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1. ALICE AND THE MIRRORS. Let us imagine that Lewis Carroll stopped con-
densing determinants long enough to write a third Alice book called Alice Through
Looking Glass After Looking Glass. The book opens with Alice in her chamber in front
of a peculiar cone-shaped arrangement of three looking glasses. She steps through one
of the looking glasses and finds herself in a new virtual chamber that looks almost
like her own. On closer examination she discovers that she is now left-handed and
her books are all written backward. There are also virtual mirrors in this chamber.
Stepping through one of them, she continues her exploration and passes through many
virtual chambers until, to her great relief, she suddenly finds herself back in her own
real chamber, just in time for tea. Eager to have new adventures, Alice wonders how
many different ways the mirrors could be arranged so that she could have other trips
through the looking glasses and still return the same day for tea.

Alice’s problem was solved (for all dimensions) by H. S. M. Coxeter [4], who
classified all possible systems of n mirrors in n-dimensional Euclidean space whose
reflections generate a finite group of orthogonal matrices. In this paper we describe
Coxeter’s results, emphasizing the connection with kaleidoscopes. The mathematical
tools involved are some linear algebra (including determinants), basic group theory,
and a bit of graph theory. We also give plans for three-dimensional kaleidoscopes that
exhibit the symmetries of the three types of Platonic solids.

The mathematics of kaleidoscopes in n dimensions is the study of those finite
groups of orthogonal n × n real matrices that are generated by reflection matrices.
These groups appeared in many parts of mathematics in the late nineteenth and early
twentieth centuries, in connection with geometry, invariant theory, and Lie groups, es-
pecially in the work of W. Killing, E. Cartan, and H. Weyl [8]. As abstract groups,
almost all of them turn out to be very familiar: dihedral groups, the symmetric group
of all permutations, the group of all signed permutations, and the group of all evenly-
signed permutations. There are also six exceptional groups that occur in dimensions
three to eight.

2. MIRRORS AND KALEIDOSCOPES. Mirrors and mirror symmetries have
been part of human culture for millenia (see [13]), but using several mirrors to obtain
attractive multiple reflection patterns seems to be a more recent development. One ver-
sion of the familiar cylindrical kaleidoscope, usually attributed to Sir David Brewster
around 1819,1 uses two mirrors joined along an edge at an angle 180◦/m (for some
small integer m ≥ 2) to produce images of remarkable beauty when the mirrors are
properly aligned.2 Some real object (typically pieces of colored crystals) is placed in

1Coxeter [4, Remarks 1.9] also mentions A. Kircher in 1646.
2See the webpage of Kaleidoscopes of America (http://www.kaleido.com) for examples.
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Figure 1. Type A2 kaleidoscope (60◦ dihedral angle).

the V-shaped chamber between the two mirrors, as shown in Figure 1 (each mirror is
shown with a root vector perpendicular to the mirror). The image seen in the kalei-
doscope then consists of the real object together with the virtual objects in the virtual
chambers that are the multiple reflections of the real chamber and object, as shown
in Figure 2 (the reflections of the root vectors are also shown). The real chamber and
the virtual chambers fill the plane with no overlapping, and the possible two-mirror
cylindrical kaleidoscopes correspond to the infinitely many regular polygons with an
even number of sides (square, hexagon, octagon, . . . ).
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Figure 2. Virtual mirrors and virtual objects (60◦ dihedral angle).

In three dimensions there are only three types of regular solids: tetrahedron (self-
dual), cube (with dual octahedron), and icosahedron (with dual dodecahedron). For
each type there is an associated three-mirror conical kaleidoscope, which also produces
images of remarkable beauty (when the mirrors are properly aligned) that we will
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describe at the end of the paper. Such mirror arrangements were apparently first studied
by A. Möbius in 1852 [12].3

In n-dimensional Euclidean space R
n for n > 3 similar constructions are also pos-

sible, although not easy to visualize.4 We find a basic difference between two dimen-
sions and higher dimensions: when n ≥ 3 there are only a finite number of genuine
n-dimensional kaleidoscopes. In fact, there are only three types, except when n = 4
(five types) or n = 6, 7, 8 (four types in each dimension). Here the term “genuine”
means that the kaleidoscope has no mirror that is perpendicular to all its other mirrors.

3. REFLECTIONS AND REFLECTION GROUPS. A mathematical model for
a mirror through the origin 0 in n-dimensional Euclidean space R

n is an (n − 1)-
dimensional subspace M , which we can describe by a single linear equation

α · v = 0.

