
Forcing is probability theory. Let’s see how this perspective gives us a short proof of the
consistency of V ̸= L. The usual von Neumann hierarchy is generated by taking power sets: V0 = ∅,
Vα+1 = P(Vα), Vα =

⋃
β<α Vβ if α is a limit, and V =

⋃
α∈Ord Vα. To make things probabilistic,

let’s instead take the random power set (whatever that means) at successor stages, so Vα+1 consists
of all random subsets of Vα. One then shows that the resulting “probabilistic von Neumann universe”
V models ZFC with probability 1. Now let G be the random subset of ω defined by tossing infinitely
many coins, so each natural number n belongs to G with probability 1/2. For every constructible
set A of natural numbers (or indeed every deterministic set), the probability that G equals A is zero:
say A = ∅, then P (G = ∅) =

∏∞
n=0 P (n /∈ G) =

∏∞
n=0

1
2 = 0. We conclude that a random subset of

natural numbers is non-constructible, so V ̸= L with probability 1, in particular it is consistent.

Technically the above proof is nonsense, but it is not too far from the spirit of forcing, and in
fact pretty close to the “Boolean-valued model” approach. Can we find a notion of “random subsets”
that makes this proof rigorous? A first thought might be to imitate fuzzy set theory and define
a fuzzy von Neumann hierarchy by letting Vα+1 be the set of all functions u : Vα → [0, 1], where
u(x) is thought of as the “probability” that x belongs to u. This doesn’t quite work because of the
incompatibility of fuzzy logic with classical logic. Instead, since classical logic and Boolean algebra
are close friends, it is not unreasonable to let Vα+1 consist of functions u : Vα → B where B is some
fixed Boolean algebra, and think of u(x) as representing the event x ∈ u, or simply the “probability”
of x ∈ u. A Boolean algebra is a structure (B,∨,∧, ∗, 0, 1) that behaves similar to an algebra of
sets like (P(X),∪,∩, c,∅, X); for precise definition see section 2. It’s harmless to think of B as a
σ-algebra, its elements as events, and the operations in terms of Venn diagrams.

Having defined the probabilistic hierarchy, next we need to define the Boolean value or probability
of a formula φ, which will be an element of B, denoted JφK. The propositional case is straightforward;
for example, Jφ∧ψK is just JφK ∧ JψK, where the second ∧ means the meet operation in the Boolean
algebra B. Quantifiers are also easy to handle once we add the requirement that B is a complete
Boolean algebra. The most difficult cases turn out to be atomic formulas, i.e., given random sets
u, v how to define Ju = vK and Ju ∈ vK. We said if u : Vα → B is a random set then u(x) can be
thought of as the probability of x ∈ u, but actually it’s more complicated. Here is a simple example
illustrating the subtlety. Suppose u contains 0 with probability a and 1 with probability b, while v
contains 1 with probability c and 2 with probability d, and they don’t contain anything else. In
symbol:

u = {(0, a), (1, b)}

v = {(1, c), (2, d)}

What should be Ju = vK, the probability that u equals v? There seem to be two ways for them
to be equal: either u = v = {1} or u = v = ∅. The probability of u = {1} is a∗ ∧ b, and v = {1}
is c ∧ d∗, so u = v = {1} is a∗ ∧ b ∧ c ∧ d∗. Similarly, u = v = ∅ has probability a∗ ∧ b∗ ∧ c∗ ∧ d∗.
Altogether, it seems we should define Ju = vK = (a∗ ∧ b ∧ c ∧ d∗) ∨ (a∗ ∧ b∗ ∧ c∗ ∧ d∗) =: r. So far so
good. Next consider

w = {(u, p), (v, q)}

What is Ju ∈ wK? It is certainly at least p, but:

(i) Jv ∈ wK should also be at least q;

(ii) Ju = vK = r;
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(iii) we would like u = v ∧ v ∈ w → u ∈ w to be true with probability 1, so we should have
Ju = vK ∧ Jv ∈ wK ≤ Ju ∈ wK.

So Ju ∈ wK should be at least r∧ q. Altogether, Ju ∈ wK is at least p∨ (r∧ q), which will actually
be our definition of Ju ∈ wK. In general, u(x) = a should be interpreted as “x belongs to u with
probability at least a”, so u(x) ≤ Jx ∈ uK. As can be seen from this example, the calculation of
probabilities of atomic formulas is complicated by the fact that random sets can in turn belong to
other random sets. Fortunately, once we figure out the definition of Ju = vK and Ju ∈ vK, the rest is
relatively straightforward, including showing that the hierarchy satisfies ZFC with probability 1.

This concludes our sketchy overview of the Boolean-valued model approach. Our first section
will be a lengthier version of this.

1 Introduction

This whole section is used to motivate forcing, so feel free to skip it if at some point it starts to
create more confusion than motivation. A basic application of forcing is the consistency of, e.g.,
ZFC + ¬CH; a more modest goal is to prove the consistency of ZF + V ̸= L. First let’s see why it is
impossible to do this with inner model, as observed by Shepherdson and independently Cohen[1].
The discussion below is based on the beginning part of Chapter IV of Kunen.

What is an inner model? The basic example is the constructible universe L, which is used to
show the consistency of AC and GCH. Let’s recall the overall logic of consistency proof using L. We
write down a formula x ∈ L, which is the abbreviation of ∃α x ∈ Lα, where x ∈ Lα is in turn the
abbreviation of some complicated formula, such that for each ZF axiom φ, the relativization φL is a
theorem of ZF; hence we call L a class model of ZF. The relativization φL is defined inductively
by (φ ∧ ψ)L := φL ∧ ψL, (¬φ)L := ¬(φL) and (∀xφ)L := ∀x(x ∈ L → φL). Moreover, ACL and
GCHL are also theorems of ZF. Indeed, abbreviating the statement ∀x∃α x ∈ Lα (“all sets are
constructible”) as V = L, we can show that (V = L)L is a theorem of ZF, and ZF + V = L proves
both AC and GCH. By an induction in the metatheory, we show that whenever ZF + V = L proves
some statement φ, the relativization φL is provable in ZF, so if ZF + V = L is inconsistent, namely
it proves a contradiction φ ∧ ¬φ, then ZF is already inconsistent, since it proves φL ∧ ¬φL. Taking
contrapositive, if ZF is consistent then so is ZF + V = L, and hence ZFC + GCH.

In general, an inner model is essentially a formula M(x), possibly with other free variables as
parameters, such that for each ZF axiom φ, the relativization φM is a theorem of ZF, where φM is
defined inductively by, e.g., (∀xφ)M := ∀x(M(x) → φM ). Examples of inner models include the
two types of relative constructible hierarchy L(A) and L[A], and the class of hereditarily ordinal
definable sets HOD.

Now say we want to prove the consistency of ZF + V ̸= L. The inner model method cannot
possibly work. More precisely, working in ZFC, one cannot find a formula M(x) that defines an
inner model M which violates CH or even V = L. Because if there were such a formula M(x) that
works in ZFC, then of course it would also work in ZF + V = L, but if V = L holds then the class
defined by M(x) must be the same as L (or equivalently V ), since L is the smallest inner model,
and thus satisfies V = L, a contradiction.

Since inner model cannot work, a natural thought is to try the other direction: start with

2



a ground model and expand it instead of shrinking it. We cannot let the ground model be the
whole universe V , because V is already everything and there is nothing outside to add into V (so
long as we stick to transitive models); we cannot let the ground model be L either, since it could
be equal to V . So maybe let’s start with a transitive set model M . An issue is that by Gödel’s
second incompleteness theorem, ZFC cannot prove the existence of such an M , but that can be
circumvented in several ways, see for example IV.5 of Kunen; for now let’s pretend there is such an
M . Once we manage to construct a strictly larger transitive model N ⊋M with the same height,
i.e., M ∩ Ord = N ∩ Ord, we get the consistency of ZFC + V ̸= L: by absoluteness of α 7→ Lα,
LN = LM ⊆ M ⊊ N , so N |= V ̸= L.

Now M shouldn’t be a set that is too large either, such as Vκ, because there is no strictly bigger
model N with the same ordinals (a strictly bigger N would contain something of rank at least κ,
and if N satisfies any modest set theory it must contain κ). This suggests that we choose M to be
as small as possible, say countable. If M is countable, it contains only countably many, say, subsets
of ω, aka reals, so there are many reals outside of M that we potentially can add. The optimistic
hope is that after throwing in some new reals we do get a model of ZFC.

Let M be a countable transitive model of ZFC, and fix some G ⊆ ω, G /∈ M . We call M the
ground model; the letter G stands for generic, whose meaning will become clearer. We want to
throw G into M to get a new model denoted M [G], called the generic extension. The definition of
M [G] given below will make sense for any G ⊆ ω, and will always satisfy M ∩ Ord = M [G] ∩ Ord,
but M [G] may not satisfy any reasonable set theory if we choose a bad G. For example, since M is
countable, M ∩ Ord is a countable ordinal ρ, and there is a well-order G ⊆ ω × ω isomorphic to ρ.
Using the bijection f : ω × ω → ω, (m,n) 7→ (2m+ 1)2n − 1, we may also view G as a subset of
ω. Then M [G] cannot be a model of ZFC, since if N ∋ G and N satisfies a reasonable amount of
set theory, it could “decode” G and therefore ρ ∈ N , so M ∩ Ord ̸= N ∩ Ord. Bear in mind that
our strategy to get N |= V ̸= L relies on M ∩ Ord = N ∩ Ord, which implies LN = LM . Can we
fix this by choosing some G that does not code ρ? But then it might code ρ by a different map
g : ω × ω → ω, or code a countable cofinal sequence of ρ, or perhaps the countability of M itself.
Thus it seems a daunting task to choose an appropriate G ⊆ ω. Surprisingly, it turns out if we
choose a G “at random” it would most likely work.

Let’s now think about how to define the forcing extension M [G]. Of course it’s not M ∪ {G},
which hardly satisfies any ZFC axioms, so along with the set G we must also add all sets “generated
by G over M”, such as ω \G, G×G, {n ∈ ω : the n-th prime is in G}, etc. Note that:

ω \G = {n ∈ ω : n /∈ G};

G×G = {(m,n) ∈ ω × ω : m ∈ G ∧ n ∈ G};

{n ∈ ω : the n-th prime is in G} = {n ∈ ω : pn ∈ G}, where pn denotes the n-th prime.

All these sets have the form u = {x ∈ X : bx}, where X is a set in M and each bx is a Boolean
combination of statements of the form n ∈ G. We are going to further rewrite these sets as follows.
Let G be a fixed symbol. Consider the set B of all Boolean combination of the expressions n ∈ G,
such as (0 ∈ G)∧(1 ∈ G ∨3 /∈ G). This is the free Boolean algebra with countably many generators bn,
where bn is n ∈ G. Recall that a Boolean algebra is a structure (B,∨,∧, ∗, 0, 1). In our example, b∗ is
the negation of b, e.g., (0 ∈ G)∗ = 0 /∈ G and [(0 ∈ G)∧ (1 ∈ G ∨3 /∈ G)]∗ = [(0 /∈ G)∨ (1 /∈ G ∧3 ∈ G)].

We emphasize that G is just a symbol intended to make B more suggestive, in contrast to G,
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which is an actual subset of ω; also B ∈ M because the definition is absolute enough. Any free
Boolean algebra on countably many generators, as long as it is in M , might be used as B.

For a real number G ⊆ ω, say that it satisfies b ∈ B if b is true if we plug G into G; for example,
G satisfies the statement (0 ∈ G) ∧ (1 ∈ G ∨ 3 /∈ G) iff 0 ∈ G and at least one of 1 ∈ G and
3 /∈ G happens. For any function u : X → B, x 7→ bx, define the interpretation of u under G by
uG = {x : G satisfies bx}. Now observe that:

ω \G = {(n, b∗
n) : n ∈ ω}G;

G×G = {((m,n), bm ∧ bn) : m,n ∈ ω}G;

{n ∈ ω : the n-th prime is in G} = {(n, bpn) : n ∈ ω}G.

So they are all of the form uG for some function u : X → B. It’s important to note that although
uG might not be in M , the u’s are. This suggests that we build M [G] in two steps: first consider
the collection of all functions u : X → B which are in M (implicitly X is also in M), and then
choose some suitable G ⊆ ω outside of M and form the collection of interpretations uG. In the
Boolean algebra approach, bx is thought of as the “probability” that x belongs to u, and u is like a
“random subset” of X, and once we choose a point G from the “sample space”, the random set u is
determined to be uG.

These u’s are more commonly called B-names: imagine that people living in M cannot see G
or other sets in the extension M [G], but nevertheless have names for all those sets and can reason
about them. There is in particular a way to name G, namely Ġ = {(n, bn) : n ∈ ω}; it has the
property that ĠG = G for any G. Now consider another name Ġ′ = {(n, b∗

n) : n ∈ ω}; clearly
Ġ′

G = ω \ ĠG no matter what G we choose, and the M -people know that, although they don’t know
any specific information like whether 3 ∈ ĠG.

Roughly speaking, the generic extension is defined as M [G] = {uG : u is a name in M}. However,
our definition of names, a function from some set X to B that belongs to the ground model M , is
too restrictive. First there are sets such as {n ∈ ω : G contains some element divisible by n} that
definitely should be in M [G]. We would like to say that it is equal to {(n,Dn) : n ∈ ω}G where Dn

is the “sum”
∑
n|m

bm, but that makes no sense since we defined B to contain finite combinations of

the bns. If we replace B by its Boolean completion, then there is a natural definition of the sum of
a set D ⊆ B: it’s simply the supremum

∨
D. We shall do that when we get to the Boolean-valued

model approach. For now let’s just redefine a name to be a set of pairs (x,Dx) where Dx is some
subset of B. So a name is a function u : X → P(B); equivalently we might also think of it as a
relation on X ×B. Then we redefine interpretation as uG = {x ∈ X : ∃b b ∈ u(x) ∧G satisfies b}.

Another issue is that not all sets in M [G] are subsets of sets in M , so we should also allow
“iterated names”; for example if u, v are names then so should be w = {(u,Du), (v,Dv)} for any
Du, Dv ⊆ B, whose interpretation is naturally defined by, e.g., wG = {uG} just in case G satisfies
something in Du but nothing in Dv.

Note that we haven’t used much about the fact that B is a Boolean algebra. Actually in the
poset approach to forcing, all we need is a partially ordered set (P,≤) in the ground model, or
more generally a preorder (a reflexive and transitive binary relation). Often P is assumed to have a
maximal element 1, but it’s not necessary. Now we give a precise definition of M [G] in the context
of poset forcing. Inductively define:
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V P
0 = ∅;

V P
α+1 can either be defined as the set of partial functions from V P

α to P(P), or as the set of
relations on V P

α × P;

V P
α =

⋃
β<α V

P
β if α is a limit ordinal;

and V P =
⋃

α∈Ord V
P

α .

