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Pizza seminar is a place for:

▶ fun math

▶ cool math

▶ boring math

▶ math games

▶ math musicals

▶ discussing how to survive after grad school

▶ pizzas

etc.
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Theorem (Skolem)

If (xn : n ∈ N) is defined by xn = a1xn−1 + · · ·+ adxn−d where
a1, . . . , ad and x1, . . . , xd are rational, then {n ∈ N : xn = 0} can
be written as F ⊔ P , where F is finite and P is periodic.

This can be generalized to any field of characteristic zero.

All known proofs use p-adic numbers in some way, and all of them
are ineffective, i.e., do not provide a bound on maxF ; there do
exist bounds on |F |.

Question

Is there an algorithm that decides whether a given linear recurrence
sequence has any zero?
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Thoralf Albert Skolem (23 May 1887
– 23 March 1963) was a Norwegian
mathematician. He was both an early
contributor to and critic of set theory.
He also published papers on Diophan-
tine equations, group theory and lat-
tice theory.

He is known for the discovery of
“Skolem’s paradox”, that the notion
of countability is not absolute: a set
which is uncountable from the view-
point of a universe V may well be
countable in a larger universe W .
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p-adic number

p-adic numbers arise naturally in solving Diophantine equations.

Does x3 − 8y3 = 12 have integer solution?

No: if (x, y) is a solution then x must be even, but 8 ∤ 12. This
shows the equation doesn’t even have a solution in Z/8Z.

What if mod 8 doesn’t settle it? We may try 16, 32, 64 . . . If an
equation has a solution modulo every 2n, then turns out it has a
solution in 2-adic numbers.
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p-adic number

Abbreviate Z/nZ as Z/n. For a prime p, the ring Zp of p-adic
integers is the inverse limit of the following sequence:

· · · → Z/p4 → Z/p3 → Z/p2 → Z/p 99K 0

Where Z/pn+1 → Z/pn is the natural quotient map.

In other words, Zp is a subring of
∏∞

n=1 Z/pn; it consists of all
sequences (. . . , a3, a2, a1) such that an ∈ {0, 1, . . . , pn − 1} and
an+1 = an mod pn.
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p-adic number

0

1

3

73

1

51

0

2

62

0

40

mod 1

mod 2

mod 4

mod 8

A 2-adic integer is a branch through this tree, such as (. . . , 3, 3, 1).
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Basic properties of Zp

The multiplicative unit of Zp is 1̄ = (. . . , 1, 1, 1). Clearly any
multiple of it is nonzero, so char Zp = 0.

If x = (. . . , a3, a2, a1) where a1 ̸= 0 mod p then x is a unit,
because a ∈ Z/pn is a unit iff p ∤ a, so inductively an is a unit in
Z/pn with inverse bn; can check that (. . . , b3, b2, b1) ∈ Zp.

In particular, n̄ = (. . . , 1, 1, 1) + · · ·+ (. . . , 1, 1, 1)︸ ︷︷ ︸
n times

is a unit

whenever p ∤ n.

Zp ≃ {0, 1, . . . , p− 1}N is a compact metric space.
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Basic properties of Zp

Let m be the set of sequences with a1 = 0 mod p. This is the
unique maximal ideal of Zp; it is generated by p̄ = (. . . , p, p, 0).

If x = (. . . , a3, a2, a1), then x ∈ mn iff a1, . . . , an are zero.

Every nonzero x ∈ Zp can be expressed as p̄nu for some n and
some unit u. Say x = (. . . , 44, 12, 12, 4, 0, 0) ∈ Z2, then

x = (. . . , 4, 4, 4, 4, 0, 0) · (. . . , 11, 3, 3, 1) = 2̄2 · (. . . , 11, 3, 3, 1)

It follows that Zp is an integral domain.
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Basic properties of Zp

∑∞
n=0 p

nxn is well-defined for any sequence (xn)n ⊆ Zp.

(. . . a4 a3 a2 a1)
(. . . b4 b3 b2 0)
(. . . c4 c3 0 0)

+ (. . .
...

...
...

