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What are your favorite homotopy invariants of pizza?

15 responses

(infinity,1)-cheesiness 7 (46.7%)

pepperoni packing

meatlessness 6 (40%)

pizza squaring
tomato eversion 3 (20%)
triangulated 4 (26.7%)
pineapple 7 (46.7%)

Superpositioned meat
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Pizza seminar is a place for:

vVvyvyVvVvyy

etc.

fun math

cool math

boring math

math games

math musicals

discussing how to survive after grad school

pizzas
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Theorem (Skolem)

If (x, : n € N) is defined by x, = a1Zp—1 + - -+ + agr,_q where
ai,...,aq and xy,...,xq are rational, then {n € N : x,, = 0} can
be written as F' LI P, where F' is finite and P is periodic.
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ai,...,aq and xy,...,xq are rational, then {n € N : x,, = 0} can
be written as F' LI P, where F' is finite and P is periodic.

This can be generalized to any field of characteristic zero.

All known proofs use p-adic numbers in some way, and all of them
are ineffective, i.e., do not provide a bound on max F’; there do
exist bounds on |F|.
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Theorem (Skolem)

If (x, : n € N) is defined by x, = a1Zp—1 + - -+ + agr,_q where
ai,...,aq and xy,...,xq are rational, then {n € N : x,, = 0} can
be written as F' LI P, where F' is finite and P is periodic.

This can be generalized to any field of characteristic zero.

All known proofs use p-adic numbers in some way, and all of them
are ineffective, i.e., do not provide a bound on max F’; there do
exist bounds on |F|.

Question

Is there an algorithm that decides whether a given linear recurrence
sequence has any zero?
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Thoralf Albert Skolem (23 May 1887
— 23 March 1963) was a Norwegian
mathematician. He was both an early
contributor to and critic of set theory.
He also published papers on Diophan-
tine equations, group theory and lat-
tice theory.

He is known for the discovery of
“Skolem’s paradox”, that the notion
of countability is not absolute: a set
which is uncountable from the view-
point of a universe V' may well be
countable in a larger universe W.
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p-adic number

p-adic numbers arise naturally in solving Diophantine equations.

Does z3 — 8y% = 12 have integer solution?
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p-adic number

p-adic numbers arise naturally in solving Diophantine equations.
Does z3 — 8y% = 12 have integer solution?

No: if (x,y) is a solution then x must be even, but 8 1 12. This
shows the equation doesn’t even have a solution in Z/8Z.

What if mod 8 doesn't settle it? We may try 16,32,64... If an
equation has a solution modulo every 2", then turns out it has a
solution in 2-adic numbers.
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p-adic number

Abbreviate Z/nZ as Z/n. For a prime p, the ring Z,, of p-adic
integers is the inverse limit of the following sequence:

e Lt = LpP = LfpE — Z)p --»> 0
Where Z/p"t! — Z/p™ is the natural quotient map.
In other words, Zj, is a subring of [[2 | Z/p"; it consists of all

sequences (..., as,as,ay) such that a, € {0,1,...,p" — 1} and
Gn4+1 = @y mod p™.
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p-adic number

VARVIRVARY
NN

A 2-adic integer is a branch through this tree, such as (...

,3,3,1).
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Basic properties of Z,

The multiplicative unit of Z, is 1 = (...,1,1,1). Clearly any
multiple of it is nonzero, so char Z, = 0.

If x = (...,as3,a2,a1) where a3 #0 mod p then z is a unit,
because a € Z/p™ is a unit iff p 1 a, so inductively a,, is a unit in
Z/p™ with inverse by,; can check that (..., b3, b2, b1) € Z,,.

In particular, n = (..., 1,1,1)+--- 4+ (...,1,1,1) is a unit

n times

whenever p { n.

Zp,~{0,1,...,p— 1} is a compact metric space.
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Basic properties of Z,

Let m be the set of sequences with a; = 0 mod p. This is the
unique maximal ideal of Z,; it is generated by p = (..., p, p,0).

If v =(...,as3,a2,a1), then x € m" iff ay,...,a, are zero.