The point of using partial functions at successor step is to have V P
α ⊆ V P

α+1, although this is
inessential. V P

α is called the class of P-names. A one-sentence definition is that a name is a function
from a set of names to P(P) (or a relation between a set of names and P). V P is defined in the true
universe V and does not mention the ground model M , but we can relativize it to M to get its own
version of V P, denoted MP; the inductive definition of names is easily seen to be absolute (assuming
(P,≤) ∈ M of course), so that MP = V P ∩M .

A filter in a partial order (P,≤) is a nonempty subset G that satisfies:

(i) p ∈ G ∧ p ≤ q → q ∈ G;

(ii) p ∈ G ∧ q ∈ G → ∃r(r ≤ p ∧ r ≤ q).

Namely a filter is a upward closed and downward directed set. Given a filter G, we can define
the interpretation of u ∈ MP, denoted uG, recursively by

uG = {vG : v ∈ dom(u) ∧ u(v) ∩G ̸= ∅},

and let M [G] = {uG : u ∈ MP}. These are exactly the sets generated by G over M , in the sense
that if N is any transitive model of ZF such that N ⊇ M and N ∋ G, then N ⊇ MP and therefore
N ⊇ M [G] by the absoluteness of interpretation.

Every x ∈ M has a canonical name defined as follows. If P has a maximal element 1, then
recursively define x̌ = {(y̌, {1}) : y ∈ x}; otherwise we may let x̌ = {(y̌,P) : y ∈ x}. Note that a
filter G must contain the maximal element if it exists. One can show inductively that x̌G = x for
any filter G and any x in the ground model. Thus M [G] ⊇ M . Another simple argument shows the
rank of uG cannot exceed that of u, and thus M [G] ∩ Ord = M ∩ Ord.

As mentioned before, choosing a bad G may result in an M [G] that satisfies very little set theory,
but as it turns out, in some sense “most” G are good. We need some more terminology before
stating the main theorem of forcing. D ⊆ P is dense if ∀p ∈ P∃q ∈ D q ≤ p; the notion of denseness
is absolute. A filter G is said to be generic over M if G ∩D ̸= ∅ for any dense set D ⊆ P such that
D ∈ M . Since we assume M is countable, a generic filter G is easily built by a diagonal argument,
and in “non-degenerate” cases G /∈ M .

Theorem. If G is a filter generic over M and M |= ZFC, then M [G] |= ZFC.

Thus forcing with any non-degenerate poset produces a model M [G] |= ZFC + V ̸= L. By
choosing an appropriate poset one can also get M [G] |= ZFC + ¬CH, and many other set theoretic
statements. In the poset approach, the main theorem is obtained as a corollary to the truth and
definability lemmas, which are proved simultaneously by induction on complexity of formulas, as is
done in Kunen. The atomic formulas are the most difficult case.

To understand how the basic case of adding a new real number G ⊆ ω to M fits into the
framework of poset forcing requires a bit of topology. The partial order used here is B+, where B is
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the Boolean algebra generated by n ∈ G, and B+ means B \ {0}, the set of nonzero elements. A
Boolean algebra B can be viewed as a partial order via a ≤ b iff a = a ∧ b, but forcing with the
partial order B is uninteresting since it has a smallest element 0, which implies G = B and thus
G ∈ M . So whenever we view B as a partial order we really mean B+, and when we say, e.g. a set
D ⊆ B is dense, we really mean it is dense in B+. A real number G ⊆ ω can be identified with
the filter generated by {bn : n ∈ G} ∪ {b∗

n : n /∈ G}, which we again denote by G. Using the fact
that B+ is basically like a complete binary tree, one can identify a dense set D ⊆ B+ with a dense
open set UD of the Cantor space 2ω. Then the set of generic filters corresponds to the set of real
numbers in

⋂
D∈M UD, which is a dense Gδ set by Baire category theorem and countability of M .

Hence most G are generic.

We now turn to the Boolean-valued model approach. First, replace the above B by its Boolean
completion. Instead of throwing a generic filter G into the ground model M , let’s pretend that we
are the people living in M , don’t know what G is, but have names for G and the sets it generate.
Although we don’t know whether 3 ∈ Ġ, we know that its probability is 3 ∈ G, or b3. More
generally, it turns out we can calculate the probability of any statement φ about MB, the collection
of B-random sets; the probability JφK will be an element of B, thus making MB a Boolean-valued
model in contrast to ordinary 0-1 valued model. It is not difficult to show that every axiom of ZFC
holds in MB with probability 1. Then the Boolean version of soundness theorem, which says a
theory is consistent if it has a Boolean-valued model, shows the consistency of V ̸= L, and with
some more effort the consistency of ¬CH.

Incidentally, since in this approach we don’t need the generic filter, there is no need to start
with a countable M : we may just use V as ground model and form the Boolean-valued model
V B; this is known as “forcing over the universe”. The definition of V B is also somewhat simpler
than that of poset approach. Recall that in our first approximation, we defined a name to be a
function u : X → B, where u(x) is thought of as the probability of x ∈ u. Then we realized this
is too restrictive and redefined it as the set of functions from X to P(B); but if B is complete
(all suprema exist) then there is no need for that: a subset D ⊆ B is naturally identidied with an
element, namely the supremum

∨
D. Hence we define the “probabilistic von Neumann hierarchy of

B-random sets” by V B
0 = ∅, V B

α+1 = the set of partial functions from V B
α to B, V B

α =
⋃

β<α V
B

β for
limit α, and V B =

⋃
α∈Ord V

B
α .

An element b ∈ B might be called a Boolean value, event, or just probability. By Stone
representation theorem, every Boolean algebra is isomorphic to an algebra of sets; complete Boolean
algebras do not correspond to σ-algebra of sets, but they are similar in some ways, so the use of
probabilistic language isn’t unjustified. There is no loss of generality in using a complete Boolean
algebra, since every Boolean algebra, or indeed every poset P can be densely embedded into a
complete Boolean algebra B, whose elements roughly correspond to subsets of P.

The main task is to assign probabilities, or Boolean values Ju = vK and Ju ∈ vK to every pair
u, v ∈ V B. As we mentioned at the beginning, u(x) = a should really read “x belongs to u with
probability at least a”, and in general u(x) ≤ Jx ∈ uK. In situations that are simple enough we do
have u(x) = Jx ∈ uK. E.g., since V B is supposed to be an extension of V , for any canonical names
x̌ and y̌, Jx̌ = y̌K should be 1 if x = y and 0 if x ̸= y, similarly for Jx̌ ∈ y̌K. If u is a name whose
domain dom(u) is a set of canonical names, it is reasonable to let Jx̌ ∈ uK be u(x̌) for x̌ ∈ dom(u).
Complication arises if we go one step further: the sample calculation at the beginning shows that if
we define
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u = {(0̌, a), (1̌, b)},

v = {(1̌, c), (2̌, d)},

w = {(u, p), (v, q)},

then Ju = vK is (a∗ ∧ b∧ c∧ d∗) ∨ (a∗ ∧ b∗ ∧ c∗ ∧ d∗) =: r, and Ju ∈ wK is p∨ (r ∧ q). Formally, we
define Ju = vK and Ju ∈ vK simultaneously by transfinite induction on the “complexity” of names,
following this line of thought.

After handling the atomic formulas, it is straightforward to extend the Boolean value assignment
to arbitrary formulas. Then we need to show that V B is indeed a Boolean-valued model, namely it
satisfies properties such as Ju = vK∧ Jv = wK ≤ Ju = wK. After that it will be relatively easy to show
that JφK = 1 for every ZFC axiom φ. Boolean-valued model is enough for consistency proofs, but if
one really wants to work with transitive models, they can also relativize all these to a countable
transitive ground model M , pick a generic filter G and form the extension M [G]. The proof of truth
and definability lemmas using Boolean-valued model is somewhat cleaner compared to the poset
approach.

A bit of history: Cohen originally did not present his method using either poset or Boolean
algebra. It was noticed by several people that his method could be interpreted as building a
Boolean-valued model. However, people soon realized that while Boolean-valued model might look
more intuitive, posets are more convenient to work with in practice. Yet another way to interpret
forcing is to use topoi and sheaves.

Standard references for the Boolean algebra approach are Set Theory: Boolean-Valued Models
and Independence Proofs by Bell, and Chapter 14 of Jech.

2 Boolean algebras

Definition 2.1. A Boolean algebra is a structure (B,∨,∧, ∗, 0, 1), consisting of a nonempty set B,
two binary operations ∧ and ∨, a unary operation ∗, and two constants 0 and 1, that satisfies the
following axioms:

a ∨ b = b ∨ a, a ∧ b = b ∧ a

a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ a∗ = 1, a ∧ a∗ = 0

(a ∨ b) ∧ a = a, (a ∧ b) ∨ a = a

The most important axioms are the absorption laws (a ∨ b) ∧ a = a and (a ∧ b) ∨ a = a, from
which other important properties follow, such as:

a ∨ a = a, a ∧ a = a
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a ∨ 0 = a, a ∧ 1 = a

a ∨ 1 = 1, a ∧ 0 = 0
(a ∨ b)∗ = a∗ ∧ b∗, (a ∧ b)∗ = a∗ ∨ b∗

a∗∗ = a

For example, a∨a = a∨((a∨b)∧a) = a, where we used both absorption laws. There is obviously
a duality between ∨ and ∧, 0 and 1, which means if (B,∨,∧, ∗, 0, 1) is a Boolean algebra then so
is (B,∧,∨, ∗, 1, 0). It follows that, for example, if some sentence φ in the language {∨,∧, ∗, 0, 1} is
provable from the axioms, then so is its dual φ′, obtained by interchanging ∨ and ∧, 0 and 1.

We use a ⇒ b to denote the element a∗ ∨ b, and a ≤ b to mean a ∨ b = b, or equivalently
a∧ b = a. It can be proved that a ⇒ b = 1 iff a ≤ b; also ≤ is a partial order, a∨ b is the supremum
(also called join) of {a, b} and a ∧ b is their infimum (also called meet). Recall that for a partial
order (P,≤) and X ⊆ P , a is called an upper bound of X if a ≥ x for all x ∈ X, and it is called
the supremum if a ≤ b for any upper bound b; the definitions of lower bound and infimum are
similar. A Boolean algebra can also be defined solely in terms of the partial order ≤, known as a
complemented distributive lattice. Be aware that we use ∨,∧ both for Boolean operations and for
logical connectives in our formal language, although we distinguish ⇒ and →.

If arbitrary join exists, namely the supremum of any X ⊆ B exists, B is called a complete
Boolean algebra; it follows that arbitrary meet exists, by considering the supremum of the set of
lower bounds of X or using infinitary De Morgan’s law. The supremum of X is denoted

∨
X, or

sometimes
∨B X when we want to emphasize the dependence on B; if X = {ai : i ∈ I} we also

write
∨

i∈I ai. A subalgebra is a subset closed under ∨, ∧ and ∗ and containing 0, 1. If B′ ⊆ B is a
subalgebra that is complete as a Boolean algebra, and moreover

∨B′
X =

∨B X for any X ⊆ B′,
then B′ is called a complete subalgebra. Slightly more generally, if f : B → C is an embedding
between Boolean algebras such that f(

∨
X) =

∨
f(X) for any X ⊆ B, then f is called a complete

embedding; a Boolean homomorphism is a map that preserves the operations and 0, 1, and an
embedding is an injective homomorphism.

Examples:

1. The axioms do not exclude the possibility of 0 = 1, but we are not interested in that case, so
for us the simplest Boolean algebra is 2 = {0, 1} with the obvious operations. It is a complete
subalgebra of any Boolean algebra.

2.
(∨

i

ai

)
∧b =

∨
i

(ai ∧b) always holds if
∨

i ai exists; in other words infinite join distributes over

finite meet. However
∧
j∈J

∨
i∈I

aij =
∨

f :J→I

∧
j∈J

af(j)j does not always hold. Infinitary distributive

laws are closely related to forcing.

3. For any set X, P(X) with the union, intersection and complementation operations form a
complete Boolean algebra; supremum is simply union. Any finite Boolean algebra, or more
generally any complete atomic Boolean algebra is isomorphic to some P(X); an atom is a
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minimally nonzero element a, namely a ̸= 0 and if b ≤ a, either b = a or b = 0; B is atomic if
below any nonzero element there is an atom.
B is called atomless if there is no atom, equivalently any nonzero element can be split into
two nonzero elements. There exists a unique countable atomless Boolean algebra up to
isomorphism. The uniqueness is proved by back-and-forth method, similar to the proof that
there is a unique countable dense linear order without endpoints.

4. Any subset of P(X) closed under the set operations (i.e., an algebra of set) is also a Boolean
algebra. By Stone’s Representation Theorem, this actually gives rise to all Boolean algebras,
in other words any Boolean algebra B embeds into P(X) for some X. Thinking of a B as an
algebra of set is often helpful, but not always; for example, when B is complete, the embedding
given by the theorem is most often not complete, because a complete subalgebra of P(X) is
easily seen to be atomic.
We briefly discuss Stone duality. A filter on B is a subset G such that (i) 1 ∈ G, (ii) 0 /∈ G,
(iii) if a ∈ G and b ∈ G then a ∧ b ∈ G, (iv) if a ∈ G and a ≤ b then b ∈ G. It is an ultrafilter
if for any a ∈ B, at least (and therefore exactly) one of a and a∗ is in G. The usual definition
of ultrafilter on a set X is the special case of B = P(X). For any a ̸= 0, {b ∈ B : a ≤ b} is
a filter, and it is an ultrafilter iff a is an atom. Any filter can be extended to an ultrafilter
using Zorn’s lemma; in particular any nonzero a is contained in some ultrafilter. Let St(B) be
the set of all ultrafilters on B, and for each b ∈ B let [b] = {G ∈ St(B) : G ∋ b}. We have
[b1] ∩ [b2] = [b1 ∧ b2] since any G is closed under meet, so {[b] : b ∈ B} is a basis for a topology
on St(B); each [b] is actually clopen— both closed and open, since [b] ∪ [b∗] = St(B) and
[b] ∩ [b∗] = ∅. Under this topology St(B) is a compact Hausdorff space; compactness follows
from the fact that any filter can be extended to an ultrafilter. It is also zero-dimensional,
meaning having a basis consisting of clopen sets. Any clopen set is of form [b] by compactness.
Thus B is isomorphic to the algebra of clopen sets in St(B). This means (i) B is isomorphic
to an algebra of set, because the clopen algebra is a subalgebra of P(St(B)); (ii) B can
be recovered from St(B). Moreover Boolean homomorphisms induce continuous maps on
Stone spaces in the opposite direction and vice versa. The Stone duality states that this is a
contravariant equivalence between Boolean algebras and zero-dimensional compact Hausdorff
spaces.

