If G = SL(n,C) then there exists s ∈ G so that σ is either σ(g) = sgs−1 or

σ(g) = s(gt)−1s−1.

(2) If G is Sp(n,C) then there exists s ∈ G so that σ(g) = sgs−1 .

(3) If G is SO(n,C) with n 6= 2, 4, then there exists s ∈ O(n,C) so that σ(g) =
sgs−1 .
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Proof. The Weyl dimension formula implies that the defining representation (and its

dual, in the case G = SL(n,C)) is the unique representation of smallest dimension.

So this representation is sent to an equivalent representation (or its dual) by σ. The

existence of the element s follows from this equivalence (see [Go-Wa, §11.2.4] for

details).8 �

Example. Let G = SL(n,C) and θ(g) = (gt)−1. Then

K = SO(n,C), U = SU(n), K0 = SO(n), G0 = SL(n,R).

Also g ? y = gygt and Q = {y ∈ G : yt = y} = P , so there is one orbit. Hence

the map gK 7→ ggt gives the algebraic embedding

SL(n,C)/ SO(n,C) ∼= {y ∈Mn(C) : y = yt, det y = 1}.

For the other classical examples, see Goodman–Wallach [Go-Wa, §11.2.5].

3.3 Complexified Iwasawa Decomposition

The real semisimple Lie algebra g0 has a Cartan decomposition g0 = k0+p0 into +1
and −1 eigenspaces of the Cartan involution θ. The noncompact real group G0 has

an Iwasawa decomposition 9 G0 = K0A0N0. Here A0 = exp a0 is a vector group

with a0 a maximal abelian subspace of p0, andN0 is a nilpotent subgroup normalized

byA0. Let A andN be the complexifications ofA0 and N0 inG, respectively. Then

A is a complex algebraic torus of rank l (the rank of G/K) and N is a unipotent

subgroup. There is a θ-stable Cartan subgroup H of G such that A ⊂ H and the

following holds (see Vust [Vus] for the general case and Goodman-Wallach [Go-Wa,

§12.3.1] for the classical groups):

(1) KAN is a Zariski-dense subset of G.

(2) The subgroupM = CentK(A) is reductive and normalizes N .

(3) Let T = H ∩K. Then H = AT and A ∩ T is finite.

(4) There exists a Borel subgroupB withHN ⊂ B ⊂MAN .

Thus MAN is a parabolic subgroup of G with reductive Levi component MA and

unipotent radical N . We will give a more precise description of the set KAN in the

next section.

8This type of result was one motivation for Weyl to learn Cartan’s theory of representationsof semisim-

ple Lie groups–see Borel[Bor, Chap. III, §1] for more details.
9WhenG0 = SL(n,R) this decomposition is the so-calledQR factorization of a matrix obtained by

the Gram-Schmidt orthogonalization algorithm.
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4 Representations on Symmetric Spaces

4.1 Spherical Representations

We continue with the same setting and notation as in Section 3.3; in particular, P++

is the set of B-dominant weights. If λ ∈ P++ and EK
λ 6= 0 then λ will be called a

K spherical highest weight and Eλ a K spherical representation.

Proposition 4.1. (i) K is a spherical subgroup of G.

(ii) Let T = H ∩K. If λ ∈ P++ is a K spherical highest weight, then

tλ = 1 for all t ∈ T. (9)

Proof. Since B contains AN , the Iwasawa decomposition shows that BK is dense

inG, so B has an open orbit onG/K. Hence K is a spherical subgroup by Theorem

2.2. Since T is the stabilizer in H of the point K ∈ G/K, condition (9) likewise

holds. �

We say that λ is θ-admissible if it satisfies (9).

Example. Let G = SL(n,C) and θ(g) = (gt)−1. Here A = H (diagonal matri-

ces in G), N = all upper-triangular unipotent matrices, and M = T ∼= (Z/2Z)n−1

consists of all matrices

t = diag[δ1, . . . , δn], δi = ±1, det(t) = 1.