Here we take R
n as n × 1 column vectors, u · v = u′v is the usual inner product with

u′ the transposed row vector (the multiplication is matrix multiplication), and α 	= 0.
The vector α is perpendicular to M; we call it a root vector for the mirror. We can
assume that α has length one, since any nonzero multiple of α is also a root vector for
the same mirror.

The reflection in the mirror is the linear transformation R of R
n defined by

Rv =
{

v if v ∈ M,

−v if v is a multiple of α.

We write M = Mα and R = Rα if we want to show how M and R depend on the
direction α.

To find a formula for R as a matrix, recall that the projection of a vector v onto the
line Rα is

v1 = (v · α)α.

Thus we have an orthogonal decomposition v = v1 + v0, where v0 = v − v1 lies in the
mirror. Hence

Rv = −v1 + v0 = v − 2(α · v)α.

Thus R acts on column vectors by the n × n matrix In − 2αα′, where In is the n × n
identity matrix.

Examples of reflection matrices. In R
2, α = [ 0 −1 ]′ is a root vector for the mirror

x2 = 0 along the x1-axis, and

Rα =
[

1 0
0 1

]
− 2

[
0

−1

]
[ 0 −1 ] =

[
1 0
0 −1

]

(which is obvious). The vector β = [ − sin θ cos θ ]′ is a root vector for the mirror
at an angle θ with the x1-axis, and

3Hessel in 1830 and Bravais in 1849 had already determined the finite groups of three-dimensional rotations
in connection with crystallography.

4See [6] for some ways of visualizing reflections and regular solids in four-dimensional space using quater-
nions (pairs of complex numbers).
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Rβ =
[

1 0
0 1

]
− 2

[ − sin θ

cos θ

]
[ − sin θ cos θ ]

=
[

1 − 2 sin2 θ 2 sin θ cos θ

2 sin θ cos θ 1 − 2 cos2 θ

]

=
[

cos 2θ sin 2θ

sin 2θ − cos 2θ

]
.

From this calculation we see that matrix Rα Rβ is rotation by an angle 2θ .

Properties of reflections. We point out the following elementary properties of reflec-
tions:

• R(Rv) = v, so R2 is the identity transformation.
• (Rv) · (Rv) = v · v, so R is an orthogonal transformation (RR′ = In).
• R reverses orientation (det R = −1).

Remark. Reflection matrices are also called Householder matrices [9, sec. 2.2.4].
Every orthogonal matrix is a product of reflection matrices, and this provides an ex-
tremely efficient and accurate tool in many algorithms of numerical linear algebra. In
fact, the familiar Gram-Schmidt algorithm taught in elementary linear algebra courses
is too unstable and inefficient for numerical calculation, and it is replaced by an algo-
rithm using reflection matrices.

Dihedral kaleidoscopes. It is easy to classify all possible two-mirrored kaleido-
scopes; they are in one-one correspondence with the set of regular plane polygons
with an even number of sides, as follows.

Theorem 1. Take two mirrors in R
2 that pass through 0 and have root vectors α

and β. Let θ(≤ π/2) be the dihedral angle between the mirrors, and let C be the
closed wedge between the mirrors. Assume that the interior of C does not contain any
virtual mirror generated by multiple reflections in the two mirrors.

(i) The group G of matrices

I2, Rα, Rβ, Rα Rβ, Rβ Rα, Rα Rβ Rα, . . . (1)

generated by Rα and Rβ is finite if and only if θ = π/m for some integer
m ≥ 2. In this case G is the dihedral group I2(m) of symmetries of the regular
polygon with 2m sides.

(ii) Assume that θ = π/m. The images g · C for g in G (the “fundamental cham-
ber” for g = 1 and the “virtual chambers” for g 	= 1) have disjoint interiors
and fill up R

2. Furthermore, if gC = C then g is the identity matrix. Hence
the chambers (fundamental and virtual) correspond uniquely to the elements
of G. In particular, |G| = 2m.

(iii) Assume that θ = π/m. As an abstract group G is generated by a = Rα and
b = Rβ with all relations generated by the three relations

a2 = 1, b2 = 1, (ab)m = 1.
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Proof. Set g = Rα Rβ. Then g is rotation by the angle 2θ , hence it is of finite order if
and only if θ is a rational multiple of π .