5. For a topological space X and A ⊆ X, denote the complement and closure of A by A′

and A- respectively; then A◦ := A′-′ is the interior. An open set U is called regular if
U -◦ = U ; intuitively U does not contain “holes”. A-◦ is regular open for any A. RO(X), the
collection of all regular open sets in X, form a complete Boolean algebra. The operations are
U ∨ V = (U ∪ V )-◦, U ∧ V = U ∩ V , and U∗ = X \ U -. The supremum of (Ui)i is (

⋃
i Ui)-◦.

If X is Polish (or just Baire), then RO(X) can also be defined as the Boolean algebra of Borel
subsets of X modulo the ideal of meager sets, since every Borel set differs from a regular open
set by a meager set, and Baireness implies different regular open sets are non equivalent.
The algebra Cl(X) of clopen sets is a subalgebra of RO(X). They are usually different, and if
RO(X) = Cl(X) (every regular open set is clopen, or equivalently the closure of open set is
open), then X is called an extremally disconnected space. When X = 2ω, the clopen algebra
Cl(2ω) consists of finite unions of basic clopen sets Ns = {x ∈ 2ω : x↾n = s}, and is the
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countable atomless Boolean algebra, so RO(2ω) is the completion of the countable atomless
Boolean algebra, also called the Cantor algebra or the Cohen algebra.

6. Let X be [0, 1] or 2ω with Lebesgue measure, and consider the Boolean algebra of measurable
subsets modulo the ideal of null sets, denoted by Mes(X), also called the random algebra.
Mes(X) has a countably additive measure inherited from the Lebesgue measure. Mes(X)
is complete, as can be seen from the fact that it is countably complete and does not have
uncountable antichain. Note that although Mes(X) satisfies the countable chain condition
just like RO(X), Mes(X) does not have a countable dense set. Cohen forcing and random
forcing are both similar and orthogonal in some ways.

7. Let T be an L-theory. Two formulas φ,ψ are T -equivalent if T ⊢ φ ↔ ψ. Formulas with
free variables among x1, . . . , xn under T -equivalence form a Boolean algebra, whose Boolean
operations are induced by the logical connectives. The Stone space of this Boolean algebra is
known in model theory as the type space Sn(T ).

8. If B is a Boolean algebra and b ∈ B is nonzero, then b↓ := {a ∈ B : a ≤ b} can be viewed
as a Boolean algebra with maximal element b and complementation a 7→ b ∧ a∗. If B is
complete then so is b↓. Note that this is not a subalgebra since the maximal element and
complementation are different.

9. An ideal I on a Boolean algebra is dual to the notion of filter, namely it contains 0 but not 1,
is closed under join, and is downward closed. A prime ideal P is dual to an ultrafilter, namely
either a ∈ P or a∗ ∈ P .
Given an ideal I, we can form the quotient Boolean algebra B/I consisting of equivalence
classes, where a and b are equivalent if their symmetric difference (a ∧ b∗) ∨ (b ∧ a∗) belongs
to I, and the Boolean operations on B/I are defined in the natural way. An ideal P is prime
iff the quotient B/P is the trivial Boolean algebra {0, 1}.
b↓ is an ideal, called the principal ideal at b. The quotient of B by b↓ is naturally isomorphic
to b∗↓.

10. P(X) can be viewed as a ring, in fact an F2-algebra, with addition given by symmetric
difference A△B = (A \ B) ∪ (B \ A) and multiplication given by A ∩ B; the additive unit
is ∅ and multiplicative unit is X. This generalizes to any Boolean algebra, with symmetric
difference defined as in the previous example. This results in a Boolean ring, namely a ring
satisfying x2 = x, which implies x+ x = 0. A subset is an ideal in the Boolean algebra sense
iff it is an ideal in the ring sense. Conversely, a Boolean ring (B,+, ·, 0, 1) can be viewed as a
Boolean algebra by letting a ∨ b be a+ b+ a · b.

11. If B and C are Boolean algebras, then the Cartesian product B×C is a Boolean algebra with
operations defined pointwise. If B and C are complete then so is B × C. Note that b 7→ (b, 0)
is not a Boolean algebra embedding since it doesn’t preserve 1. For any nonzero b ∈ B, there
is a natural isomorphism between B and b↓ × b∗↓. More generally, if X ⊆ B is a maximal
antichain, then B is isomorphic to

∏
a∈X a↓.

Caution: below we will talk about Boolean completions of posets. Denote the Boolean
completion of P by B(P); then B(P) × B(Q) is not the Boolean completion of P × Q, but
rather the Boolean completion of the “disjoint sum” of P and Q. The Boolean completion of
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P×Q is the completion of the tensor product B(P) ⊗B(Q). We will not define tensor product,
but the single most important example to keep in mind is that RO(R) ⊗RO(R) ≃ RO(R2).

We now discuss the relation between posets and Boolean algebras. First recall some terminology.
Let (P,≤) be a pre-order (reflexive and transitive), p, q, r, etc. range over its elements, and A, D,
etc. range over subsets. D ⊆ P is dense if ∀p ∈ P∃q ∈ D q ≤ p. We say that p, q ∈ P are compatible,
denoted p ̸⊥ q, if there exists r such that r ≤ p and r ≤ q; otherwise they are incompatible, denoted
p ⊥ q. A ⊆ P is an antichain if its elements are pairwise incompatible; A is a maximal antichain if
it is not properly contained in any other antichain. P is separative if for any p and q, if p ̸≤ q then
there exists r ≤ p such that r ⊥ q. p is called an atom if any q, r ≤ p are compatible. For example p
would be an atom if {q : q < p} is empty, or if it is nonempty and linearly ordered; the latter cannot
happen if P is separative.

Every Boolean algebra B can be viewed as a poset, but it has an atom 0, and even worse {0} is
a dense set, which makes it rather uninteresting, so when we view B as a poset we always mean
B+ = B \ {0}.

A map f : P → Q between posets is called a complete embedding if (i) p1 ≤ p2 → f(p1) ≤ f(p2),
(ii) p1 ⊥ p2 ↔ f(p1) ⊥ f(p2), (iii) if A ⊆ P is a maximal antichain then so is f(A) ⊆ Q. If f : P → Q
is a complete embedding, then roughly speaking, forcing with Q “does more than” forcing with P,
and thus this notion is of particular interest when discussing forcing; the inverse is also true, namely
if forcing with Q does more than P then there exists a complete embedding, and the proof is easiest
using Boolean algebras.

We already defined a complete embedding of Boolean algebra to be an embedding satisfying
f(
∨
X) =

∨
f(X). One can check that for a map f : B → C between complete Boolean algebras

that satisfies b1 ≤ b2 → f(b1) ≤ f(b2), it is a complete embedding of Boolean algebra iff it is a
complete embedding of poset, so our terminology is consistent.

A map f : P → Q is called a dense embedding if it satisfies (i), (ii) above and f(P) is dense in
Q, which implies (iii). It turns out if f is a dense embedding then P and Q are exactly the same
for the purpose of forcing. In particular, every poset P can be densely embedded into a complete
Boolean algebra B, as is explained below, so forcing with complete Boolean algebra does not cause
any loss of generality.

A poset P can be viewed as a topological space, whose basic open sets are p↓ = {q ∈ P : q ≤ p}.
This topology has many bizarre properties: a set is open iff it is downward closed, and is closed iff
it is upward closed; consequently an arbitrary intersection of open sets is open; every point p has a
smallest neighborhood, namely p↓. Nevertheless it is of great use for us, since P naturally embeds
into the complete Boolean algebra RO(P) via the map sending p to (p↓)-◦. In case P is a separative
partial order, p↓ is regular open, so the map simply sends p to p↓. This is a dense embedding of
P into RO(P) \ {∅}. So once we work out the Boolean algebra approach to forcing, we can easily
transfer all the results to the poset setting.
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3 Boolean-valued model

First we introduce the notion of general Boolean-valued structures in the language of set theory.
It clearly generalizes to arbitrary language; later it will be useful to allow some unary predicates.

Definition 3.1. Let B be a fixed complete Boolean algebra. A B-valued structure of set theory is
a set or class M , together with two maps J· = ·K : M2 → B and J· ∈ ·K : M2 → B, such that for any
u, v, w ∈ M , we have

Ju = uK = 1

Ju = vK = Jv = uK

Ju = vK ∧ Jv = wK ≤ Ju = wK

Ju ∈ vK ∧ Jv = wK ≤ Ju ∈ wK

Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK

Note that when B is the trivial Boolean algebra {0, 1}, this almost recovers the usual notion
of first order structure (a map M2 → {0, 1} is basically a subset of M2), the only difference being
that Ju = vK may be 1 while u ≠ v. Aside: in “first order logic without equality”, it is allowed
that a = b while a, b are different elements of the structure, so under this convention first order
structures coincide exactly with {0, 1}-valued structure.

Given a B-valued structure, we can define truth value of formulas recursively, using either of
the two standard approaches in ordinary model theory: assignment or adding all u ∈ M into the
language as constant symbols.

Jϕ ∧ ψK := JϕK ∧ JψK

J¬ϕK := JϕK∗

J∀xϕ(x)K :=
∧

u∈M

Jϕ(u)K

It follows that J∃xϕ(x)K =
∨

u∈M Jϕ(u)K, Jϕ → ψK = JϕK ⇒ JψK, etc.

If φ is a sentence, we say that M satisfies φ or M |= φ, if JφK = 1. We say M is a model of a
theory T if M |= φ for every sentence in T . It can be proven that if M is a model of T , then any
logical consequence of T also has truth value 1; this is basically the Boolean version of soundness
theorem, see also the end of this section.

Here is a simple example of Boolean-valued model. Suppose X is any nonempty set; consider
XV := {all functions from X to V }; it can be checked that this becomes a P(X)-valued structure
if we define Jf = gK = {x ∈ X : f(x) = g(x)} and Jf ∈ gK = {x ∈ X : f(x) ∈ g(x)}. This model
appears implicitly in the usual ultrapower construction: if U is an ultrafilter on P(X), we define
the quotient XV/U by identifying f and g if Jf = gK ∈ U , and define the membership naturally.
This generalizes to any B-valued model M ; there is also an anologue of Łoś’s Theorem, as long as
M satisfies a condition called fullness; we will come back to this in later sections.

Now we are finally ready to define the model we will use for consistency proof. We will use a
complete Boolean algebra B to build a class model V B, in which the truth value of every axiom
of ZFC + V ̸= L is 1, which implies its consistency. Although we work in ZFC, the basic theory
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goes through in theories much weaker than ZF − P, though some specific results do require choice.
As indicated in the introduction, we are going to build a “probabilistic von Neumann hierarchy”,
replacing the power set operation by the operation of taking “random subsets”.

Definition 3.2. V B
0 = ∅;

V B
α+1 is the set of all partial functions from V B

α to B;

V B
α =

⋃
β<α

V B
β if α is a limit;

V B =
⋃

α∈Ord
V B

α .

An element u ∈ V B is called a B-name, or a B-random set.

In short, a B-name is a function from a set of B-names to B. We should interpret u(v) = a, in
other words (v, a) ∈ u, as saying “v belongs to u with probability at least a”.

Every x ∈ V has a canonical name x̌, defined recursively by x̌ = {(y̌, 1) | y ∈ x}. We may call
such a x̌ a deterministic set, in contrast to B-random sets in general. Note that {0, 1} is a complete
Boolean subalgebra of B, and x̌ is actually a {0, 1}-name.

Next we define the probabilities for atomic formulas, which is the most difficult and important
step, as in the poset approach.

Definition 3.3. Ju ∈ vK =
∨

y∈dom(v)

[v(y) ∧ Ju = yK]

Ju = vK =
∧

x∈dom(u)

[u(x) ⇒ Jx ∈ vK] ∧
∧

y∈dom(v)

[v(y) ⇒ Jy ∈ uK]

Recall that for a, b ∈ B, a ⇒ b means the element a∗ ∨ b. When we want to emphasize the
dependence on B, we use Ju ∈ vKB and Ju = vKB respectively.

Of course this is a definition by transfinite recursion. To see that the recursion is legitimate,
we define the B-rank of a B-name u as follows: the least α for which u ∈ V B

α must be a successor
β + 1, and we define the B-rank of u to be β, denoted rkB(u), analogous to the usual rank of set.
Note that if u ∈ dom(v) then rkB(u) < rkB(v).

To define Ju ∈ vK, we need to know Ju = yK for all y ∈ dom(v). To define Ju = vK, we need to
know Jx ∈ vK for x ∈ dom(u) and Jy ∈ uK for y ∈ dom(v). It is therefore enough to show that the
following relation on V B × V B is well-founded (it is obviously set-like),

(u′, v′) < (u, v) iff u′ = u ∧ v′ ∈ dom(v)
or v′ = v ∧ u′ ∈ dom(u)
or u′ = v ∧ v′ ∈ dom(u)
or v′ = u ∧ u′ ∈ dom(v)

where the third case is actually unnecessary, and we include it just for symmetry. Then we can
define the following two functions simultaneously by recursion:
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f∈ : (u, v) 7→ Ju ∈ vK
f= : (u, v) 7→ Ju = vK

The relation (u′, v′) < (u, v) is indeed well-founded; this is intuitively clear, since to “decrease”
(u, v), we either decrease one of the coordinates, or first switch the two names and then decrease
one of the coordinates. Formally, we let

π(u, v) = (max{rkB(u), rkB(v)},min{rkB(u), rkB(v)})

then it can be checked that (x, y) < (u, v) implies π(x, y) <lec π(u, v), where <lec is the
lexicographical order on Ord × Ord. The idea is that if we “decrease” (u, v) then either the
maximum or the minimum of {rkB(u), rkB(v)} has to decrease.

The definitions of Ju ∈ vK and Ju = vK are partly motivated by the following facts in usual set
theory:

u ∈ v ↔ ∃y ∈ v(u = y)

u = v ↔ [∀x ∈ u(x ∈ v)] ∧ [∀y ∈ v(y ∈ u)]

The first formula is a logical tautology, and the second one is extensionality. We certainly
cannot just define Ju ∈ vK to be

∨
y∈V B

[Jy ∈ vK ∧ Ju = yK], because this does not constitute a recursive

definition. However, the RHS of the above formulas only contain bounded quantification; it is not
unreasonable to expect that, e.g., to define Ju ∈ vK, it is enough to quantify over names in the
domain of v. Assuming this is true, together with the requirement that u(x) ≤ Jx ∈ uK, one is led
to the above definitions.