Hence the θ-admissible highest weights λ = [λ1, . . . , λn−1, 0] are those withλi even

for all i. �

Remark. In general, the subgroup F = T ∩A is finite and consists of elements of

order 2, since h = θ(h) = h−1 for h ∈ F . Thus a θ-admissible highest weight λ is

trivial on T and its restriction to A is even, in the sense that hλ = 1 for h ∈ F .

Cartan [Car2] proved the implication (i) =⇒ (iii) in the following theorem and

gave some indications for the proof of the converse (see Borel [Bor, Chap. IV §4.4-

5]). Thus the following result is sometimes called the Cartan–Helgason theorem,

although part (ii) and the first complete proof of the theorem is due to Helgason

[Hel1].

Theorem 4.2. Let (πλ, Eλ) be an irreducible rational representation ofG with high-

est weight λ (relative toB). The following are equivalent:

(i) EK
λ 6= 0.

(ii) MN fixes the B-highest weight vector in Eλ.

(iii) λ is θ-admissible.
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Proof. The equivalence of (ii) and (iii) follows by a Lie algebra argument using sl2
representation theory (see [Hel1] or [Go-Wa, §12.3.3]), and the implication (i) =⇒
(iii) comes from Proposition 4.1. We give Helgason’s analytic proof that (iii) =⇒
(i).10 Let λ be θ-admissible. Define

v0 =

∫

K0

πλ(k)eλ dk. (10)

Then v0 ∈ (Eλ)K by the unitarian trick, since K is connected. To show v0 6= 0, let

ψλ be the generating function for πλ. Then

〈v0, fλ∗〉 =

∫

K0

ψλ(k) dk. (11)

We use the following properties:

(1) Let σ be the complex conjugation of G whose fixed-point set is G0. Then

χ(σ(a)) = χ(a) for any regular character χ of A.

(2) If h ∈ H ∩ G0 = (T ∩ G0)A0, then hλ > 0 by (1), since h = t exp(x) with

t ∈ T and x ∈ a0.

(3) ψλ(g) ≥ 0 for g ∈ G0 by (2) and the Gauss decomposition.

Since ψλ(1) = 1 and K0 ⊂ G0, property (3) shows that the integral (11) is nonzero.

�

Example. Let G = SL(n,C) and θ(g) = (gt)−1. Here A0 consists of real diago-

nal matrices, G0 = SL(n,R), and

ψλ(g) = det1(g)
m1 · · ·detn−1(g)

mn−1 ,

where deti is the ith principal minor and mi = λi − λi+1 . Since λ is θ-admissible

iff all λi are even, condition (3) in the proof of Theorem 4.2 obviously holds. For

example, the highest weight λ = [2, 0, . . . , 0] is admissible, and the corresponding

spherical representation Eλ = S2(Cn). The K-fixed vector in Eλ is
∑

i ei ⊗ ei,

where {ei} is the standard basis for Cn. �

The l fundamental K-spherical highest weights µ1, . . . , µl (with l = dimA the

rank of G/K) are linearly independent, and the general spherical highest weight is

µ = m1µ1 + · · · + mlµl with mi ∈ N (see [Hel2, Ch. V, §4]). Let Λ ⊂ P++ be

the subsemigroup of spherical highest weights. Since K is reductive and the identity

representation is self-dual, EK
λ 6= 0 if and only if EK

λ∗ 6= 0. Hence Λ is invariant

under the map λ 7→ λ∗ on P++.

Corollary 4.3. As a G-module, O[G/K] ∼=
⊕

µ∈Λ Eµ.

10An algebraic-geometric proof was given later by Vust [Vus].



ROE GOODMAN 13

4.2 Zonal Spherical and Horospherical Functions

For each µ ∈ Λ choose a K-fixed spherical vector eK
µ ∈ Eµ and a MN -fixed

conical vector eµ ∈ Eµ, normalized so that

〈eµ, e
K
µ∗〉 = 1, 〈eK

µ , e
K
µ∗〉 = 1. (12)

The zonal spherical function ϕµ ∈ O[G] is the representative function determined

by pairing the K-fixed vectors in Eµ and Eµ∗ :

ϕµ(g) = 〈πµ(g)eK
µ , e

K
µ∗〉.