Assume that θ = nπ/m, with m and n relatively prime positive integers. We claim
that n = 1. To prove this, note that the action of g on the given mirrors produces
two virtual mirrors that make angles of 2θ and 3θ with the first mirror. Hence for
every integer k there is a virtual mirror that makes an angle of kθ with the first mirror.
Since m and n are relatively prime, there is an integer k such that kn ≡ 1(mod m) by
the Euclidean algorithm. Hence if n > 1 there is virtual mirror that makes an angle of
π/m with the first mirror, contradicting the assumption that there are no virtual mirrors
between the two given mirrors.

Now assume that θ = π/m. From the relations

R2
α = R2

β = (Rα Rβ)m = I

one checks that there are at most 2m distinct matrices in the set (1) (the cases m
even and m odd need separate consideration). This proves (i). Part (ii) follows from
elementary geometry.

To present I2(m) as an abstract group in terms of generators and relations, use the
relations, as in (i), to see that at most 2m distinct words

1, a, b, ab, ba, aba, bab, abab, . . .

can be formed. Since I2(m) has 2m elements, this proves (iii) (see [11, sec. 1.3] for
more details).

Example: Type B2 mirror system. The case θ = 45◦ is shown in Figure 3. The fun-
damental and virtual chambers are labeled by the associated elements of the dihedral
group I2(4), with a = Rα and b = Rβ. The labeling is determined by the group ele-
ment g needed to move the flag F in the fundamental chamber to the flag gF in the
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mirror a 

mirror b 
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Figure 3. Type B2 kaleidoscope (45◦ dihedral angle).
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virtual chamber. In this case the relations a2 = b2 = (ab)4 = 1 can be used to reduce
any word in a and b to one of the eight words

1, a, b, ab, ba, aba, bab, abab

that correspond to the eight chambers in Figure 3. For example, baba = abab because
(abab)2 = 1. This is clear geometrically from Figure 3 by reflecting the virtual image
abaF through mirror b to get the virtual image ababF . Note that the composition of
an even number of reflections preserves orientation, whereas the composition of an
odd number of reflections reverses orientation.

4. KALEIDOSCOPES IN THREE DIMENSIONS. We now consider a configura-
tion of three mirrors in three dimensions and the group G generated by reflections in
these mirrors. We assume that the three mirror planes each contain 0. The mirror planes
divide R

3 into several solid cones whose walls are the mirrors. Fix one cone C , which
we call the fundamental chamber. Then C has three walls, which are two-dimensional
wedges extending to infinity (see Figure 4).

mirror b 
mirror c 

mirror a 

0 

Figure 4. Fundamental chamber for a kaleidoscope in R
3.

Let π/p, π/q, and π/r be the interior dihedral angles between the walls of C (there
are three pairs of walls, and each pair has a dihedral angle). The interior walls of C
are mirrored; in order to get multiple reflections of one wall in another, we can assume
that 2 ≤ p ≤ q ≤ r . If p = q = 2, then one of the mirrors is perpendicular to both of
the other mirrors, and we are in the situation of two mirrors in two dimensions and one
mirror in the remaining dimension. The group G in this case is simply the product of
the dihedral group for the two mirrors and the two-element group for one mirror. So
we henceforth assume that q > 2.

Theorem 2. Let G be the group of orthogonal matrices generated by reflections in
the three walls of the chamber C. Assume that the interior of C does not contain any
virtual mirror generated by multiple reflections in the three walls of C.

(i) Suppose that the orbit G · x is finite for some point x inside C. Then p, q, and r
are positive integers that satisfy

2 ≤ p ≤ q ≤ r,
1

p
+ 1

q
+ 1

r
> 1. (2)

(ii) The integer solutions to (2) with q > 2 are (2, 3, 3), (2, 3, 4), and (2, 3, 5).
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(iii) Let (p, q, r) be one of the triples in (ii), and let C be a chamber (3-sided cone)
in R

3 with the corresponding dihedral angles. The images g · C for g in G
(the “virtual chambers”) have disjoint interiors and fill up R

3. Furthermore,
if gC = C then g = I . Hence the chambers (fundamental and virtual) corre-
spond uniquely to the elements of G, and G is finite.

Proof.

(i) Take a pair of mirrors and consider the subgroup H of G generated by reflections
in these two mirrors. Then H · x must be finite, so Theorem 1 implies that the
dihedral angle between the mirrors must be an integral submultiple of π . Hence
p, q, and r are integers.

To obtain a relation among p, q, and r , consider a triangular cross section
of the cone C (see Figure 4). The angles of this triangle are no bigger than the
corresponding dihedral angles of the mirrors, and at least one of the angles is
strictly smaller than the dihedral angle. Since the sum of the interior angles of
the triangle is π , condition (2) follows.