Remark 3.4. 1. One can alternatively define Ju = vK =
∧

x∈dom(u)∪dom(v)

[Jx ∈ uK ⇔ Jx ∈ vK],

where of course a ⇔ b means (a ⇒ b) ∧ (b ⇒ a). This is closer to the standard definition of
p ⊩ u = v in the poset approach, such as the one in Kunen. It gives the same Boolean-valued
model, as can be seen from the proof of Lemma 3.6 below. A slightly different argument
is needed to show this definition is letigimate: after defining Ju ∈ vK and Ju = vK for all
u, v ∈ V B

α , we first define Ju ∈ vK for u ∈ V B
α and v ∈ V B

α+1, then Ju = vK for u, v ∈ V B
α+1, and

finally Ju ∈ vK for u, v ∈ V B
α+1.

2. When B = {0, 1}, V B is essentially just V . More precisely, for x, y ∈ V , Jx̌ ∈ y̌K is 1 if x ∈ y
and 0 otherwise (this is of course proved by induction), similarly for Jx̌ = y̌K. Not all u ∈ V B

are of form x̌. However, it is true that Ju = x̌K = 1 for some x.

3. If X is a nonempty set, then XV and V P(X) turn out to be equivalent as P(X)-valued models.
It might be easier to think in terms of generic filters: for the Boolean algebra P(X), generic
filters are exactly the principal ones; for each name u ∈ V P(X), the map that sends x ∈ X to
the interpretation of u under the principal filter at x provides the corresponding element in
XV .

4. We have not proved that V B is a B-valued structure, namely it satisfies the conditions in
Definition 3.1. However we notice that if B′ is a complete subalgebra of B, then for u, v ∈ V B′ ,
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Ju ∈ vKB′ = Ju ∈ vKB and Ju = vKB′ = Ju = vKB, so it makes sense to say that V B′ is a
substructure of V B . In particular, the trivial algebra {0, 1} is a complete subalgebra of any B,
so V is in some sense a substructure of V B.

With the Boolean values of the atomic formulas defined, we can now proceed as in the remark
after Definition 3.1 to define the Boolean value of all formulas by induction. This is an induction
in the metatheory, since we are dealing with the class size B-valued model V B; that is, for each
particular formula φ(x1, . . . , xn), we can write down a formula that defines the class function
fφ : (V B)n → B, (u1, . . . , un) 7→ Jφ(u1, . . . , un)K; the basic cases are the two atomic formulas, which
we already handled. Of course, if we did not start with V but some set model M of ZFC, then we
could define the Boolean value of all formulas at once.

Theorem 3.5. (i) Ju = uK = 1;

(ii) u(x) ≤ Jx ∈ uK for x ∈ dom(u);

(iii) Ju = vK = Jv = uK;

(iv) Ju = vK ∧ Jv = wK ≤ Ju = wK;

(v) Ju ∈ vK ∧ Jv = wK ≤ Ju ∈ wK;

(vi) Ju = vK ∧ Ju ∈ wK ≤ Jv ∈ wK;

(vii) Ju = vK ∧ Jφ(u)K ≤ Jφ(v)K for any formula φ(x) possibly containing other names.

Proof. (i) is proved by induction on names. (ii) follows from (i) and the definition of Jx ∈ uK; note
that the inequality is strict in general. (iii) is true by symmetry in the definition. (iv), (v) and (vi)
can be simultaneously proved using induction. We first present the proof and explain the induction
details later. For (iv):

Ju = vK ∧ Jv = wK

=

Ju = vK ∧
∧

x∈dom(u)

[u(x) ⇒ Jx ∈ vK]

 ∧

Jv = wK ∧
∧

z∈dom(w)

[w(z) ⇒ Jz ∈ vK]


=

Jv = wK ∧
∧

x∈dom(u)

[u(x) ⇒ Jx ∈ vK]

 ∧

Ju = vK ∧
∧

z∈dom(w)

[w(z) ⇒ Jz ∈ vK]


≤

 ∧
x∈dom(u)

[u(x) ⇒ Jx ∈ vK ∧ Jv = wK]

 ∧

 ∧
z∈dom(w)

[w(z) ⇒ Jz ∈ vK ∧ Ju = vK]


≤

 ∧
x∈dom(u)

[u(x) ⇒ Jx ∈ wK]

 ∧

 ∧
z∈dom(w)

[w(z) ⇒ Jz ∈ uK]


=Ju = wK

where in the second to last line, we assume by induction that (v) holds for (x, v, w), ∀x ∈ dom(u)
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and (z, v, u), ∀z ∈ dom(w). Similarly, (v) is proved using (vi) and (vi) is proved using (iv). For (v),
note that for any y ∈ dom(v):

v(y) ∧ Ju = yK ∧ Jv = wK
≤v(y) ∧ Ju = yK ∧ (v(y) ⇒ Jy ∈ wK)
=v(y) ∧ Ju = yK ∧ (v(y)∗ ∨ Jy ∈ wK)
=v(y) ∧ Ju = yK ∧ Jy ∈ wK
≤Ju ∈ wK

Taking supremum over y ∈ dom(v), we get Ju ∈ vK ∧ Jv = wK ≤ Ju ∈ wK. For (vi):

Ju = vK ∧ Ju ∈ wK

=Ju = vK ∧
∨

z∈dom(w)

[w(z) ∧ Ju = zK]

=
∨

z∈dom(w)

[w(z) ∧ Ju = zK ∧ Ju = vK]

≤
∨

z∈dom(w)

[w(z) ∧ Jv = zK]

=Jv ∈ wK

Now let’s see why this is a legitimate induction. For brevity let x, y, z range over the domains
of u, v, w respectively. To prove (iv) for (u, v, w) we need (v) for all tripes (x, v, w) and (z, v, u);
to prove (v) we need (vi) for (u, y, w); to prove (vi) we need (iv) for (v, u, z). Define a map
π : (V B)3 → (Ord)3 by π(u, v, w) = (α, β, γ), where (α, β, γ) lists {rkB(u), rkB(v), rkB(w)} in
non-increasing order. This maps witnesses that the induction is legitimate, similar to the recursive
definition of Ju ∈ vK and Ju = vK.

Finally (vii) follows by induction on complexity of φ, the base cases being (iv)-(vi).

A quick corollary is that, to calculate truth value of bounded quantification, it is enough to
consider those names in the domain. This fact is very useful both in developing the basic theory of
forcing and in concrete applications.

Lemma 3.6. If u ∈ V B and φ(x) is a formula with free variable x, possibly with other parameters,
then

J∀x ∈ u φ(x)K =
∧

x∈dom(u)

[u(x) ⇒ Jφ(x)K] =
∧

x∈dom(u)

[Jx ∈ uK ⇒ Jφ(x)K]

J∃x ∈ u φ(x)K =
∨

x∈dom(u)

[u(x) ∧ Jφ(x)K] =
∨

x∈dom(u)

[Jx ∈ uK ∧ Jφ(x)K]

Proof. We prove the universal case. For any v ∈ V B:
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Jv ∈ uK ⇒ Jφ(v)K

=

 ∨
x∈dom(u)

[u(x) ∧ Jv = xK]

∗

∨ Jφ(v)K

=

 ∧
x∈dom(u)

[u(x)∗ ∨ Jv = xK∗]

 ∨ Jφ(v)K

=

 ∧
x∈dom(u)

[u(x)∗ ∨ Jv = xK∗ ∨ Jφ(v)K]


≥

 ∧
x∈dom(u)

[u(x)∗ ∨ Jφ(x)K]


=

∧
x∈dom(u)

[u(x) ⇒ Jφ(x)K]

≥
∧

x∈dom(u)

[Jx ∈ uK ⇒ Jφ(x)K]

The first inequality uses that Jv = xK ∧ Jφ(x)K ≤ Jφ(v)K, and therefore Jv = xK∗ ∨ Jφ(v)K ≥
Jv = xK∗ ∨ (Jv = xK ∧ Jφ(x)K) ≥ Jφ(x)K. The second inequality is because u(x) ≤ Jx ∈ uK. Taking
infimum over v ∈ V B, we get

J∀x(x ∈ u → φ(x))K ≥
∧

x∈dom(u)

[u(x) ⇒ Jφ(x)K] ≥
∧

x∈dom(u)

[Jx ∈ uK ⇒ Jφ(x)K]

The other direction is clear since the infimum is taken over a smaller domain.

Recall that for a sentence φ, we say that V B is a model of φ, or V B |= φ if JφK = 1.

Lemma 3.7. V B is a model of extensionality, comprehension, and regularity.

Proof. For extensionality, we want to show

J∀a∀b[a = b ↔ ∀x(x ∈ a → x ∈ b) ∧ ∀y(x ∈ b → x ∈ a)]K = 1,

which is the same as showing for any u, v ∈ V B,

Ju = vK = J∀x ∈ u x ∈ vK ∧ J∀y ∈ v y ∈ uK.

This can be proved either directly or from the previous lemma. Applying the lemma to the
formula x ∈ v, we get J∀x ∈ u x ∈ vK =

∧
x∈dom(u)[u(x) ⇒ Jx ∈ vK], which is half of the definition of

Ju = vK; applying the lemma again to y ∈ u gives the other half.

Comprehension is of course a theorem scheme. We want to show that

J∀p1 · · · ∀pn∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z, x, p1, . . . , pn))K = 1
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where φ(z, x, p1, . . . , pn) is a formula in which y is not free. It suffices to show that for any
θ1, . . . , θn, u ∈ V B, there exists v ∈ V B such that for all w ∈ V B,

Jw ∈ vK = Jw ∈ uK ∧ Jφ(w, u, θ1, . . . , θn)K

For brevity we suppress the names in φ other than w and write φ(w). We simply throw in
elements according to their probability of satisfying ϕ. That is, we let dom(v) = dom(u) and
v(x) = u(x) ∧ Jφ(x)K. Then for any w ∈ V B,

Jw ∈ vK =
∨

x∈dom(v)

v(x) ∧ Jw = xK

=
∨

x∈dom(u)

u(x) ∧ Jφ(x)K ∧ Jw = xK

=
∨

x∈dom(u)

u(x) ∧ Jw = xK ∧ Jφ(w)K

=

 ∨
x∈dom(u)

u(x) ∧ Jw = xK

 ∧ Jφ(w)K

= Jw ∈ uK ∧ Jφ(w)K

For regularity, we want that for every u ∈ V B, J∃x(x ∈ u) → ∃x ∈ u(∀y ∈ x y /∈ u)K = 1. If this
is false, then

J∃x(x ∈ u) ∧ ∀x ∈ u(∃y ∈ x y ∈ u)K =: b ̸= 0

Consider the class C = {x ∈ V B : b∧ Jx ∈ uK ≠ 0}, which is nonempty since b = b∧ J∃x(x ∈ u)K;
choose an x ∈ C of minimal B-rank. By definition of b we have

b ≤ Jx ∈ uK ⇒ J∃y ∈ x y ∈ uK, which means

b ∧ Jx ∈ uK ≤ J∃y ∈ x y ∈ uK,

so by the bounded quantification lemma, there exists y ∈ dom(x) such that b ∧ Jy ∈ uK ≠ 0,
contradicting the choice of x.

Theorem 3.8. V B |= ZFC

Proof. The remaining axioms are pairing, union, infinity, power set, replacement and choice. The
proof of their validity in V B is relatively simple thanks to comprehension.

Pairing: Let w = {(u, 1), (v, 1)}. It can be checked that if φ(x, y, z) is the formula expressing “z
is the unordered pair of x and y”, then Jφ(u, v, w)K = 1. The exact choice of the formula φ doesn’t
matter, since if ZFC ⊢ φ → ψ and V B |= φ then V B |= ψ. This follows from the soundness theorem
discussed below.

Union: We can cheat by proving the weak union axiom ∀u∃v(∀x ∈ u∀y ∈ x y ∈ v), since this
together with comprehension implies the usual union axiom. The proof of the weak union axiom is
easy; we can simply let v =

⋃
x∈u dom(x) × {1}. It is also possible to directly write down a name

that is the union of u with probability 1.
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Infinity: One can directly check that Jω̌ is an inductive setK = 1, or use the absoluteness result
in the next section that V |= φ(a) ↔ V B |= φ(ǎ) for a ∆ZF

1 formula φ(x) and a ∈ V .

Power set: Again it suffices to prove the weak power axiom ∀u∃v∀w(w ⊆ u → w ∈ v). Let W
be the set of all partial functions from dom(u) to B and v = W × {1}.

Replacement: It suffices to prove the collection scheme:

(∀x∃y φ(x, y)) → (∀u∃v∀x ∈ u∃y ∈ v φ(x, y))

Using collection in V , there is a set Y such that for every x ∈ dom(u) and every b ∈ B, if there
exists y ∈ V B such that Jφ(x, y)K = b then there is such a y in Y . Let v = Y × {1}.

Choice: It suffices to prove the well-ordering principle. Here it might be easier to think in
terms of actual generic extension M [G]. The idea is that for any name u, the evaluation map
f : dom(u) → M [G], x 7→ xG satisfies ran(f) ⊇ u, and dom(u) is well-orderable in the ground model,
hence in the generic extension also. Of course here we are working with Boolean-valued model
and don’t have the G. So we define a name f = {op(x̌, x) : x ∈ dom(u)} × {1}, where op(u, v)
is the natural name such that V B |=“op(u, v) is the ordered pair with coordinates u, v”, similar
to the unordered pair {(u, 1), (v, 1)}; note that any x ∈ dom(u) is in particular a set, and we are
considering its canonical name x̌. Let X = dom(u). It can be shown that V B |=“f is a function
with domain X̌ and its range contains u”. Since in V there is a bijection g : α → X for some ordinal
α, V B |=“ǧ is a bijection between α̌ and X̌” by the absoluteness result in the next section.

Recall that the collection scheme is equivalent to the replacement scheme under normal set
theory, and stronger than replacement in the absence of power set axiom; the well-ordering principle
is also stronger than axiom of choice when there is no power set. Denote ZF without power set
and with replacement strengthened to collection by ZF − P, and ZF − P plus well-ordering principle
by ZFC − P. Our proof shows that if V satisfies ZF − P then so does V B, and the same holds for
ZFC − P. Without power set axiom, the definition of V B might seem problematic at first, but we
can simply define a name to be a function from a set of names to B, which is a valid transfinite
recursion. Thus forcing works over theories weaker than ZF. Actually Kripke–Platek set theory is
more than enough for the basic development of forcing. However, without power set one cannot
show that every poset P has a Boolean completion, so for maximal generality one has to give up the
niceties of Boolean-valued model; moreover, the poset approach seems necessary when it comes to
class forcing (when P is a class instead of set).

The next section shows that as long as B is atomless, we have V B |= V ̸= L, and choosing
appropriate B gives V B |= ¬CH, etc. To conclude the consistency of V ̸= L, we still need one step
which is often glossed over in textbooks.