...

(. . . . . . a3 + b3 + c3 a2 + b2 a1)

Slightly more generally,
∑∞

n=0 p
s(n)xn is well-defined if s(n) → ∞.

11 / 24



Another representation of p-adic number

0

1

1

10

0

10

0

1

10

0

10

0

1

3

73

1

51

0

2

62

0

40

The sequence (. . . , 0, 1, 1) corresponds to (. . . , 3, 3, 1) in the
inverse limit notation. It is also written as

1 · 20 + 1 · 21 + 0 · 22 + · · ·

In this representation, addition is as in base 2 except that we can
“carry forever”. E.g., (. . . , 1, 1, 1) + (. . . , 0, 0, 1) = (. . . , 1, 1, 2) =
(. . . , 1, 2, 0) = (. . . , 2, 0, 0) = · · · = 0.

12 / 24



Step one: linear algebra

We begin the proof of Skolem’s theorem. Suppose we have the
linear recurrence relation

xn = a1xn−1 + · · ·+ adxn−d,

where a1, . . . , ad, x1 . . . , xd ∈ Q. WLOG ad ̸= 0. We may actually
assume these to be integers:

xnM
n = a1xn−1M

n + · · ·+ adxn−dM
n

xnM
n = a1M(xn−1M

n−1) + · · ·+ adM
d(xn−dM

n−d)

yn = b1yn−1 + · · ·+ bdyn−d
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Step one: linear algebra


xn
xn−1

...
xn−d+2

xn−d+1

 =


a1 a2 · · · ad−1 ad
1

1
. . .

1




xn−1

xn−2

...
xn−d+1

xn−d


If we let xn = (xn+d−1, . . . , xn)

T and A be the integer matrix,
then xn+1 = Axn and xn = An−1x1. Consequently xn is the last
entry of An−1x1.
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Step one: linear algebra

Fix a prime p > max{2, |A|}, so A mod p is invertible. Thus A is
a unit in the ring Mk(Fp). There exists m s.t. Am = I + pB for
some integer matrix B. This m will be the period.

It suffices to show that for every 1 ≤ r ≤ m, if
{n ∈ N : xr+nm = 0} is infinite then it is equal to N.

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, . . .

xr+nm is the last entry of Ar+nm−1x1. If we let u = (0, . . . , 0, 1)T

and v = Ar−1x1 then xr+nm = ⟨u,Anmv⟩ = ⟨u, (I + pB)nv⟩.

It suffices to show that for any map of the below form, if it has
infinitely many zeros then it is identically zero:

f : N → N, n 7→ ⟨u, (I + pB)nv⟩
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Step two: analytic extension

f : N → N, n 7→ ⟨u, (I + pB)nv⟩

Turns out this extends to an analytic function f : Zp → Zp.

If a (p-adic) analytic function on a compact set (Zp) has infinitely
many zeros then it is identically zero, so we are done.

We will
prove this from scratch.
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Step two: analytic extension

By binomial formula,

(I + pB)n =

n∑
k=0

(
n

k

)
pkBk =

∞∑
k=0

(
n

k

)
pkBk

where

(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
=

(n)k
k!

is zero if k > n.

We can certainly extend (n)k to a polynomial on Zp:

(x)k = x(x− 1) · · · (x− k + 1)

The main point is to show pk/k! is in Zp, and it’s “small” so that
the sum converges.
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Step two: analytic extension

The number of times that p divides k! is

⌊k/p⌋+ ⌊k/p2⌋+ · · · ≤ k(1/p+ 1/p2 + · · · ) = k

p− 1

Recall that any (rational) integer not divisible by p is a unit in Zp.