(ii) The integer solutions to (2) must satisfy p = 2, q = 3, and r ≤ 5 because

1

3
+ 1

3
+ 1

3
= 1

2
+ 1

4
+ 1

4
= 1

2
+ 1

3
+ 1

6
= 1

(iii) For each admissible triple (p, q, r) we can construct:
• a regular polyhedron (tetrahedron, cube, icosahedron) centered at 0;
• a triangulation of the faces of the polyhedron by congruent triangles;
• a cone C from 0 through one of the triangles with dihedral angles π/p,

π/q, and π/r .

This is illustrated in Figure 5 for the triple (2, 3, 4) (the regular polyhedron is a
cube in this case). We then verify that each reflection in a wall of C permutes

mirror b 

mirror c 

mirror a 

Figure 5. Fundamental chamber in a cube.
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the vertices of this polyhedron. Hence G is finite since there are three linearly
independent vertices (see the illustrations in [7, chap. 3] and [1, chap. 5, p. 157]).
Also, G permutes the triangles, so G permutes the chambers.

To establish the correspondence between g in G and the (virtual) cham-
ber g · C through one of the triangular faces of the polyhedron, write g =
R1 R2 · · · Rk , where each Ri is reflection in some wall of C . Such a product is
called a reduced word if k is as small as possible, and we define length(g) = k
in this case (the identity element has length zero). One can show that length(g)

is the minimal number of mirrors (real or virtual) that must be crossed in order
to go from the fundamental chamber C to the virtual chamber g · C [7, chap. 6]
(this is obvious when length(g) = 1, since the virtual chamber g · C shares a
wall with the fundamental chamber C in that case). This property of the length
function immediately shows that 1 is the only element of G that fixes C (as a
set). So if g and h are members of G and g · C = h · C , then g−1h fixes C and
must be the identity. This proves that g is uniquely determined by the chamber
g · C .

Table 1 summarizes the situation in three dimensions. In the table Sn denotes the
symmetric group on n letters, and the three groups are designated as types A3, B3,
and H3 (to be consistent with the classification in higher dimensions). The tetrahedral
group of type A3 is S4, which acts by permuting the four vertices of the tetrahedron.
If the vertices are numbered 1 to 4, then the transposition 1 ↔ 2 acts by the reflection
through the plane containing vertices 3 and 4 and the midpoint of the edge joining
vertices 1 and 2. Since S4 is generated by transpositions, every permutation of the
vertices of the tetrahedron can be obtained as a product of reflections.

Table 1. Finite reflection groups in three dimensions.

Dihedral angles Polyhedron Group # Mirrors # Chambers

π/2 - π/3 - π/3 Tetrahedron A3 = S4 6 24

π/2 - π/3 - π/4 Cube or
Octahedron

B3 =
S3 � {[±1, ±1, ±1]}

9 48

π/2 - π/3 - π/5 Icosahedron or
Dodecahedron

H3 = Alt5 ×{±1} 15 120

The symmetry group B3 of the cube or octahedron consists of the signed permuta-
tions of three objects (which we can take as the three basis vectors in three dimensions
that define the cube). It is the semidirect product of the group S3, realized as 3 × 3 per-
mutation matrices, and the normal Abelian subgroup of 3 × 3 diagonal matrices with
entries ±1 (these diagonal matrices give the reflections in the three coordinate planes).

The group of rotational symmetries (orientation-preserving) of the icosahedron is
isomorphic to the alternating group Alt5 of order 60 (the even permutations in S5). The
full symmetry group of the icosahedron is H3

∼= Alt5 ×{±1} of order 120. Here −1
acts by the transformation x �→ −x of R

3 that commutes with all rotations, so H3 is
not isomorphic to S5, whose center is {1} (see [7, sec. 2.4] and [3] for more details and
the recent appearance of icosahedral symmetry in chemistry).

The mirror count in Table 1 includes the virtual mirrors (reflecting planes) together
with the three mirrors that bound the fundamental chamber. The number of chambers is
the same as the order of the symmetry group G (Theorem 2). For the dihedral groups
in two dimensions, the number of chambers is always twice the number of mirrors.
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But in three dimensions, the ratio #(chambers)/#(mirrors) is 4, 16/3, or 8, in the three
cases.

5. KALEIDOSCOPES IN HIGHER DIMENSIONS. A finite arrangement of mir-
rors (reflecting hyperplanes) in R

n can be specified by giving a pair of root vectors ±α
for each mirror (we take the pair ±α to avoid choosing an orientation). We normalize
α to have length one, and we let 
 be the resulting collection of unit vectors. We are
interested in the multiple reflections in the mirrors, so we assume that the arrangement
of mirrors is invariant under the reflection Rα for every α in 
. This condition can be
stated in terms of the root vectors as follows:

Kaleidoscope Condition. For α and β in 
, the reflected vector Rαβ also belongs
to 
.