Theorem (Boolean soundness theorem). If a theory T has a B-valued model M then it is consistent.

The theorem really has two parts: if M is a set then this is a theorem of ZFC; if M is a class
then this is really a metatheorem. Recall how we prove the relative consistency of ZF + V = L:
we show the scheme that for each ZF axiom φ, the relativization φL is a theorem of ZF, and so
is (V = L)L. Then one can prove by induction in the metatheory that, whenever ZF + V = L
proves a theorem φ, the relativization φL is a theorem of ZF. Therefore if ZF is consistent then so
is ZF + V = L, because if ZF + V = L proves φ ∧ ¬φ then ZF already proves φL ∧ ¬φL.

19



Similarly, one can show that if a theory T has a B-valued class model, such as V B, then every
theorem φ of T is also satisfied by the model, and then we can conclude the consistency of T in the
metatheory. This is again an induction on length of proof. It uses that V B satisfies the axioms and
inference rules of first order logic; most of them are straightforward, such as the axiom φ → (ψ → φ)
and the modus ponens rule “if φ and φ → ψ, infer ψ”, while the axioms about equality are part of
the definition of Boolean-valued model, and we already verified those. The soundness theorem for
Boolean-valued class model is why V B suffices for consistency proof.

4 Independence results

A formula in the language of set theory is called bounded if all quantifications are of form ∀x ∈ y
or ∃x ∈ y. Σ1 and Π1 formulas are, respectively, those of form ∃x1 · · · ∃xnφ or ∀x1 · · · ∀xnφ where
φ is bounded. A formula φ is ∆ZF

1 if there are Σ1 formula θ and Π1 formula η s.t. ZF ⊢ φ ↔ θ
and ZF ⊢ φ ↔ η. As is well known, bounded formulas are absolute between any transitive sets or
classes, Σ1 formulas are upward absolute, Π1 formulas are downward absolute, and ∆ZF

1 are absolute
between transitive models of ZF.

Basically the same proof works for Boolean-valued models. Recall that if B′ is a complete
subalgebra of B, then atomic formulas involving B′-names have the same Boolean value whether
calculated in B′ or B, so V B′ can be viewed as a Boolean substructure of V B.

Lemma 4.1. Suppose B is a complete Boolean algebra and B′ is a complete subalgebra of B. For
any u1, . . . , un ∈ V B′ , if the formula φ(x1, . . . , xn) is bounded (Σ1, Π1, ∆ZF

1 ), then Jφ(u1, . . . , un)KB′

is equal to (at most, at least, equal to) Jφ(u1, . . . , un)KB.

V can more or less be identified with V {0,1}. More precisely, one can prove the scheme
φ(x1, . . . , xn) ↔ V {0,1} |= φ(x̌1, . . . , x̌n) by induction. Since {0, 1} is a complete subalgebra of any
B, the previous lemma tells us the following: whenever x1, . . . , xn ∈ V and φ is a ∆ZF

1 formula, then
φ(x1, . . . , xn) iff V B |= φ(x̌1, . . . , x̌n).

We want to show V B |= V ̸= L. For that we need to understand what are the ordinals
and constructible sets of V B; it turns out they are simply random combinations of ordinals and
constructible sets of V . Let Ord(x) be the formula that says “x is an ordinal”.

Lemma 4.2. (i) JOrd(u)K =
∨

α∈OrdJu = α̌K

(ii) For a formula φ, J∃αφ(α)K =
∨

α∈OrdJφ(α̌)K

Proof. (i) By absoluteness JOrd(α̌)KB = 1 for any ordinal α in V . Let u ∈ V B be any name. On
one hand,

∨
α∈Ord

Ju = α̌K =
∨

α∈Ord
[Ju = α̌K ∧ JOrd(α̌)K] ≤

∨
α∈Ord

JOrd(u)K = JOrd(u)K

On the other hand, Ju = α̌K and Ju = β̌K are incompatible for α ̸= β, namely

Ju = α̌K ∧ Ju = β̌K ≤ Jα̌ = β̌K = 0.
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In particular Ju = α̌K ̸= Ju = β̌K if they are both nonzero, so {α : Ju = α̌K ≠ 0} is a set.
Choose γ large enough so that whenever Ju = α̌K is nonzero, or Jx = α̌K is nonzero for some
x ∈ dom(u), we have α < γ. It follows that Jγ̌ ∈ uK = 0 and Jγ̌ = uK = 0. Since V B |= ZFC,
JOrd(u) → γ̌ ∈ u ∨ γ̌ = u ∨ u ∈ γ̌K = 1. Therefore JOrd(u)K ⇒ Ju ∈ γ̌K = 1, i.e.,

JOrd(u)K ≤ Ju ∈ γ̌K =
∨

α∈γJu = α̌K.

(ii)

J∃αφ(α)K =
∨

u∈V B

JOrd(u)K ∧ Jφ(u)K =
∨

u∈V B

[ ∨
α∈Ord

Ju = α̌K

]
∧ Jφ(u)K

=
∨

u∈V B

∨
α∈Ord

Ju = α̌K ∧ Jφ(α̌)K ≤
∨

u∈V B

∨
α∈Ord

Jφ(α̌)K =
∨

α∈Ord
Jφ(α̌)K

The other direction is clear.

Lemma 4.3. Ju ∈ LK =
∨

x∈LJu = x̌K

Proof. Let ψ(z, α) be the formula that expresses “z belongs to the α-th level of L”. We need the
“obvious” fact that for any name u ∈ V B, Jψ(u, α̌)K = Ju ∈ ĽαK. First, let φ(x, α) be the formula
that expresses “x is the α-th level of L”, which is ∆ZF

1 . Since φ(Lα, α) is true in V , by absoluteness
V B |= φ(Ľα, α̌). A more confusing way to say this is V B |= Ľα = Lα̌.

Next, φ(x, α) → ∀z(z ∈ x ↔ ψ(z, α)) is a theorem of ZFC, hence true in V B. Since φ(Ľα, α̌)
has truth value 1, so does ∀z(z ∈ Ľα ↔ ψ(z, α̌)); in other words Ju ∈ ĽαK = Jψ(u, α̌)K. Finally,

Ju ∈ LK = J∃αψ(u, α)K =
∨

α∈Ord
Jψ(u, α̌)K =

∨
α∈Ord

Ju ∈ ĽαK =
∨

α∈Ord

∨
x∈Lα

Ju = xK =
∨
x∈L

Ju = x̌K

Theorem 4.4. ZFC + V ̸= L is consistent.

Proof. Let B = RO(2ω) be the Cohen algebra, and denote the basic clopen set {x ∈ 2ω : x(n) = 1}
by pn, whose complement (either in the sense of set or Boolean algebra) is p∗

n = {x ∈ 2ω : x(n) = 0}.
Consider the name Ġ := {(ň, pn) : n ∈ ω}. It is clear from definition that Jň ∈ ĠK = pn, and for
x ∈ V , if x ⊈ ω then Jx̌ = ĠK = 0. If x ⊆ ω, then

Jx̌ = ĠK =
[∧

n∈x

Jň ∈ ĠK

]
∧

[∧
n∈ω

(pn ⇒ Jň ∈ x̌K)
]

=
[∧

n∈x

pn

]
∧

[∧
n/∈x

p∗
n

]
= 0
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where at the last step we note that if x is infinite then
∧

n∈x pn =
(⋂

n∈x pn

)-◦ =
(⋂

n∈x pn

)◦ = ∅,
since each pn is clopen; the case when ω \ x is infinite is similar.

In particular Jx̌ = ĠK = 0 for any x ∈ L, and thus JĠ ∈ LK = 0 by the previous lemma.
Consequently V B |= ∃x(x /∈ L).

Using B = RO(2κ) for some large κ instead of RO(2ω), we can obtain V B |= ¬CH. The idea is
that κ ≃ κ× ω, so RO(2κ) ≃ RO(2κ×ω). Let pα,n be the basic clopen set {x ∈ 2κ×ω : x(α, n) = 1}.
If we define Ġα = {(ň, pα,n) : n ∈ ω}, then similar to the above proof, JĠα ̸= xK = 1 for any x ∈ V .
Moreover, it’s not hard to show JĠα ̸= ĠβK = 1 for α ̸= β, and thus in V B there is an injection
from κ̌ to P(ω).

It may seem like we have proved that V B |= ¬CH, but there is a caveat. Say κ = ω2. How do we
know that V B |=“κ̌ is the second uncountable cardinal”? A priori there might exist a name ḟ , such
that V B |=“ḟ is a surjection from ω̌1 to κ̌”, or even from ω̌ to κ̌. In fact this does happen for some
forcings, but fortunately not in the case of adding Cohen reals. We shall show that B has the so
called countable chain condition, which ensures that whenever κ is a cardinal, V B |= κ̌ is a cardinal.

First a combinatorial lemma extremely useful in forcing. A collection of sets (xi)i∈I is called a
delta system if there exists R such that xi ∩ xj = R for any different i, j ∈ I.

Lemma 4.5 (Delta system lemma). If (xi)i<ω1 is a collection of finite sets, then there exists an
uncountable I ⊆ ω1 such that (xi)i∈I is a delta system.

Proof. There exists an uncountable I ⊆ ω1 such that all the xi, i ∈ I have the same size, so without
loss of generality we might assume all the xi, i < ω1 have the same size n, and prove the lemma by
induction on n. The case n = 0 is obvious since all of them are empty.

Suppose the lemma holds for n, and we want to show that it holds for n + 1. If there exists
s ∈

⋃
i<ω1

xi such that I1 = {i < ω1 : s ∈ xi} is uncountable, then we apply the induction hypothesis
to (xi \ {s})i∈I1 , obtaining an uncountable I2 ⊆ I1 such that (xi \ {s})i∈I2 is a delta system with
root R. It is clear that (xi)i∈I2 is a delta system with root R ∪ {s}.

Otherwise, for any s ∈
⋃

i<ω1
xi, the set {i < ω1 : s ∈ xi} is countable; it follows that for any

countable set S, we have S ∩ xi = ∅ for large enough i. Inductively define an increasing sequence of
countable ordinals (iα)α<ω1 as follows: let i0 be arbitrary, and when iβ has been defined for every
β < α, let S =

⋃
β<α xiβ

(a countable set) and α be such that S ∩ xiγ = ∅ for all γ ≥ α. Then
(xiα)α<ω1 is a sequence of disjoint sets, i.e., a delta system with empty root.

Recall that if P is a poset, p, q ∈ P are called incompatible, denoted p ⊥ q, if there is no r ∈ P
such that r ≤ p and r ≤ q. A ⊆ P is called an antichain if p ⊥ q for any different p, q ∈ A. We say
that P has countable chain condition or ccc, if any antichain A ⊆ P is countable. If B is a complete
Boolean algebra, we say that it is ccc if B+ = B \ {0} is ccc. In other words, B is ccc if whenever
(bi)i∈I are nonzero elements and bi ∧ bj = 0 for different i, j ∈ I, the set I is countable.

Lemma 4.6. B = RO(2κ) is ccc for any infinite cardinal κ.

Proof. Suppose (bi)i<ω1 are nonzero elements of B; we shall show that bi ∧ bj ̸= 0 for some i ̸= j.
For every partial function p : κ ⇀ {0, 1} whose domain is finite, let up = {x ∈ 2κ : x ⊇ p} = {x ∈
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2κ : ∀α ∈ dom(p) x(α) = p(α)}. By definition of product topology, the collection of all up is a
basis for the topology on 2κ. Since each bi is a nonempty open set, there exists a partial function
pi : κ ⇀ {0, 1} such that bi ⊇ upi .

It suffices to show that for some i ̸= j, upi ∩upj ̸= ∅, or equivalently pi and pj are compatible as
functions, i.e., agree on the intersection of their domains, since in that case pi ∪ pj is also a partial
function and upi ∩ upj = upi∪pj . Now we apply delta system lemma to (dom(pi))i<ω1 , obtaining an
uncountable I1 ⊆ ω1 and a root R ⊆ κ such that dom(pi) ∩ dom(pj) = R for any different i, j ∈ I1.
Since there are only finitely many functions from R to {0, 1}, there is an uncountable I2 ⊆ I1 such
that all the pi, i ∈ I2 restricted to R are the same. These functions are mutually compatible, and
the proof is finished.

Theorem 4.7. If B is ccc, then for any cardinal κ, V B |= κ̌ is a cardinal.

Proof. Suppose κ is a cardinal and λ < κ. Fix a name ḟ , and denote Jḟ is a function from λ to κK
by b. It might be easier to think about the case b = 1, and in fact there is no loss of generality in
considering this case, by the maximal principle discussed later. Since V B satisfies “if f is a function,
f(x) = y and f(x) = z then y = z”, for any different α1, α2 < κ and any β < λ,

b ∧ Jḟ(β̌) = α̌1K ∧ Jḟ(β̌) = α̌2K ≤ Jα̌1 = α̌2K = 0.

So for each β < λ, {b∧ Jḟ(β̌) = α̌K : α < κ} is an antichain; since B is ccc the antichain must be
countable, and therefore Aβ := {α < κ : b ∧ Jḟ(β̌) = α̌K ̸= 0} is countable.

Since κ is a cardinal (in V ), the union of all the Aβ, β < λ has size at most ω × λ = λ < κ;
choose some α < κ not in the union, so that b ∧ Jḟ(β̌) = α̌K = 0 for any β < λ. Using the bounded
quantification lemma, it is not hard to see that Jḟ is surjectiveK =

∧
α<κ

∨
β<λJḟ(β̌) = α̌K. Thus

b ∧ Jḟ is surjectiveK = 0. Therefore V B satisfies that no function from λ̌ to κ̌ is surjective, in other
words κ̌ is a cardinal.

A similar proof shows that if B is ccc and κ is regular, then V B |= κ̌ is regular.

Theorem 4.8. Let B = RO(2κ) where κ ≥ ω2 is an infinite cardinal. Then V B |= ¬CH. More
precisely, V B |= |P(ω)| ≥ κ, and if κω = κ in V then V B |= |P(ω)| = κ.

Proof. As mentioned before, we might view B as RO(2κ×ω), and define Ġα = {(ň, pα,n) : n ∈ ω}
where pα,n is the basic clopen set {x ∈ 2κ×ω : x(α, n) = 1}. It is not difficult to calculate that
JĠα = ĠβK =

∧
n∈ω(pα,n ⇔ pβ,n) = 0, since any open subset of 2κ×ω contains some x and y such

that x(α, n) ̸= y(β, n) for some n. Then one can cook up a name ḟ such that V B |= ḟ is an injection
from κ to P(ω). Since B is ccc, all cardinals of V remain cardinals in V B , so V B |= κ̌ ≥ the second
uncountable cardinal.