Every nonzero = € Z, can be expressed as p"u for some n and
some unit u. Say = = (...,44,12,12,4,0,0) € Zg, then

z=1(..,4,4,4,4,0,0)- (...,11,3,3,1) =22 . (...,11,3,3,1)

It follows that Z,, is an integral domain.
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Basic properties of Z,

> oo o Py, is well-defined for any sequence (zn,)n C Zy.

ay as as ai)
by by by 0)

Cq C3 0 0)

—~~ —~

az+bs+c3 ax+by ar)

Slightly more generally, S/ p*(™x,, is well-defined if s(n) — occ.
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Another representation of p-adic number

1 0 4 2 6 1 5

0101010 3 7
NN NS NS NN N
0 1 0 0 2 1 3

The sequence (...,0,1,1) corresponds to (..., 3,3,1) in the
inverse limit notation. It is also written as

1-2041-2140-22 +

In this representation, addition is as in base 2 except that we can

“carry forever’. E.g., (...,1,1 1) ( ,0,0,1)=(...,1,1,2) =

(...,1,2,0)=(...,2,0,0) =
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Step one: linear algebra

We begin the proof of Skolem’s theorem. Suppose we have the
linear recurrence relation

Tp = A1Tp—1+ -+ AgTp_d,

where a1,...,aq,%1...,29 € Q. WLOG a4 # 0. We may actually
assume these to be integers:

T M" = a1y 1 M" 4+ -+ agtp,_gM"
mnjwn::aljw(xnfljwn_l)‘I'““Jf‘ad]wd(xn—djwn_d)
Yn = blynfl + -+ bdyn—d
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Step one: linear algebra

Tn ay az -+ Q4—1 G4 Tn—1
Tn—1 1 Tn—2
_ 1
Tpn—d+2 e Tn—d+1
Tn—d+1 1 Tn—d
If we let x,, = (Zp1d-1,...,%n)" and A be the integer matrix,

then x,,.1 = Ax, and x,, = A" !x;. Consequently x,, is the last
entry of A" !x;.
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Step one: linear algebra

Fix a prime p > max{2, |A|}, so A mod p is invertible. Thus A is
a unit in the ring My (IF,). There exists m s.t. A™ =1+ pB for
some integer matrix B. This m will be the period.

It suffices to show that for every 1 <r <m, if
{n € N: 2,4 pn;m = 0} is infinite then it is equal to N.

€1, T2, ’ » L5, L6, ) y L9, L10, ) g

Ty inm is the last entry of A"~ 1x; If we let u = (0,...,0,1)7
and v = A" 1x; then zyipm = (u, A"™v) = (u, (I + pB)™).

It suffices to show that for any map of the below form, if it has
infinitely many zeros then it is identically zero:

f:N—=>N, n— (u,(I +pB)"v)
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Step two: analytic extension

f:N—=>N, n— (u,(I +pB)"v)
Turns out this extends to an analytic function f : Z, — Zy,.

If a (p-adic) analytic function on a compact set (Z,) has infinitely
many zeros then it is identically zero, so we are done.
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Step two: analytic extension

f:N—=>N, n— (u,(I +pB)"v)
Turns out this extends to an analytic function f : Z, — Zy,.
If a (p-adic) analytic function on a compact set (Z,) has infinitely

many zeros then it is identically zero, so we are done. We will
prove this from scratch.
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Step two: analytic extension

By binomial formula,

n

- (Qer-E (e
k=0

k=0
where (n) = nn—-1)---(n-k+1) = () is zero if k > n.

k k! k!
We can certainly extend (n); to a polynomial on Z,:
() =z(xz—1)---(z—k+1)

The main point is to show p*/k! is in Zy, and it's “small” so that
the sum converges.
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Step two: analytic extension

The number of times that p divides k! is

[k/p) + [k/p°) + - <k(l/p+1/p°+---) = p—1
Recall that any (rational) integer not divisible by p is a unit in Z,,.
k

Since p > 3, we can write % =p

(k) yy,. where wy, is a unit and

s(k) = 0.
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Step two: analytic extension

— " k k.
(I +pB)" kzo k— n)yB Zp - B¥; the last
expression extends to Z,. Therefore
f:N—=N, n— (u, (I +pB)"v Zp - (u, B¥v) - (n)y,
can be extended to

fiZy— Zyp, x— Zps(k)uk - (u, BFv) - ().
k=0
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Step two: analytic extension

[ 2y — Ly, x— Zps(k)uk - (u, B*v) - ().
k=0

f is of the form >"7  p* fi where each fi : Z, — Z, is a
polynomial. Let's call such a function f analytic.