A finite set 
 of unit vectors in R
n satisfying the kaleidoscope condition is called a

root system.5 We may assume that 
 spans R
n , since any vector that is perpendicular

to all mirrors is fixed by all the reflections. By the kaleidoscope condition the group
of orthogonal matrices generated by the reflections Rα for α in 
 is finite, since an
element of this group is determined by its action on the finite set 
.

The root system for a kaleidoscope in two or three dimensions consists of the root
vectors to all the actual and virtual mirrors of the kaleidoscope (see Figure 2 with the
six root vectors of the A2 system and Figure 3 with the eight root vectors of the B2

system). The definition of “virtual mirror” ensures that this set of vectors satisfies the
kaleidoscope condition.

How can we identify the n outward-pointing root vectors to the physical mirrors
that form the walls of the kaleidoscope? This is answered by the next result, whose
proof is an easy linear algebra argument (see [10, Theorem 1.3]).

Theorem 3. If 
 is a root system, then it contains a subset � = {α1, . . . , αn} of
“simple roots” such that

(i) � is a basis for R
n;

(ii) αi · α j ≤ 0 for i 	= j ;
(iii) if β belongs to 
, then the expression of β in terms of the basis � has coeffi-

cients that are all of the same sign.

Fix a set of simple roots � and write Ri for the reflection Rαi . The fundamental
chamber C determined by � is the simplicial cone in R

n defined by the inequalities
αi · x ≥ 0 (i = 1, . . . , n).

If θi j is the dihedral angle between the mirrors for αi and α j , then θi j ≤ π/2 since
αi · α j ≤ 0. Part (iii) of Theorem 3 implies that if a point x is in the interior of C ,
then β · x 	= 0 for every β in 
. Hence none of the reflecting hyperplanes determined
by the root vectors passes through the interior of C , so from the two-dimensional case
(Theorem 1) we conclude that

θi j = π

pi j
,

where pi j is an integer. Furthermore, Ri and R j satisfy the relations

R2
i = (Ri R j )

pi j = 1. (3)

5The term root system has a slightly different meaning in connection with Lie algebras (see [10]).
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Coxeter graphs. We have now translated the study of kaleidoscopes in n dimensions
into the study of root systems. The n (actual) mirrors of the kaleidoscope correspond
to the set � of n simple roots, and the interior of the kaleidoscope is the fundamental
chamber C . We encode this information in the Coxeter graph of the root system. This
is a labeled graph with n vertices, with the i th vertex corresponding to the i th mirror.
We draw an edge between vertex i and vertex j if pi j > 2, and we label the edge with
the integer pi j if pi j > 3. Figure 6 gives the Coxeter graphs for the three-dimensional
mirror systems we have studied.

4 5

Figure 6. Coxeter graphs for three-dimensional kaleidoscopes.

We define the Coxeter matrix of the root system to be the n × n symmetric matrix
A = [αi · α j ] (matrix of inner products). Since

aii = 1, ai j = − cos(π/pi j )

for i 	= j , we see that A is completely determined by the Coxeter graph, without ref-
erence to the root system.

Since the Coxeter matrix of a root system is the matrix of inner products for a
basis of R

n , we obtain the following necessary condition for a labeled graph to be the
Coxeter graph of a root system.

Theorem 4. The Coxeter matrix of a root system is positive definite.

To demonstrate the power of this result, we use it to show again that a kaleidoscope
with dihedral angles π/2, π/3, and π/p can exist only if p ≤ 5. The Coxeter graph
would be as in Figure 6 (with 4 or 5 replaced by p), and the Coxeter matrix would be

 1 −1/2 0
−1/2 1 −c

0 −c 1


 , c = cos(π/p).

Recall that a real symmetric matrix is positive definite if and only if all the principal
minors are positive. In particular, the determinant of this matrix is 3/4 − c2, which is
positive if and only if p < 6. Since p must be an integer, this forces p to be 3, 4, or 5.

Coxeter [4] found all the graphs that satisfy the positive definiteness condition. The
key observation is the monotonicity property: every subgraph (with possibly smaller
labels) of a positive-definite graph is also positive definite.