To estimate the size of P(ω), we note that for any name u, if we define Au = {(ň, Jň ∈ uK) : n ∈ ω},
then Ju ⊆ ω̌K = Ju = AuK. If we let W be the set of all functions from {ň : n ∈ ω} to B and
Z = W × {1}, then V B |= Z is the power set of ω̌.

It remains to count how many functions there are, for which we first calculate the size of B.
Everything happens in V until further notice. Since there are κ many basic clopen sets and κ many
finite Boolean combinations of them, the topology on 2κ has a basis P of size κ. Clearly P is a
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dense subset of the poset B+. For any nonzero b ∈ B, let A be an antichain that is maximal among
all antichains satisfying the following requirements: A ⊆ P and ∀p ∈ A p ≤ b; a maximal one exists
by Zorn’s lemma. Since B is ccc, A is countable. Clearly

∨
A ≤ b, and we claim that

∨
A = b;

otherwise (
∨
A)∗ ∧ b ̸= 0, so there exists p ∈ P such that p ≤ (

∨
A)∗ ∧ b, and A ∪ {p} satisfies the

above requirements, contradicting the choice of A.

Therefore any b ∈ B can be written as
∨
A for some countable A ⊆ P , so κ ≤ B ≤ κω. If κω = κ

then B = κ, and moreover the number of functions from {ň : n ∈ ω} to B is κω = κ. Then, by the
same argument as in the proof of well-ordering principle, one can show that there is a surjection
from κ to Z in V B

5 Translation to ctm

In this section we explain how the above results about V B can be relativized to a countable
transitive model M and produce the generic extension M [G]. The Boolean-valued models V RO(2ω)

or V RO(2κ) are enough to show the consistency of V ̸= L or ¬CH by the Boolean version of soundness
theorem, but in practice it is somewhat more convenient to work with actual transitive models.

The discussion in previous sections happened in V , and showed the scheme that if B is a
complete Boolean algebra, then V B |= φ for every ZFC axiom φ. Now suppose M is a countable
transitive model of ZFC (we shall discuss this hypothesis later) and M |= “B is a complete Boolean
algebra”. Then B is also a Boolean algebra in V , but definitely not complete. Still we can carry
out the construction of Boolean-valued model inside M and get ((V B)M , J· = ·KM , J· ∈ ·KM ). By
absoluteness (V B)M = V B ∩M , which we also denote by MB.

Since B is not complete, let us extend the definition of Boolean-valued models as follows.
If B is a Boolean algebra, J· = ·K : M2 → B and J· ∈ ·K : M2 → B are maps, we say that
(M, J· = ·K, J· ∈ ·K) is a B-valued structure if it satisfies the same axioms about equality as in
Definition 3.1, and moreover all the “relevant” suprema and infima exist in B, so that we can
inductively define J∃xφ(x)K =

∨
u∈M Jφ(u)K and J∀xφ(x)K =

∧
u∈M Jφ(u)K as before. Then the

relativization ((V B)M , J· = ·KM , J· ∈ ·KM ) is a B-valued model of ZFC; unlike the case of V B, this is
a single statement about M instead of a scheme.

Next we pick a (M,B)-generic filter G, namely a set G ⊆ B+ that is upward closed, downward
directed, and G ∩D ̸= ∅ for every dense set D ⊆ B+ such that D ∈ M . For u ∈ MB, define uG

recursively by uG = {xG : x ∈ dom(u), u(x) ∈ G}, and let M [G] = {uG : u ∈ MB}. The previous
hard work enables us to prove M [G] |= ZFC fairly smoothly.

The requirement of genericity is quite naturally motivated by the proof below. Note that since
B is a Boolean algebra, G is an M -complete ultrafilter, namely: (i) if a, b ∈ G then a ∧ b ∈ G; (ii)
either b ∈ G or b∗ ∈ G, because {a ∈ B+ : a ≤ b ∨ a ≤ b∗} is a dense set in M ; (iii) if X ⊆ G and
X ∈ M , then

∧
X ∈ G: consider the set D = {a : (∃b ∈ X, a ∧ b = 0) ∨ (a ≤

∧
X)}, which belongs

to M , and is dense because if a ∧ (
∧
X) = 0 then a ∧ (

∧
X)∗ ̸= 0, so a ∧ b∗ ̸= 0 for some b ∈ X.

Taking contrapositive, we see that if
∨
X ∈ G and X ∈ M then X ∩G ̸= ∅.

The following theorem is the counterpart of truth and definability lemmas in the usual poset
approach. It is the same as Theorem 14.29 in Jech.
Theorem 5.1. For any formula φ(x1, . . . , xn) and u1, . . . , un ∈ MB, M [G] |= φ((u1)G, . . . , (un)G)
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iff Jφ(u1, . . . , un)K ∈ G.

Proof. We prove by induction on complexity of formulas, as expected, and start with atomic ones.
This is yet another induction on the well-founded relation we used to define their truth values.

uG ∈ vG ⇔∃y ∈ dom(v)(uG = yG ∧ v(y) ∈ G)
⇔∃y ∈ dom(v)(Ju = yK ∈ G ∧ v(y) ∈ G)
⇔∃y ∈ dom(v)(v(y) ∧ Ju = yK ∈ G)
⇔Ju ∈ vK ∈ G

where we use induction hypothesis for u = y at the third step, and at the last step we use that
the set X = {v(y) ∧ Ju = yK : y ∈ dom(v)} belongs to M , since the Boolean values are defined
relativized to M , so X ∩G ̸= ∅ iff

∨
X ∈ G. Similar arguments are used below.

uG ⊆ vG ⇔ ∀x ∈ dom(u)[u(x) ∈ G → xG ∈ vG]
⇔ ∀x ∈ dom(u)[u(x) ∈ G → Jx ∈ vK ∈ G]
⇔ ∀x ∈ dom(u)[u(x) /∈ G ∨ Jx ∈ vK ∈ G]
⇔ ∀x ∈ dom(u)[u(x) ⇒ Jx ∈ vK ∈ G]

⇔
∧

x∈dom(u)

[u(x) ⇒ Jx ∈ vK] ∈ G

It follows that uG = vG iff Ju = vK ∈ G. The induction steps for propositional connectives φ ∧ ψ
and ¬φ are quite simple. For quantifier,

M [G] |= ∀xφ(x) ⇔ ∀u ∈ MB,M [G] |= φ(uG)
⇔ ∀u ∈ MB, Jφ(u)K ∈ G

⇔
∧

u∈MB

Jφ(u)K ∈ G

⇔ J∀xφ(x)K ∈ G

There is another thing we can do with the B-valued model MB and an ultrafilter G on B: we
can form the quotient MB/G, where two names u, v are identified if Ju = vK ∈ G, and we make
MB/G into a first order structure by letting [u] ∈ [v] iff Ju ∈ vK ∈ G; this is well-defined because of
the identity axioms. It can be shown (using the maximal principle in next section) that as long as G
is an ultrafilter, we have MB/G |= φ iff JφK ∈ G, and thus MB/G can also be used for consistency
proof. If G is generic, then MB/G is well-founded, and moreover isomorphic M [G]. This is yet
another proof that genericity is a natural condition. However, well-foundedness of MB/G along
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doesn’t imply genericity of G: consider the case of normal ultrafilter on measurable cardinal. It
is shown in Bell that genericity is equivalent to the conjunction of: (i) MB/G is well-founded, (ii)
MB/G and M have the same ordinals.

So assuming we have a ctm M |= ZFC, we can create a new ctm M [G] |= ZFC + ¬CH. However,
we know from the second incompleteness theorem that ZFC does not prove the existence of a ctm of
ZFC, so at first this seems useless for consistency proof. Of course we already know that we can
do consistency proof using the Boolean-valued class model V B. An alternative argument using
M [G], as proposed originally by Cohen, is as follows. To prove the consistency of ZFC + ¬CH, it
suffices to prove the consistency of Γ + ¬CH where Γ is an arbitrary finite fragment of ZFC. The
set Vα satisfies all of ZFC axioms except that it usually doesn’t satisfy the replacement scheme.
However, by reflection principle we can obtain Vα that satisfies any finite number of instances of
replacement scheme. Indeed we can do slightly better; it’s possible to prove the scheme that for
every (metatheoretic) natural number n, there exists α such that Vα satisfies the replacement scheme
for Σn formulas. By closely analyzing our proof of V B |= ZFC, we see that if V satisfies all axioms
other than replacement plus replacement for Σn formulas, then the same is true of V B. Then we
choose a countable elementary submodel of Vα, and collapse it to get M . The generic extension
M [G] satisfies ¬CH and as much ZFC as we like, which implies the consistency of ¬CH.

To me more pedantic, we have proved that “ZFC proves the consistency of any finite fragment
of ⌜ZFC + ¬CH⌝”; this is different from, but implies the metatheoretic statement “ZFC + ¬CH is
consistent” because of Σ1 completeness: if some Σ1 arithmetic statement is true in the real word
then it’s provable in PA, ZFC, etc. Therefore if ZFC proves a Π1 arithmetic statement (and if ZFC
is consistent) then that statement must be true in the real world.

Nowadays nobody cares about these tedious logical details. When we write proofs using forcing,
we generally don’t specify whether we are using the Boolean-valued class model approach, or the
ctm set model approach. In fact many people simply write V [G], as if we can literally step outside
V , find a generic filter G and adjoin it to G. Whether to interpret V [G] as V B or as M [G] is up
to the reader. Also, it’s actually not that outrageous to step outside V— this point of view is
consistent as long as we are willing to assume the existence of ctm, which is a very mild assumption
compared to all the large cardinal axioms floating around today.

In the next section we work out forcing with a general poset P. From there on we shall generally
work with transitive models instead of Boolean-valued models, and even start writing V [G] at some
point. However, Boolean algebras are still from time to time useful, especially in proving theorems
about forcing (in contrast to proving theorems using forcing), so we will come back to J· = ·K and
J· ∈ ·K whenever it seems more convenient.

6 Forcing with general posets, maps between posets

As we mentioned before, although the Boolean-valued model approach to forcing is intuitive and
elegant, posets are often more convenient in practice. Let (P,≤) be an arbitrary poset (reflexive
and transitive). We want to define the class V P of P-names, as well as the forcing relation p ⊩
φ(σ1, . . . , σn) for any p ∈ P, formula φ in the language of set theory, and σ1, . . . , σn ∈ V P. When we
relativize everything to a ctm M , we will have (p ⊩ φ(σ1, . . . , σn))M iff M [G] |= φ((σ1)G, . . . , (σn)G)
for all generic filters G on P that contain p, where the interpretation σG is defined in the same way
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as before. The forcing relation is defined inductively, similar to Boolean truth value. We have two
options:

(1) Develop poset forcing from scratch.

(2) Use the Boolean completion ι : P → RO(P) =: B to define a name translation map
ῑ : V P → V B, τ 7→ τ̄ , and then define p ⊩ φ(σ) iff ι(p) ≤ Jφ(τ̄)K. Then we can get an equivalent
inductive definition of p ⊩ φ(σ) by unraveling what ι(p) ≤ Jφ(τ̄)K means. This is not necessarily
simpler than starting from scratch, but as a byproduct it shows that poset forcing and Boolean-valued
model are essentially equivalent.

Let’s first review some notions about posets. A map i : P → Q between posets is a complete
embedding if it is order-preserving, incompatibility-preserving, and complete, or more precisely: (i)
p1 ≤ p2 → f(p1) ≤ f(p2), (ii) p1 ⊥ p2 ↔ f(p1) ⊥ f(p2), (iii) if A ⊆ P is a maximal antichain then so
is f(A) ⊆ Q. Actually (ii) follows from (i) and (iii). Typical examples are the Boolean completion
mentioned below, and i : P → P × Q, p 7→ (p, 1), where we assume Q has a maximal element 1 and
P × Q is equipped with the product order (p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′. A priori the notion
of completeness may not be absolute. We will show later that in fact it is; however, this seldom
matters in practice since it is often sufficient to know that i is a complete embedding in the ground
model.

i is called a dense embedding if it satisfies (i) and (ii) above, and i(P) is a dense subset of
Q, which implies (iii), so a dense embedding is complete. An embedding of either kind is not
necessarily injective. A dense embedding i : P → B+ for some complete Boolean algebra B is called
a Boolean completion of P; we will later show that the completion is unique. We noted before that
if we denote the Boolean completion of P by B(P), then the Boolean completion of P × Q is not
B(P) ×B(Q), but (the completion of) the tensor product B(P) ⊗B(Q); an instructive example is
RO(R) ⊗RO(R) ≃ RO(R2).

Recall that P has a topology where the smallest neighborhood of p is p↓. A set E ⊆ P is called
open if it is open in the topological sense, or equivalently downward closed; the topological closure
of a set is its upward closure. E ⊆ P is predense if ∀p ∈ P∃q ∈ E p ̸⊥ q. When we say X is an
antichain maximal below p, we mean it is maximal among all antichains A such that ∀q ∈ A q ≤ p;
equivalently X ∩ (p↓) is a maximal antichain in the sub-poset p↓. Similarly we talk about X dense
below p, dense open below p, etc. Sometimes the term “predense below p” is also used; this means
any q ≤ p is compatible with something in X; be aware that X ∩ (p↓) may not be predense in p↓.
More generally, we say that X is an antichain maximal below an arbitrary set E if X is maximal
among all antichains A such that ∀p ∈ A∃q ∈ E p ≤ q.

The following facts are easily checked.

1. E is predense iff E↓ := {p ∈ P : ∃q ∈ E p ≤ q} is dense. Both a dense set and a maximal
antichain are predense. If B is a complete Boolean algebra, E ⊆ B+ is predense iff

∨
E = 1.

2. If i : P → Q is a dense embedding and D ⊆ Q is a dense open set, then the preimage i−1(D)
is dense in P.

3. For any set E, there is an antichain maximal below E; this follows from Zorn’s lemma. If E is
dense, then an antichain maximal below E is a maximal antichain in P.
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4. i : P → Q is a complete embedding iff it is order and compatibility preserving, and the image
of any dense set is predense; equivalently, the image of a predense set is predense.

5. If i : P → Q is a complete embedding, so is the restriction i : p↓ → i(p)↓ for any p.

6. If B and C are complete Boolean algebras, a Boolean algebra homomorphism f : B → C is
called a complete embedding if it is injective and f(

∨
X) =

∨
f(X) for any X ⊆ B. One can

check that f : B → C is a complete embedding in the Boolean algebra sense iff the restriction
f : B+ → C+ is a complete embedding in the poset sense, so our terminology is consistent.

The set RO(P) of regular open sets in the poset topology is a complete Boolean algebra, with
U ∨ V = (U ∪ V )-◦, U ∧ V = U ∩ V , and U∗ = X \ U -. The map ι : P → RO(P)+, p 7→ (p↓)-◦

is a dense embedding; we call this the canonical Boolean completion. Note that (p↓)-◦ ⊆ (q↓)-◦

iff p ∈ (q↓)-◦ iff q↓ is dense below p. This is used to show that ι preserves incompatibility. If P
is separative then (p↓)-◦ = p↓; if P = B+ for some complete Boolean algebra B then RO(P) is
isomorphic to B.