It remains to show that if an analytic function f : Z, — Z, has
infinitely many zeros x1, 2, x3,... then it is identically zero.
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Step three: zeros of analytic functions

It remains to show that if an analytic function f : Z, — Z, has
infinitely many zeros x1, 2, x3,... then it is identically zero.

First note that little Bézout holds for analytic functions: if

f= Zzozopkfk and f(x1) = 0, then there exists an analytic
function g such that f = (z — x1)g. Write fi, = (x — z1)gr + ¢k
where ¢, € Zy; let g = Ziozopkgk and c =3 72, pFer; then
f=(x—x1)g+¢ soc=0.
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Step three: zeros of analytic functions

It remains to show that if an analytic function f : Z, — Z, has
infinitely many zeros x1, 2, x3,... then it is identically zero.

There are two cases:

(i) deg fo > 0, then applying little Bézout we get f = (x — z1)g,
where g must satisfy deg gg < deg fj.

(i) deg fo =0, then p | fo, otherwise f = fo+p-> 70, PP
cannot have zero; it follows that f = p- f’ for some f.
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Step three: zeros of analytic functions

It remains to show that if an analytic function f : Z, — Z, has
infinitely many zeros x1, 2, x3,... then it is identically zero.

There are two cases:
(i) deg fo > 0, then applying little Bézout we get f = (x — z1)g,
where g must satisfy deg gg < deg fj.

(i) deg fo = 0, then p | fo, otherwise f = fo+p- > ro, p* L fk
cannot have zero; it follows that f = p- f’ for some f’.

In case (i), write g = (x — x2)h, so that either deg gop = 0 or
deg hg < deg go < deg fo, etc. After finitely many steps we must
run into case (ii), i.e., f=(x —x1) - (x —x5) -p- f' for some f’.
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Step three: zeros of analytic functions

What we have proved: if an analytic function f has infinitely many
zeros, then f = p- f’ for some analytic f.
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Step three: zeros of analytic functions

What we have proved: if an analytic function f has infinitely many
zeros, then f = p- f’ for some analytic f.

1’ still has infinitely many zeros. By induction we can factor out
arbitrarily many p, so p™ | f(z) for any z € Z,, and n € N. Then
f(x) must be zero, since p" | f(x) iff f(x) € m™ iff the last n
digits of f(x) are all zero.

This finishes the proof of Skolem’s Theorem.
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Theorem (Skolem-Mahler-Lech)

Let k be a field of characteristic zero. If (z,, : n € N) is defined by
Ty = A1 Tp—1 + - + agTp_q Where ay,...,aq,21,...,2q € k,
then {n € N : x,, = 0} can be written as F' LI P, where F is finite
and P is periodic.

Mahler proved the case of algebraic numbers, and Lech proved the
general case.
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We found an (explicit) m such that if we partition N into m
arithmetic progressions, each of them either (i) has finitely many
zeros, or (ii) is identically zero.

By some more difficult argument, there is a bound on the number
of zeros in case (i), but currently there is no bound on the maximal
size of those zeros. There's not even known algorithm to decide

whether the zero set is nonempty. It is known that this is NP-hard.

SML is generalized by Chabauty theorem, which in turn is a special
case of Falting's theorem (Mordell conjecture). Both of then, like
SML, give effective bounds on number of zeros, but not their sizes.
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Reference

[d Blog post by Terence Tao,
https://terrytao.wordpress.com /2007 /05/25/
open-question-effective-skolem-mahler-lech-theorem/
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