To use the monotonicity property, we need a supply of Coxeter graphs that are
not positive definite. Some examples of Coxeter graphs whose Coxeter matrices are
positive semidefinite are shown in Figure 7, and the complete set is shown in [10,
Figure 2.2].6 This collection of Coxeter graphs and the monotonicity property imply
that a connected positive-definite Coxeter graph with three or more vertices cannot
have the following features:

• circuits
• more than one branch point
• a branch point with four or more edges

6These diagrams are associated with so-called affine root systems and kaleidoscopes in R
n with n + 1

mirrors, such as the familiar three-mirror cylindrical kaleidoscope whose images are in R
2.
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44

Figure 7. Some semidefinite Coxeter graphs.

• two or more labels larger than 3
• two or more vertices on each each of the three edges at a branch point

From constraints of this sort, one finds by a process of elimination that in dimension
four there are exactly five different connected positive-definite Coxeter graphs, shown
in Figure 8. In all dimensions, the positive-definite graphs can be classified by the
same method, and root systems with these graphs can be constructed. The reflection
groups associated with the root systems are finite, and all the relations in the groups
are generated by the Coxeter relations (3). See [10, chap. 2] for details.

4 5

4

Figure 8. Coxeter graphs for four-dimensional kaleidoscopes.

If we consider only root systems with connected Coxeter graphs (this means that
we do not allow mirror systems with one mirror perpendicular to all the other mirrors),
then the number of finite reflection groups in each dimension greater than three is very
small. The list of these root systems and their reflection groups is given in Table 2.

Table 2. Finite reflection groups in higher dimensions.

Dimension # Groups # Mirrors # Chambers

4 5 10, 12, 16
24
60

5 · 4!, 23 · 4!, 24 · 4!
2 · 6 · 8 · 12

2 · 12 · 20 · 30

5 3 15, 20, 25 6 · 5!, 24 · 5!, 25 · 5!
6 4 21, 30, 36

36
7 · 6!, 25 · 6!, 26 · 6!

2 · 5 · 6 · 8 · 9 · 12

7 4 28, 42, 49
63

8 · 7!, 27 · 7!, 26 · 7!
2 · 6 · 8 · 10 · 12 · 14 · 18

8 4 36, 56, 64
120

9 · 8!, 27 · 8!, 28 · 8!
2 · 8 · 12 · 14 · 18 · 20 · 24 · 30

n > 8 3 n(n + 1)/2, n(n − 1), n2 (n + 1) · n!, 2n−1 · n!, 2n · n!
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In each dimension, the first three groups listed in the table are the classical finite re-
flection groups: the symmetric group Sn+1, the group Dn of evenly signed permutations
of n letters, and the hyperoctahedral group Bn of signed permutations of n letters. The
remaining groups in the table (which occur only for dimensions 4, 6, 7, and 8) are the
exceptional finite reflection groups of types F4 and H4 in dimension 4 and types E6,
E7, and E8 in dimensions 6, 7, and 8. Except for H4, these groups are crystallographic:
they can be represented by integer matrices relative to a suitable basis.7

The exceptional reflection group H4 is the symmetry group of a regular solid in four-
dimensional Euclidean space, just as H3 is the symmetry group of the icosahedron. The
root systems of type H3 and H4 can be constructed quite directly as finite subgroups
of the quaternions [10, sec. 2.13]. We note that the exceptional groups are much larger
than the classical groups in the same dimension (E8 has order 1,920 times the order
of S9).

The number of mirrors listed in the table counts the n mirrors that are the walls
of the fundamental chamber, together with all the virtual mirrors that are the reflec-
tions of these walls. It is one-half the number of roots (recall that each root occurs
with its negative). Each chamber is associated with a group element, just as in the
two- and three-dimensional cases, so the number of chambers is the same as the order
of the group G. This number is the product of the degrees of n so-called basic invari-
ants (a set of n algebraically independent homogeneous polynomials in n variables
that generate all G-invariant polynomials), and the table shows this factorization; for
E8 the degrees are 2, 8, 12, 14, 18, 20, 24, and 30. The degrees of the basic invariants
are important for many reasons (for example, they determine the Betti numbers of the
associated Lie groups). For the classical groups they are well known (in the case of
Sn+1 one may take the elementary symmetric functions as basic invariants). For the
exceptional groups they were determined by C. Chevalley [2].

We see from the table that the number of chambers is enormously larger than the
number of mirrors, and that the exceptional systems are also exceptional in this regard.
For the E8 root system the ratio of these two numbers is almost six million, whereas
for the three classical root systems in R

8 it is in the range 10,000 to 80,000.