From the definition it is clear that

ϕµ(kgk′) = ϕµ(g) and ϕµ(1) = 1

for k, k′ ∈ K and g ∈ G. Thus ϕµ is a regular function on G/K that is constant on

the K-orbits.

The zonal horospherical function ∆µ ∈ O[G] is the representative function de-

termined by pairing the MN -fixed vector in Eµ with the K-fixed vector in Eµ∗ :

∆µ(g) = 〈πµ(g)eµ, e
K
µ∗〉.

From the definition it is clear that

∆µ(kgman) = aµ∆µ(g) and ∆(1) = 1 (13)

for k ∈ K, g ∈ G, and man ∈ MAN . Properties (13) with g = 1 determine ∆µ

uniquely, since KAN is dense in G. We can view ∆µ as a holomorphic function on

the affine symmetric space K\G that transforms by the character man 7→ aµ along

theMAN orbits. The existence of a regular function onGwith these transformation

properties is equivalent to the existence of the K-spherical representation πµ (just as

for the generating functions ψλ in Section 2.2, which are the zonal horospherical

functions associated with the diagonal embedding of G as a spherical subgroup of

G× G). Let µ and ν be K-spherical highest weights. From (13) and the density of

the set KMAN it follows that

∆µ(g)∆ν(g) = ∆µ+ν(g) for g ∈ G. (14)

Let µ1, . . . , µl be the fundamental K-spherical highest weights, and define11

∆j(g) = ∆µj(g).

For a general K-spherical highest weight µ = m1µ1 + · · · + mlµl formula (14)

implies the product formula

∆µ(g) = ∆1(g)
m1 · · ·∆l(g)

ml . (15)

11Gindikin [Gin3] calls {∆j} the Sylvester functions; Theorem 4.4 shows they play the same role for

the KAN decomposition as the generating functions {ψj} for the N−HN+ decomposition.
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Set

Ω = {g ∈ G : ∆j(g) 6= 0 for j = 1, . . . , l}.

The weight µ is regular if mi 6= 0 for i = 1, . . . , l. If µ is regular, then we see

from (15) that Ω = {g ∈ G : ∆µ(g) 6= 0}. Using techniques originating with

Harish-Chandra [H-C], Clerc [Cle] obtained the following precise description of the

complexified Iwasawa decomposition:

Theorem 4.4. One has Ω = KAN . Let g = k(g)a(g)n(g) be the Iwasawa factor-

ization in G0.

(i) The function g 7→ n(g) extends holomorphically to a map from Ω toN .

(ii) The functions g 7→ k(g) and g 7→ a(g) extend to multivalent holomorphic func-

tions on Ω, with values in K and A, respectively. The branches are related by

elements of the finite subgroup F = T ∩A.

(iii) Let g 7→ H(g) be the multivalent a-valued function on Ω such that a(g) =
expH(g). Then

∆µ(g) = e〈H(g), µ〉 for g ∈ Ω and µ ∈ Λ.

Theorem 4.4 and (10) yield a formula analogous to Harish-Chandra’s integral

formula [H-C] for zonal spherical functions on the noncompact symmetric space

G0/K0:

Corollary 4.5. For g ∈ G let Kg = {k ∈ K0 : gk ∈ Ω}. Then Kg is an open set

in K0 whose complement has measure zero. For µ ∈ Λ one has

ϕµ(g) =

∫

Kg

e〈H(gk), µ〉 dk.

Clerc, elaborating on methods introduced by E. P. Van den Ban [VdBan], uses

this integral representation and the method of complex stationary phase to determine

the asymptotic behavior of ϕµ(u) as µ → ∞ in a suitable cone when u is a regular

element of U ; see [Cle, Théorème 3.4] for details.

4.3 Horospherical Cauchy–Radon Transform

By Theorem 4.2 theG-modules O[G]R(K) and O[G]R(MN) are multiplicity free and

have the same spectrum (the set Λ of K-spherical highest weights). Using the nor-

malized K-fixed vectors and MN -fixed highest weight vectors, we can thus define

bijective G-intertwining maps

T :
⊕

µ∈Λ

Eµ
∼=
→ O[G]R(K),

∑

µ∈Λ

vµ 7→
∑

µ∈Λ

d(µ)〈vµ, πµ∗(g)eK
µ∗〉

and

S :
⊕

µ∈Λ

Eµ

∼=
→ O[G]R(MN),

∑

µ∈Λ

vµ 7→
∑

µ∈Λ

〈vµ, πµ∗(g)eµ∗〉.