Since p ≥ 3, we can write
pk

k!
= ps(k)uk where uk is a unit and

s(k) → ∞.
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Step two: analytic extension

(I + pB)n =

∞∑
k=0

pk

k!
(n)kB

k =

∞∑
k=0

ps(k)uk · (n)k ·Bk; the last

expression extends to Zp. Therefore,

f : N → N, n 7→ ⟨u, (I + pB)nv⟩ =
∞∑
k=0

ps(k)uk · ⟨u,Bkv⟩ · (n)k

can be extended to

f : Zp → Zp, x 7→
∞∑
k=0

ps(k)uk · ⟨u,Bkv⟩ · (x)k.
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Step two: analytic extension

f : Zp → Zp, x 7→
∞∑
k=0

ps(k)uk · ⟨u,Bkv⟩ · (x)k.

f is of the form
∑∞

k=0 p
kfk where each fk : Zp → Zp is a

polynomial. Let’s call such a function f analytic.

It remains to show that if an analytic function f : Zp → Zp has
infinitely many zeros x1, x2, x3, . . . then it is identically zero.
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Step three: zeros of analytic functions

It remains to show that if an analytic function f : Zp → Zp has
infinitely many zeros x1, x2, x3, . . . then it is identically zero.

First note that little Bézout holds for analytic functions: if
f =

∑∞
k=0 p

kfk and f(x1) = 0, then there exists an analytic
function g such that f = (x− x1)g. Write fk = (x− x1)gk + ck
where ck ∈ Zp; let g =

∑∞
k=0 p

kgk and c =
∑∞

k=0 p
kck; then

f = (x− x1)g + c, so c = 0.

There are two cases:

(i) deg f0 > 0, then applying little Bézout we get f = (x− x1)g,
where g must satisfy deg g0 < deg f0.

(ii) deg f0 = 0, then p | f0, otherwise f = f0 + p ·
∑∞

k=1 p
k−1fk

cannot have zero; it follows that f = p · f ′ for some f ′.

20 / 24



Step three: zeros of analytic functions

It remains to show that if an analytic function f : Zp → Zp has
infinitely many zeros x1, x2, x3, . . . then it is identically zero.

There are two cases:

(i) deg f0 > 0, then applying little Bézout we get f = (x− x1)g,
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(i) deg f0 > 0, then applying little Bézout we get f = (x− x1)g,
where g must satisfy deg g0 < deg f0.

(ii) deg f0 = 0, then p | f0, otherwise f = f0 + p ·
∑∞

k=1 p
k−1fk

cannot have zero; it follows that f = p · f ′ for some f ′.

In case (i), write g = (x− x2)h, so that either deg g0 = 0 or
deg h0 < deg g0 < deg f0, etc. After finitely many steps we must
run into case (ii), i.e., f = (x− x1) · · · (x− xs) · p · f ′ for some f ′.
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Step three: zeros of analytic functions

What we have proved: if an analytic function f has infinitely many
zeros, then f = p · f ′ for some analytic f ′.

f ′ still has infinitely many zeros. By induction we can factor out
arbitrarily many p, so pn | f(x) for any x ∈ Zp and n ∈ N. Then
f(x) must be zero, since pn | f(x) iff f(x) ∈ mn iff the last n
digits of f(x) are all zero.

This finishes the proof of Skolem’s Theorem.
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Theorem (Skolem-Mahler-Lech)

Let k be a field of characteristic zero. If (xn : n ∈ N) is defined by
xn = a1xn−1 + · · ·+ adxn−d where a1, . . . , ad, x1, . . . , xd ∈ k,
then {n ∈ N : xn = 0} can be written as F ⊔ P , where F is finite
and P is periodic.

Mahler proved the case of algebraic numbers, and Lech proved the
general case.
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We found an (explicit) m such that if we partition N into m
arithmetic progressions, each of them either (i) has finitely many
zeros, or (ii) is identically zero.

By some more difficult argument, there is a bound on the number
of zeros in case (i), but currently there is no bound on the maximal
size of those zeros. There’s not even known algorithm to decide
whether the zero set is nonempty. It is known that this is NP-hard.

SML is generalized by Chabauty theorem, which in turn is a special
case of Falting’s theorem (Mordell conjecture). Both of then, like
SML, give effective bounds on number of zeros, but not their sizes.
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Reference

Blog post by Terence Tao,
https://terrytao.wordpress.com/2007/05/25/
open-question-effective-skolem-mahler-lech-theorem/
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