6. BUILDING THREE-DIMENSIONAL KALEIDOSCOPES. In the introduc-
tion to [4], Coxeter recalls the cases of finite reflection groups in two- and three-
dimensions and writes:

These groups can be made vividly comprehensible by using actual mirrors for the generating
reflections. It is found that a candle makes an excellent object to reflect. By hinging two verti-
cal mirrors at an angle π/k we easily see 2k candle flames, in accordance with the group [k].
To illustrate the groups [k1, k2], we hold a third mirror in the appropriate positions.8

The actual construction of three-dimensional kaleidoscopes (Coxeter’s advice to “hold
a third mirror in the appropriate positions”) is not easy, however, compared with mak-
ing a traditional dihedral kaleidoscope. In [6, Remark 3.5] Coxeter mentions that “a
very accurate icosahedral kaleidoscope was made in Minneapolis (by Litton Indus-
tries) for a film project that was never completed because the expected financial support

7These are the Weyl groups of five of the six exceptional finite-dimensional simple Lie algebras, which
were discovered by W. Killing in 1888 [8]. In two dimensions, the dihedral groups I2(m) are crystallographic
only when m is 2, 3, or 6. Furthermore, I2(6) is the Weyl group of the remaining exceptional Lie algebra G2.

8Here the group [k] is the dihedral group I2(k) of order 2k, while [k1, k2] is the group in Theorem 2
associated with the regular polyhedron having faces with k1 edges and vertices with k2 edges.
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was withdrawn.”9 Several recent United States Patents have been granted for three-
dimensional kaleidoscopes.10

In this section we give mirror dimensions for three-dimensional kaleidoscopes of
symmetry types A3, B3, and H3 (see also [6, chap. 3]). Our method of generating an
image in the kaleidoscope is to truncate the fundamental chamber and place a circular
disc over the opening that is free to rotate. Let P be the polyhedron that is the con-
vex hull of the Platonic solid and its dual associated with the Coxeter graph for the
kaleidoscope. Reflections of the edges at the plane of truncation generate an image of
P , and a graphic pattern placed on the disc appears on each face of P by the multiple
reflections in the mirrors (see the photograph in Figure 9, in which the kaleidoscope
on the right shows the icosahedron/dodecahedron polyhedron). When the disc is ro-
tated, the patterns on the faces of P move. Since P has many faces, this generates a
striking effect. When the graphic pattern is just a single line, rotation of the disc gives
a continuous transition between the image of a Platonic solid and its dual.

Figure 9. Kaleidoscopes of types A3, B3 and H3.

An assembled kaleidoscope with its image disc is illustrated in Figure 10. The di-
mensions of the mirrors are given in Table 3. The proportions of the truncated mirrored
cones are chosen so that the following linear dimensions are the same for the three
types:

• the radius r of the polyhedral image P appearing in the mirrors
• the length z of the longer leg of the front right triangle

9Presumably this was to be a sequel to Coxeter’s 1966 film Dihedral Kaleidoscopes, distributed by Inter-
national Film Bureau, Chicago.

10Some interesting examples are Patent #5,475,532 granted to J. Sandoval and J. Bracho, December
12, 1995 and Patent #5,651,679 granted to F. Altman, July 29, 1997. The U.S. Patent Office website
http://www.uspto.gov/patft gives details. I do not know if any of these designs have been manufactured; in
my own experience of building three-dimensional kaleidoscopes by hand I found that large front-silvered mir-
rors of high optical quality are unavailable and assembling mirrors accurately is difficult.
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Figure 10. Three-dimensional kaleidoscope.

Table 3. Kaleidoscope mirror dimensions.

Type A3 B3 H3

α + β + γ 180◦ 135◦ 90◦

L
z√
2

− r√
3

z − r√
2

zϕ − rϕ√
ϕ + 2

y r

√
2

3

r

2

r

ϕ
√

ϕ + 2

The vertex angles α, β, and γ of the three cones are different, with type A the
most open and type H the most closed. Consequently the length L of the truncated
cone (measured perpendicular to the truncation planes) varies considerably when the
dimensions are fixed as indicated. If the orientation of the cone is chosen so that α ≤ γ ,
then the relations among the parameters are given in Table 3, where ϕ = (1 + √

5)/2
is the golden mean. The table also gives y, the length of the short leg in the back right
triangle. The calculations in the table are based on the property that the point with
coordinates

(
y

tan α
, 0,

y tan γ

tan α

)

is a vertex of the polyhedral image at distance r from 0, and the relation

z =
(

L + y

tan α

)
tan γ.