Now we show that the Boolean completion is unique. For later use we prove a slightly more
general result.

Lemma 6.1. (i) If i : P → Q is a complete embedding between posets, and ι : P → B+, η : Q → C+

are Boolean completions, then there exists a unique complete embedding f : B → C such that
f ◦ ι = η ◦ i.

(ii) If i : P → Q is a dense embedding, and both ι : P → B+ and η : P → C+ are Boolean
completions, then B ≃ C. Taking i : P → P to be identity, this shows the Boolean completion is
unique.

Proof. (i) Define f(b) =
∨

{η(i(p)) : ι(p) ≤ b}. By the above discussion, ι(p1) ≤ ι(p2) iff p2↓
is dense below p1, in which case i(p2)↓ is dense below i(p1) and thus η(i(p1)) ≤ η(i(p2)). Thus
f(ι(p0)) =

∨
{η(i(p)) : ι(p) ≤ ι(p0)} = η(i(p0)).

Clearly f is order-preserving; it also preserves incompatibility since if b1 ⊥ b2, ι(p1) ≤ b1 and
ι(p2) ≤ b2 then p1 ⊥ p2. By the remarks, to show that it is a complete embedding, it suffices to
show that if A ⊆ B+ is a maximal antichain then f(A) ⊆ C+ is maximal. It is not hard to see that
ι−1(A) ⊆ P is predense; let A′ ⊆ ι−1(A)↓ be a maximal antichain. By assumption i(A′) ⊆ Q is a
maximal antichain, and the same is true of η(i(A′)) ⊆ C+; on the other hand η(i(A′)) = f(ι(A′)) is
below f(A), and thus f(A) is also maximal.

Uniqueness is because a complete Boolean algebra embedding is determined by its values on a
dense set.

(ii) By (i) there is a complete embedding f : B → C with dense image, which must be an
isomorphism.

Back to forcing. Define the hierarchy V P inductively by V P
0 = ∅, V P

α+1 = P(V P
α ×P) is the set of

relations on V P
α × P, V P

α =
⋃

β<α V
P

β if α is a limit ordinal, and V P =
⋃

α∈Ord V
P

α . There is a small
ambiguity since a Boolean algebra B is in particular a poset, in which case the above definition
doesn’t coincide with the previous V B. However, although we will occasionally consider the case
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P = B+, we will never consider P = B, so V B always denotes the good old Boolean-valued model.
Technically V B is different from V B+ in that the former consists of “hereditary functions” and the
latter of “hereditary relations”, although they are essentially the same, as we will see. We use Greek
letters σ, π, τ etc. to denote elements in V P.

We need to translate between P-names and B-names, and below is one direction. Define ῑ : V P →
V B, τ 7→ τ̄ inductively by dom(τ̄) = {θ̄ : θ ∈ dom(τ)} and τ̄(x) =

∨
{ι(q) : ∃(θ, q) ∈ τ θ̄ = x}; in

short, we inductively replace P-names by its corresponding B-names and take supremum to convert
relations to functions. Now we can define the forcing relation by

p ⊩ φ(σ1, . . . , σn) iff ι(p) ≤ Jφ(σ̄1, . . . , σ̄n)K.

In texts such as Kunen that use the poset approach, the clauses below are not a theorem but
rather the inductive definition of forcing relation.
Theorem 6.2. (i) p ⊩ π ∈ τ iff {q ∈ P : ∃(θ, r) ∈ τ q ≤ r ∧ q ⊩ π = θ} is dense below p;

(ii) p ⊩ π = τ iff ∀θ ∈ dom(π) ∪ dom(τ)∀q ≤ p q ⊩ θ ∈ π ⇔ q ⊩ θ ∈ τ ;

(iii) p ⊩ φ ∧ ψ iff p ⊩ φ ∧ p ⊩ ψ;

(iv) p ⊩ ¬φ iff ∀q ≤ p q ̸⊩ φ;

(v) p ⊩ ∀xφ(x) iff ∀τ ∈ V P p ⊩ φ(τ).

Proof. Prove by induction on complexity of formula and rank of name; for justification of the
induction see Remark 3.4. As usual, atomic formulas are the heart of the proof.

(i)

p ⊩ π ∈ τ iff ι(p) ≤ Jπ̄ ∈ τ̄K

iff ι(p) ≤
∨

x∈dom(τ̄)

[τ̄(x) ∧ Jπ̄ = xK]

iff ι(p) ≤
∨

x∈dom(τ̄)

∨
(θ,q)∈τ

θ̄=x

ι(q) ∧ Jπ̄ = xK

iff ι(p) ≤
∨

(θ,q)∈τ

ι(q) ∧ Jπ̄ = θ̄K

iff {b ∈ B+ : ∃(θ, q) ∈ τ b ≤ ι(q) ∧ b ≤ Jπ̄ = θ̄K} is dense below ι(p)
iff {r ∈ P : ∃(θ, q) ∈ τ r ≤ q ∧ ι(r) ≤ Jπ̄ = θ̄K} is dense below p

iff {r ∈ P : ∃(θ, q) ∈ τ r ≤ q ∧ r ⊩ π = θ} is dense below p

The third-to-last equivalence is because in a complete Boolean algebra, a ≤
∨

i bi iff for all
nonzero a′ ≤ a, there exists some nonzero a′′ ≤ a and some i such that a′′ ≤ bi.

The second-to-last equivalence is because the set in the previous line is open; since ι is a dense
embedding, if D is dense open below ι(p) then the preimage i−1(D) is dense below p. Also, although
ι(r) ≤ ι(q) doesn’t imply r ≤ q, it implies r ̸⊥ q.

(ii)

p ⊩ π = τ iff ι(p) ≤ Jπ̄ = τ̄K
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iff ι(p) ≤
∧

x∈dom(π̄)∪dom(τ̄)

[Jx ∈ π̄K ⇔ Jx ∈ τ̄K]

iff ∀x ∈ dom(π̄) ∪ dom(τ̄), ι(p) ≤ [Jx ∈ π̄K ⇔ Jx ∈ τ̄K]
iff ∀θ ∈ dom(π) ∪ dom(τ), ι(p) ≤ [Jθ̄ ∈ π̄K ⇔ Jθ̄ ∈ τ̄K]
iff ∀θ ∈ dom(π) ∪ dom(τ)∀q ≤ p ι(q) ≤ Jθ̄ ∈ π̄K ⇔ ι(q) ≤ Jθ̄ ∈ τ̄K
iff ∀θ ∈ dom(π) ∪ dom(τ)∀q ≤ p q ⊩ θ ∈ π ⇔ q ⊩ θ ∈ τ

The second-to-last equivalence is because a ≤ b ⇔ c iff ∀a′ ≤ a(a′ ≤ b ⇔ a′ ≤ c) iff {a′ : a′ ≤
b ⇔ a′ ≤ c} is dense below a.

(iii) Easy.

(iv) Note that p ⊩ ¬φ iff ι(p) ⊥ JφK. If ι(p) ̸⊥ JφK, since ι is a dense embedding, there exists p′

such that ι(p′) ≤ ι(p) and ι(p′) ≤ JφK. In particular ι(p′) ̸⊥ ι(p), so p′ ̸⊥ p and there exists p′′ such
that p′′ ≤ p and p′′ ≤ p′; the latter implies ι(p′′) ≤ JφK, namely p′′ ⊩ φ.

(v) The quantifier case follows from the fact that ῑ : V P → V B is “essentially surjective”, namely
for any u ∈ V B there is σ ∈ V P such that Ju = σ̄K = 1. Consider the subclass V B

+ ⊆ V B of names
that “hereditarily don’t take the value 0 ”; in other words we define a hierarchy (V B

+ )α in the same
way as V B

α except that (V B
+ )α+1 consists of partial functions from (V B

+ )α to B+. Clearly for every
u ∈ V B there exists u′ ∈ V B

+ s.t. Ju = u′K = 1. We claim that for any u ∈ V B
+ , there exists τu ∈ V P

such that τ̄u = u. Just inductively let τu = {(τx, p) : x ∈ dom(u) ∧ ι(p) ≤ u(x)}. This is the other
direction of name translation.

Below is the bounded quantification lemma for posets, which will be frequently used in passing.
It can be proved either directly using the above theorem or indirectly using the lemma for Boolean
algebra and the name translation map σ 7→ σ̄.

p ⊩ ∀x ∈ σ φ(x) ⇔ ∀(τ, s) ∈ σ∀r ≤ p[r ≤ s → r ⊩ φ(τ)]
⇔ ∀τ ∈ dom(σ)∀r ≤ p[r ⊩ τ ∈ σ → r ⊩ φ(τ)]

p ⊩ ∃x ∈ σ φ(x) ⇔ {r : ∃(τ, s) ∈ σ[r ≤ s ∧ r ⊩ φ(τ)]} is dense below p

⇔ {r : ∃τ ∈ dom(σ)[r ⊩ τ ∈ σ ∧ r ⊩ φ(τ)]} is dense below p

These can be further simplified if σ = y̌ for some y.

Next we explain how to force over ctm with posets. Let M be a ctm, P be a poset in M , and
MP = (V P)M = M ∩ V P. An (M,P)-generic filter is a set G ⊆ P that is upward closed, downward
directed and meets all the dense subsets of P that are in M ; the word dense can equivalently be
replaced by dense open, predense, or maximal antichain. For τ ∈ MP, define τG recursively by
τG = {θG : ∃p ∈ G (θ, p) ∈ τ}, and M [G] = {τG : τ ∈ MP}. It will follow from the results below
that in case P = B+, this produces the same M [G] as before.
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Let ι : P → B be the Boolean completion of P in M , namely B = (RO(P))M . We first show
that (M,P)-generic filters and (M,B)-generic filters are in bijection with each other. For later use
we prove something more general.

Lemma 6.3. (i) Suppose M |= i : P → Q is a complete embedding. If H is (M,Q)-generic, then
G := i−1(H) is (M,P)-generic.

(ii) In case i is a dense embedding, then for any G that is (M,P)-generic, the filter on Q
generated by i(G) (namely the upward closure of i(G)) is (M,Q)-generic. Denote this filter by i∗(G).
The operations G 7→ i∗(G) and H 7→ i−1(H) are inverse to each other.

Proof. (i) G is downward directed because for any p1, p2 ∈ G, {p : (p ≤ p1 ∧p ≤ p2)∨p ⊥ p1 ∨p ⊥ p2}
is a dense set in M . G is generic because for any maximal antichain A ⊆ P such that A ∈ M ,
i(A) ⊆ Q is also maximal and in M .

(ii) i∗(G) is generic because preimage of dense open set is dense.

It is clear that i−1(i∗(G)) ⊇ G and i∗(i−1(H)) ⊆ H. To show equality, note that there cannot
be two generic filters G1 and G2 such that G1 ⊊ G2.

Theorem 6.4. (i) Let M be a ctm and ι : P → B be the Boolean completion of the poset P in M .
Let G be (M,P)-generic and H be ι∗(G). Then for any τ ∈ MP, τG = τ̄H .

(ii) p ⊩ φ(τ1, . . . , τn) iff for all (M,P)-generic G that contains p, M [G] |= φ((τ1)G, . . . , (τn)G).

Proof. (i) τG ⊆ {θG : θ ∈ dom(τ)}, τ̄H ⊆ {θ̄H : θ ∈ dom(τ)}, and by induction {θG : θ ∈ dom(τ)} =
{θ̄H : θ ∈ dom(τ)}. Now for any π ∈ dom(τ),

π̄H ∈ τ̄H

⇔∃η ∈ dom(τ) η̄H = π̄H and τ̄(η̄) ∈ H

⇔∃η ∈ dom(τ) η̄H = π̄H and
∨

{ι(q) : ∃(θ, q) ∈ τ θ̄ = η̄} ∈ H

⇔∃η ∈ dom(τ)∃(θ, q) ∈ τ η̄H = π̄H and θ̄ = η̄ and ι(q) ∈ H

⇔∃η ∈ dom(τ)∃(θ, q) ∈ τ θ̄ = η̄ and ι(q) ∧ Jη̄ = π̄K ∈ H

⇔∃η ∈ dom(τ)∃(θ, q) ∈ τ θ̄ = η̄ and ι(q) ∧ Jθ̄ = π̄K ∈ H

⇔∃(θ, q) ∈ τ ι(q) ∧ Jθ̄ = π̄K ∈ H

⇔∃(θ, q) ∈ τ ι(q) ∈ H and θ̄H = π̄H

⇔∃(θ, q) ∈ τ q ∈ G and θG = πG

⇔πG ∈ τG

where we used Theorem 5.1, the Boolean algebra version of this theorem, for the fourth equivalence
and the third-to-last equivalence; the second-to-last equivalence uses induction hypothesis.

(ii) It follows from (i) and the essential surjectivity of ῑ that M [G] = M [H]. Using everything
we have proved,

M [G] |= φ(τG) ⇔ M [H] |= φ(τ̄H) ⇔ Jφ(τ̄)K ∈ H ⇔ ∃p ∈ G ι(p) ≤ Jφ(τ̄)K ⇔ ∃p ∈ G p ⊩ φ(τ)

31



Therefore, if p ⊩ φ(τ) then for any generic G ∋ p we have M [G] |= φ(τG). Conversely, if
p ̸⊩ φ(τ), then ι(p) ̸⊥ J¬φ(τ)K, so there exists q ≤ p s.t. q ⊩ ¬φ(τ). Consider any generic G ∋ q.

We finally show that generic filters exist, which is used at the end of the above proof.

Lemma 6.5. If M is a countable transitive model of ZFC and (P,≤) ∈ M is a poset, then for any
p ∈ P, there exists an (M,P)-generic filter G containing p.

Proof. List the dense subsets of P that are in M as D1, D2, . . . Inductively define a decreasing
sequence (p0, p1, . . . ) as follows. p0 = p, pn+1 ≤ pn and pn+1 ∈ Dn+1, which is possible by the
denseness of Dn+1. Let G be the upward closure of {p0, p1, . . . }.

It is not necessary that M be countable; it is enough for M to contain only countably many
dense sets of P. For example, if 0♯ exists, then any set definable in L without parameter is countable,
and if a poset is definable so is the collection of its dense subsets, so we can literally force over L
using any definable poset. The above lemma has many generalizations. Say P is countably closed
(any countable decreasing sequence has a lower bound), then we can produce a G that meets any ℵ1
many dense sets. Similar arguments are sometimes used to lift elementary embedding in the study
of large cardinals and forcing.