ROE GOODMAN 15

In both cases we assume that the components vµ = 0 for all but finitely many µ ∈ Λ.

Let f ∈ O[G]R(K). The (algebraic) Peter–Weyl expansion of f is

f(g) =
∑

µ∈Λ

d(µ)〈vµ, πµ∗(g)eK
µ∗〉 (16)

where vµ ∈ Eµ and vµ = 0 for all but finitely many µ. Here d(µ) = dimEµ.

Following Gindikin [Gin2], we define the horospherical Cauchy–Radon transform

f 7→ f̂ by

f̂(g) =
∑

µ∈Λ

〈vµ, πµ∗(g)eµ∗〉

Note that the dimension factor is removed, and the spherical vector is replaced by the

conical vector in Eµ∗ . It is easy to check that this definition does not depend on the

choice of spherical and conical vectors, subject to the normalizations (12). We can

express this transform in terms of the maps S and T just introduced as follows: If

v ∈
⊕

µ Eµ and f = Tv, then f̂ = Sv. Since S and T are G-module isomorphisms,

it follows that the map f 7→ f̂ gives a G-module isomorphism between the function

spaces O[G]R(K) and O[G]R(MN). We now express this isomorphism in a more

analytic form.

Theorem 4.6. The horospherical Cauchy–Radon transform is given by the integral

formula

f̂(g) =
∑

µ∈Λ

∫

U

f(u)∆µ(u−1g) du for g ∈ G (17)

(the integrals are zero for all but finitely many µ).

Remark. The integrands in (17) are invariant under u 7→ uk with k ∈ K0, so the

integrals can be viewed as taken over the compact symmetric space X = U/K0.

Proof. Let f be given by (16) and let µ ∈ Λ. Since f is right K-invariant and

EK
µ = CeK

µ , we have

∫

U

f(u)πµ(u−1g)eµ du = cµ(g)eK
µ (18)

for some function cµ(g) on G. From the Schur orthogonality relations and (12) we

find that

cµ(g) = 〈vµ, πµ∗(g)eµ∗〉.

Evaluating both sides of (18) on the vector eK
µ∗ , and summing on µ, we obtain (17).

�

Remarks. 1. The horospherical Cauchy–Radon transform is the representation-

theoretic expression of the double fibration

G
↙ ↘

Z = G/K G/MN = Ξ
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This sets up a correspondence between Z and Ξ: a point gK of Z maps to the

pseudosphere gKMN ∼= K/M in Ξ, and a point gMN in Ξ maps to the horosphere

gMNK ∼= N in Z (see Gindikin [Gin1] for some examples).

2. Let N̄ = θ(N). Then N̄MAN is Zariski-dense in G (the generalized Gauss

decomposition) and AN̄K is also Zariski-dense in G (the Iwasawa decomposition).

Thus the solvable group AN̄ has an open orbit in G/K and in G/MN , but the two

homogeneous spaces are not isomorphic as complex manifolds, even though they

have the same G spectrum and multiplicities.

An invariant (holomorphic) differential operator P (D) on A has a polynomial

symbol P (µ) such that

P (D)aµ = P (µ)aµ for µ ∈ Λ.

If µ is a K-spherical highest weight, then the Weyl dimension formula asserts that

d(µ) =
∏

α>0

(µ + δ, α)

(δ, α)
where δ = 1

2

∑
α>0 α.

Since µ = 0 on t, we can view µ 7→ d(µ) as a polynomial function W (µ) on a∗.

Following Gindikin [Gin3], we define the Weyl operatorW (D) to be the differential

operator on A with symbol W (µ).
Since A normalizes MN , the space O[G]R(MN) is stable under R(A). The

complex horospherical manifold Ξ is a fiber bundle over the compact flag manifold

F = G/MAN (a projective variety), with fiber A. The operator W (D) acts by

differentiation along the fibers.