The case-by-case calculation of the angles α, β, and γ is given at the end of this
section.

We found experimentally (by building several kaleidoscopes) that the proportion
L = 8y for the B3 cone gives an easily-viewed image. This corresponds to the propor-
tion
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z =
(

4 + 1√
2

)
r.

With this ratio fixed, we calculated the dimensions for the two other types from the
table to obtain Figures 11, 12, and 13 (these figures are to scale).

Type A3. For this case it is convenient to use the subspace E
3 of R

4 consisting of
vectors orthogonal to [1, 1, 1, 1] and to normalize the root vectors to have length

√
2.

The root system consists of the twelve vectors in E
3 whose coordinates are 1, −1, 0, 0

(in any order). This set of roots is invariant under the natural action of S4 on R
4 as

permutations of coordinates. A set � of simple roots is

α1 = [1, −1, 0, 0], α2 = [0, 1, −1, 0], α3 = [0, 0, 1, −1].
The kaleidoscope mirrors are the planes with normal vectors αi . Define

λ1 =
[

3

4
, −1

4
, −1

4
, −1

4

]
, λ2 =

[
1

2
,

1

2
, −1

2
, −1

2

]
, λ3 =

[
1

4
,

1

4
,

1

4
, −3

4

]
.

Then λi belongs to E
3, λi · αi = 1, and λi · α j = 0 for i 	= j . Hence the vector λi

lies on the edge of the kaleidoscope formed by mirrors j and k (for i , j , and k all
different). Let α, β, and γ be the vertex angles of the kaleidoscope, with α the angle
between λ2 and λ3, and so forth.

Taking dot products we calculate that

tan α = √
2, tan β = 2

√
2, tan γ = √

2.

Hence α = γ
.= 54.74◦ and β

.= 70.53◦. From the identity

tan(α + β + γ ) = a + b + c − abc

1 − ab − ac − bc
(a = tan α, b = tan β, c = tan γ )

Figure 11. Mirrors for tetrahedral (type A3) kaleidoscope.
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we find that α + β + γ = 180◦. The pattern for the kaleidoscope is shown in Figure 11.
The dihedral angles at edges a and b are 60◦ and the dihedral angle at edge c is 90◦.

Type B3. In this case the root system consists of the eighteen vectors in R
3 whose

coordinates (in any order) are either ±1, ±1, 0 or ±√
2, 0, 0 (again it is convenient to

normalize the roots to have length
√

2). A set � of simple roots is

α1 = [1, −1, 0], α2 = [0, 1, −1], α3 = [0, 0,
√

2].
The kaleidoscope mirrors are the planes with normal vectors αi . Define

λ1 = [1, 0, 0], λ2 = [1, 1, 0], λ3 =
[

1√
2
,

1√
2
,

1√
2

]
.

Then λi · αi = 1 and λi · α j = 0 for i 	= j . Hence the vector λi lies on the edge of
the kaleidoscope formed by mirrors j and k (for i , j , and k all different). Let α, β, and
γ be the vertex angles of the kaleidoscope, with α the angle between λ2 and λ3, and
so forth. As in case A3, we calculate that

tan α = 1√
2
, tan β = √

2, tan γ = 1

and hence α
.= 35.26◦, β

.= 54.74◦, and γ = 45◦. The addition formula for the tangent
shows that α + β + γ = 135◦. The pattern for the kaleidoscope is shown in Figure 12.
The dihedral angle at edge a is 60◦, the dihedral angle at edge b is 45◦ and the dihedral
angle at edge c is 90◦.

Figure 12. Mirrors for octahedral (type B3) kaleidoscope.
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Type H3. In this case the alcove is determined by the vertices of an icosahedron, and
its coordinates are expressed in terms of the golden mean ϕ = (1 + √

5)/2 (see [7,
sec. 4.2]). Let α, β, and γ be the vertex angles of the alcove. One calculates that

tan α = 1

ϕ + 1
, tan β = 2

ϕ + 1
, tan γ = 1

ϕ
,

and hence α
.= 20.90◦, β

.= 37.38◦, and γ
.= 31.72◦. From the addition formula for

the tangent and the relation ϕ2 = ϕ + 1 we find that α + β + γ = 90◦, as suggested
by the numerical approximations for these angles. The pattern for the kaleidoscope is
shown in Figure 13. The dihedral angle at edge a is 60◦, the dihedral angle at edge b
is 36◦ and the dihedral angle at edge c is 90◦.

Figure 13. Mirrors for icosahedral (type H3) kaleidoscope.
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