Using the Weyl operator, Gindikin [Gin2] obtains the following inversion for-

mula for the horospherical Cauchy–Radon transform:

Theorem 4.7. Let f ∈ O[G]R(K). Then

f(g) =

∫

K0

(W (D)f̂ )(gk) dk for g ∈ G (19)

Remark. The integrand in (19) is invariant under right translations by M0, so the

integral is taken over the compact flag manifoldK0/M0 = G0/M0A0N0 associated

with the dual noncompact symmetric space.

Proof. It suffices to prove (19) when f(g) = d(µ)〈vµ, πµ∗(g)eK
µ∗ 〉 with vµ ∈ Eµ. In

this case,

f̂(ga) = 〈vµ, πµ∗(ga)eµ∗〉 = aµ∗

〈vµ, πµ∗(g)eµ∗〉.

Hence W (D)f̂ (g) = d(µ)f̂(g) since d(µ) = d(µ∗). Thus

∫

K0

(W (D)f̂ )(gk) dk = d(µ)

∫

K0

〈vµ, πµ∗(g)πµ∗(k)eµ∗〉 dk = f(g),

since the integration of πµ∗(k)eµ∗ over K0 yields eK
µ∗ . �
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4.4 Cauchy–Radon Transform as a Singular Integral

Denote by Z = G/K the complex symmetric space with origin x0 = K. Let

ζ0 = MN denote the origin in Ξ. For z = g · x0 ∈ Z and ζ = y · ζ0 ∈ Ξ we set

∆j(z | ζ) = ∆j(g
−1y). This is well-defined by the transformation properties (13),

and we have

∆j(z | ζa) = aµj ∆j(z | ζ) for a ∈ A.

Following Gindikin ([Gin2], [Gin3]), we define the Cauchy–Radon kernel on Z ×Ξ
by

K(z | ζ) =
∏

1≤j≤l

1

1 − ∆j(z | ζ)
.

This function is meromorphic and invariant under the diagonal action of G, since

∆j(g · z | g · ζ) = ∆j(z | ζ) for g ∈ G. The singular set of K(z | ζ) is the union of

the manifolds {∆j(z | ζ) = 1} in Z × Ξ for j = 1, . . . , l.
Recall that X = U/K0 is the compact symmetric space corresponding to θ.

Define

Ξ(0) = {ζ ∈ Ξ : |∆j(x | ζ)| < 1 for all x ∈ X}.

By definition, U · Ξ(0) = Ξ(0). Furthermore, the product formula (15) implies that

K(x | ζ) =
∑

µ∈Λ

∆µ(u−1g) (absolutely convergent series) (20)

for x = u · x0 ∈ X and z = g · ζ0 ∈ Ξ(0). Since A normalizes the subgroup MN ,

the right multiplication action of A on G gives a right action of A on Ξ, denoted by

ζ, a 7→ ζ · a. This action commutes with the left action of G on Ξ.

Lemma 4.8. (i) The map (U/M0) ×A→ Ξ given by (u, a) 7→ u · ζ0 · a is regular

and surjective.

(ii) Let A+ = {a ∈ A : |aµj | < 1 for j = 1, . . . , l}. Then U · ζ0 · A+ ⊂ Ξ(0).
Hence Ξ(0) is a nonempty open subset of Ξ.

Proof. Since U is a maximal compact subgroup ofG, the Iwasawa decomposition of

G shows that G = UMAN . This implies (i).

Clerc [Cle, Lemme 2.3], using a representation-theoretic argument originating

with Harish-Chandra [H-C], shows that |∆µ(u)| ≤ 1 for µ ∈ Λ and u ∈ U . Let

a ∈ A. Then Clerc’s estimate implies that

|∆µ(ua)| = |∆µ(u)| |aµ| ≤ |aµ|. (21)

If a ∈ A+ then |aµ| < 1. Hence for u, u′ ∈ U we have

|∆µ(u · x0 | u′a · ζ0)| = |∆µ(u−1u′a)| < 1

by (21). This implies (ii). �
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Using Lemma 4.8, we can obtain Gindikin’s singular integral formula for the

horospherical Cauchy-Radon transform. The noncompact real symmetric spaceG/U
is the space of compact real forms of G, and by the Cartan decomposition of G it is

a contractible manifold. For ν = gU ∈ G/U we define a compact totally-real cycle

X(ν) = g · X ⊂ Z and an open set Ξ(ν) = g · Ξ(0) ⊂ Ξ. This furnishes an open

covering

Ξ =
⋃

ν∈G/U

Ξ(ν)

with a contractible parameter space.

Theorem 4.9 (Gindikin). For f ∈ O[Z] the horospherical Cauchy–Radon transform

is given on each set of the covering {Ξ(ν)} by the Cauchy-type singular integral

f̂(ζ) =

∫

X(ν)

f(x)K(x | ζ) dx for ζ ∈ Ξ(ν) (22)

(the integrand is continuous on X(ν)).

Proof. Use formula (20) for K(x | ζ) when ζ ∈ Ξ(0), and then translate by g ∈ G
to get the formula in general. �

5 Concluding Remarks

In this paper we described the harmonic analysis of finitely-transforming functions

on a compact symmetric space using algebraic group and Lie group methods, extend-

ing the fundamental results of Cartan and Weyl. Our presentation of the horospher-

ical Cauchy-Radon transform has emphasized groups and homogeneous spaces as

in [Gin2]; in fact, the integral formulas hold for all holomorphic functions (not just

the G-finite functions) onX and Ξ, and also for hyperfunctions. Gindikin’s point of

view is that a compact symmetric space has a canonical dual object that is a complex

manifold, and he develops this transform emphasizing complex analysis and integral

geometry (see [Gin3]).

An analytic problem that we have not discussed is the holomorphic extension

of real analytic functions on a compact symmetric space. These functions extend

holomorphically to complex neighborhoods of the space. The geometric and analytic

properties of these neighborhoods were studied by B. Beers and A. Dragt [Be-Dr],

L. Frota-Mattos [Fr-Ma] and M. Lasalle [Las].
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217-252; reprinted in Oeuvres Complètes 1, Part 2, 1045-1080, Gauthier-

Villars, Paris, 1952.

[Cle] J.-L. Clerc, Fonctions sphériques des espaces symétriques compacts,

Trans. Amer. Math. Soc. 306 (1988), 421-431.

[Fr-Ma] L. A. Frota-Mattos, The complex-analytic extension of the Fourier series

on Lie groups, in Proceedings of Symposia in Pure Mathematics, Volume

30, Part 2 (1977), 279-282.

[Gin1] S. Gindikin, Holomorphic horospherical duality “sphere-cone”, Indag.

Mathem, N.S., 16 (2005), 487-497.

[Gin2] S. Gindikin, Horospherical Cauchy-Radon transform on compact symmet-

ric spaces, Mosc. Math. J. 6 (2006), no. 2, 299-305, 406.

[Gin3] S. Gindikin, Harmonic analysis on symmetric Stein manifolds from the

point of view of complex analysis, Jpn. J. Math. 1 (2006), 87-105.

[Go-Wa] R. Goodman and N. R. Wallach, Representations and Invariants of the

Classical Groups (Encyclopedia of Mathematics and Its Applications, Vol.

68), Cambridge University Press, 1988 (3rd corrected printing 2003).

[H-C] Harish-Chandra, Spherical functions on a semi-simple Lie group. I, Amer.

J. Math. 80 (1958), 241-310.

[Haw] T. Hawkins, Emergence of the Theory of Lie Groups: an Essay in the

History of Mathematics 1869-1926, Springer-Verlag, New York, 2000.

[Hel1] S. Helgason, A duality for symmetric spaces with applications to group

representations, Advances in Math. 5 (1970), 1-154.

[Hel2] S. Helgason, Groups and Geometric Analysis (Pure and Applied Mathe-

matics 113), Academic Press, Orlando, 1984.



20 HARMONIC ANALYSIS ON COMPACT SYMMETRIC SPACES

[Hel3] S. Helgason, The Fourier transform on symmetric spaces, in Élie Car-
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[Žel] D. P. Želobenko, Compact Lie groups and their representations (Transla-

tions of mathematical monographs Vol. 40), American Mathematical So-

ciety, Providence, RI, 1973.