If i : P → Q is a complete embdding in M and H is (M,Q)-generic, then M [H] contains an
(M,P)-generic filter, namely i−1(H), so forcing with Q “does more” than with P. Actually it is
sufficient that p↓ completely embeds into Q for some p ∈ P, since a p↓-generic filter easily extends
to a P-generic one. We shall show that the converse is also true, at least in the realm of complete
Boolean algebras. The idea is roughly this: suppose B and C are complete Boolean algebras, and
V C |= “there exists a (V, B̌)-generic filter”; by the maximal principle below, there is a C-name
Ġ such that V C |= “Ġ is a (V, B̌)-generic filter”; then we shall see that the map b 7→ Jb̌ ∈ ĠKC

is complete; it’s not necessarily an embedding, but the kernel is some principal ideal b0↓, so b∗
0↓

completely embeds into C. We need two important ingredients: the maximal principle, and the fact
that it makes sense to talk about V in V C .

Theorem 6.6 (Maximal principle). Let B be a complete Boolean algebra. For any formula φ(x)
possibly containing names in V B as parameters, there exists u ∈ V B such that J∃xφ(x)K = Jφ(u)K.

Lemma 6.7 (Mixing lemma). If A = {ai : i ∈ I} is an antichain and ui ∈ V B, i ∈ I, then there
exists u ∈ V B such that Ju = uiK ≥ ai for every i.

Proof. Let dom(u) =
⋃

i∈I dom(ui) and u(x) =
∨

i∈I [ai ∧ Jx ∈ uiK].

Proof of maximal principle. Let b = J∃xφ(x)K, and A = {ai : i ∈ I} be an antichain maximal below
{Jφ(u)K : u ∈ V B}; then

∨
A = b. For each ai pick a ui such that Jφ(ui)K ≥ ai. Let u be their

mix.

The maximal principle requires AC. The poset form of maximal principle is that if p ⊩ ∃xφ(x),
then there exists τ ∈ V P s.t. p ⊩ φ(τ), because ι(p) ≤ J∃xφ(x)K = Jφ(u)K for some u ∈ V B, and
thus for some u ∈ V B

+ ; then p ⊩ φ(τu).
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We digress to explain how to use maximal principle to show the Boolean Łoś’s Theorem. Maximal
principle is also referred to as fullness. Let G be any ultrafilter on B; recall that we can form a first
order structure V B/G by identifying u and v if Ju = vK ∈ G. The issue that each equivalence class
really is a proper class can be handled by Scott’s trick as usual, or by choosing “conventional name”
discussed in the next section. Then we can inductively show that V B/G |= φ iff JφK ∈ G. Maximal
principle is used at the induction step for existential quantifier: if J∃xφ(x)K ∈ G then Jφ(u)K ∈ G
for some u, so by induction hypothesis V B/G |= φ([u]).

Back to complete embedding; we want to find a way to talk about V in V B. It turns out V is
actually a subclass of V B definable with parameters (parameters are needed in general as can be seen
from iterated forcing), or stated in the ctm way, M is definable in M [G], as proven independently
by Laver and Woodin. This allows us to formulate “V is a generic extension of some inner model”
in first order logic. Such an inner model is called a ground; it even makes sense to talk about “the
intersection of all grounds”, and this has opened a whole new field known as set-theoretic geology.
Here we are content with the much easier result that V can be added to the structure V B as a
unary predicate. For u ∈ V B, define JV (u)K =

∨
x∈V Ju = x̌K.

Theorem 6.8. (i) (V B, V, J· = ·K, J· ∈ ·K) is a Boolean-valued model, i.e., JV (u)K∧Ju = vK ≤ JV (v)K.

(ii) (V B, V, J· = ·K, J· ∈ ·K) satisfies replacement scheme for formulas in the language {∈, V }.

(iii) If M is a ctm, then M [G] |= φ iff JφK ∈ G for any formula φ in the language {∈,M}; in
particular M [G] |= V (τG) iff τG ∈ M .

Proof. (i) is clear. For (ii) and (iii), repeat the previous proofs.

Thus it makes sense to say things like “M [H] |= G is a (M,P)-generic filter”. Also note that the
maximal principle, and indeed all previous results about forcing hold in this extended language.

We introduce two more notions that imply (in fact are equivalent to) “Q does more than P”.
π : Q → P is called a projection if it is order preserving, and for any q and p ≤ π(q), there exists
q′ ≤ q such that π(q′) ≤ p. Warning: many authors also require π(1Q) = 1P, which is stronger than
our definition. The typical example is the projection of P × Q onto one of its coordinate.

If i : P → Q is any map, q̃ ∈ P is called a reduct of q if i(p) ⊥ q → p ⊥ q̃. π : Q → P is called a
reduction if π(q) is a reduct of q. If q̃ is a reduct of q, then so is any strengthening of q̃, so a reduct
is not unique; however, in the case of complete Boolean algebra there is a canonical reduct.
Lemma 6.9. (i) If M is a ctm, π : Q → P is a projection in M , and H is (M,Q)-generic, then
π∗(H) is (M,P)-generic.

(ii) An order preserving map i : P → Q is complete iff any q has a reduct, in other words (under
AC) there exists a reduction π : Q → P. In particular the notion of complete embedding is absolute.

(iii) If P is separative, i : P → Q is order and compatibility preserving, and π : Q → P is an
order preserving reduction, then π is a projection.

(iv) If i : B → C is a complete embedding between complete Boolean algebras, then π(c) =
∧

{b ∈
B : i(b) ≥ c} is the greatest reduct of c.

Proof. (i) If π is a projection, then the preimage of a dense open set is dense. Order preservation is
needed to show that π(H) is directed.
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(ii) Suppose π : Q → P is a reduction, A ⊆ P is a maximal antichain and yet i(A) is not maximal
in Q. Then there exists q ∈ Q such that i(p) ⊥ q, and thus p ⊥ π(q) for every p ∈ A, a contradiction.

Suppose i : P → Q is a complete embedding. Fix q ∈ Q, consider E = {p : i(p) ⊥ q} and let A
be an antichain maximal below E. Then i(A) is an antichain that is not maximal, since i(A) ∪ {q}
is an antichain. Thus A is not maximal, and there exists q̃ s.t. q̃ ⊥ r for all r ∈ A; it follows that
q̃ ⊥ p for all p ∈ E, since if s ≤ q̃ and s ≤ p then A ∪ {s} is an antichain below E.

(iii) Suppose p ≤ π(q), then in particular p ̸⊥ π(q), so there exists q′ witnessing i(p) ̸⊥ q. We
claim that π(q′) ≤ p. Otherwise, there exists r ≤ π(q′) such that r ⊥ p, and thus i(r) ⊥ i(p). Since
q′ ≤ i(p) we have i(r) ⊥ q′, and by definition of reduction r ⊥ π(q′), contradiction.

(iv) If c̃ is a reduct of c, and i(b) ≥ c, then i(b∗) ⊥ c, so b∗ ⊥ c̃ and b ≥ c̃. It follows that c̃ ≤ π(c).
The proof that π(c) is a reduct is similar.

By the completeness of i we have i(π(c)) =
∧

{i(b) : i(b) ≥ c} ≥ c, so i(π(c)) ≥ c and π(c) is
the smallest b ∈ B such that i(b) ≥ c. It is also easy to see that π(i(b)) = b, and that π is order
preserving, so by (iii) it is a projection.

An illustrating example is i : RO(R) → RO(R2), U 7→ U × R, for which π(V ) is literally the
projection onto x-axis (followed by regularization).

Theorem 6.10. For complete Boolean algebras B and C, the following are equivalent:

(i) V C |= there exists a (V, B̌)-generic filter.

(ii) There exists a complete embedding i : b↓ → C for some b ∈ B.

(iii) There exists a projection π : C → B.

Proof. (iii)⇒(i) and (ii)⇒(i) are essentially already proved, although we stated them in the ctm
language, namely M [H] always contains an (M,B)-generic filter.

(ii)⇒(iii): As observed above, the canonical reduction map π : C → b↓ is a projection, and this
is still a projection when viewed as a map to B because b↓ is open.

(i)⇒(ii): By maximal principle there is a C-name Ġ s.t. V C |= Ġ is (V, B̌)-generic. We claim
that the map i : B → C, b 7→ Jb̌ ∈ ĠKC is a Boolean homomorphism and complete, namely it
preserves arbitrary join. First we present a somewhat non-rigorous argument. For example, let
a = b1 ∧ b2, and we want to show Jb̌1 ∈ ĠKC ∧ Jb̌2 ∈ ĠKC = Jǎ ∈ ĠKC . Note that because a Boolean
algebra is separative, two elements are equal iff they belong to exactly the same generic filters.
Now for any (V,C)-generic filter H, denoting G = ĠH , we have Jb̌1 ∈ ĠKC ∧ Jb̌2 ∈ ĠKC ∈ H iff
b1 ∈ G ∧ b2 ∈ G iff a ∈ G iff Jǎ ∈ ĠKC ∈ H, so i preserves meet. Similarly, if a =

∧
i∈I bi, since H

and G are V -complete ultrafiters,
∧

i∈IJb̌i ∈ ĠKC ∈ H iff ∀i ∈ I Jb̌i ∈ ĠKC ∈ H iff ∀i ∈ I bi ∈ G iff
a ∈ G iff Jǎ ∈ ĠKC ∈ H.

Now i may not be injective, but if we let X = {b ∈ B : i(b) = 0}, then i(
∨
X) =

∨
i(X) = 0, so

the kernel of i is the principal ideal generated by a :=
∨
X, and i induces a complete embedding

from B/(a↓) ≃ b↓ to C, where b = a∗. It cannot be that a = 1B since i(1B) = 1C .

Taken literally, the above proof is absurd since the generic filter existence lemma only works for
ctm, not the universe V . It can be made fully rigorous in two ways. First, by reflection theorem
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there exists some Vα that contains all the relevant sets and satisfies as much ZFC as we want. Let
M ≺ Vα be a countable elementary submodel and π : M → M be the transitive collapse. The
above argument does show that in M there is a complete homomorphism from π(B) to π(C), so by
elementarity there is in Vα (and thus in V ) a complete homomorphism from B to C. Alternatively,
we can reason in V C as follows. Suppose a = b1 ∧ b2, so by absoluteness V C |= ǎ = b̌1 ∧ b̌2;
since V C satisfies “Ġ is (V, B̌)-generic”, it also satisfies “ǎ ∈ Ġ iff b̌1 ∈ Ġ and b̌2 ∈ Ġ”, and thus
Jb̌1 ∈ ĠKC ∧ Jb̌2 ∈ ĠKC = Jǎ ∈ ĠKC .

When are two complete Boolean algebras B and C “equivalent” for the purpose of forcing? By the
above theorem there should exist complete embeddings in both directions. It seems reasonable to add
the requirement that they give rise to the same forcing extensions; this implies something stronger
than mere complete embeddings. As before, everything can be made fully rigorous by reasoning in
the Boolean world, but for simplicity let’s pretend we can literally form forcing extensions of V .

Theorem 6.11. For complete Boolean algebras B and C, the following are equivalent:

(i) For every (V,C)-generic filter H, V [H] contains a (V,B)-generic filter G such that V [G] =
V [H].

(ii) {c ∈ C : ∃b ∈ B+ c↓ ≃ b↓} is dense in C+.

Proof. For any c ∈ C, consider some (V,C)-generic filter H containing c. By assumption, V [H]
contains a (V,B)-generic filter G s.t. V [G] = V [H], or equivalently H ∈ V [G], so there exists
u ∈ V B s.t. uG = H. By truth lemma there exists a C-name Ġ, some u ∈ V B and some c0 ∈ H
such that c0 ⊩C“Ġ is (V, B̌)-generic and ǔĠ = Ḣ”. We may assume c0 ≤ c. It suffices to show that
c0↓ is isomorphic to some b↓.

Consider the map i : B → c0↓, b 7→ c0 ∧ Jb̌ ∈ ĠKC . As before this is a homomorphism between
complete Boolean algebras that preserves arbitrary joins, and thus is an embedding when restricted
to b0↓ for some b0. We will be done if i is surjective, since then it is an isomorphism when restricted
to b0↓. Define j : c0↓ → b0↓, c 7→ b0 ∧ Jč ∈ uKB. It is enough to show i(j(c)) = c for any c ≤ c0.

Again, this is easiest done by showing i(j(c)) ∈ H iff c ∈ H for any (V,C)-generic filter
H that contains c0 (since i(j(c)) ≤ c0 and c ≤ c0). First notice that ĠH = i−1(H), because
i(b) ∈ H ⇔ c0 ∧ Jb̌ ∈ ĠKC ∈ H ⇔ b ∈ ĠH . It follows that b0 ∈ ĠH , since i(b0) = c0.

Finally, denote b = j(c), then i(j(c)) ∈ H ⇔ c0 ∧ Jb̌ ∈ ĠKC ∈ H ⇔ Jb̌ ∈ ĠKC ∈ H ⇔ b ∈ ĠH ⇔
b0 ∧ Jč ∈ uKB ∈ ĠH ⇔ Jč ∈ uKB ∈ ĠH ⇔ c ∈ uĠH

⇔ c ∈ H. The last equivalence is due to the
assumption that c0 ∈ H and the definition of c0.

For the Boolean completion ι : P → B, we already showed how to transform P-names to B-names
and vice versa. Now we generalize this to a complete embedding i : P → Q. Define i∗ : V P → V Q

inductively by i∗(τ) = {(i∗(θ), i(p)) : (θ, p) ∈ τ}. We can make the same definition for j : B → C a
complete embedding of Boolean algebras. It is easily checked that τG = i∗(τ)H for any (V,P)-generic
G and (V,Q)-generic H such that i−1(H) = G. Moreover, if ι : P → B and η : Q → C are Boolean
completions, then we have seen that there is a unique embedding j : B → C such that j ◦ ι = η ◦ i.
It can be checked that j∗ ◦ ῑ = η̄ ◦ i∗.
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Lemma 6.12. (i) If j : B → C is a complete embedding between complete Boolean algebras
and φ(x1, . . . , xn) is a ∆1 formula, then j(Jφ(u1, . . . , un)KB) = Jφ(j∗(u1), . . . , j∗(un))KC for any
u1, . . . , un ∈ V B.

(ii) If i : P → Q is a complete embedding between posets and φ(x1, . . . , xn) is a ∆1 formula,
then p ⊩ φ(σ1, . . . , σn) iff i(p) ⊩ φ(i∗(σ1), . . . , i∗(σn)). If “complete” is changed to “dense” then this
holds for arbitrary formula.

Proof. (i) For atomic formulas prove by induction on rank. The extension to ∆1 formula is as usual.

(ii) Let ι : P → B and η : Q → C be Boolean completions. p ⊩ φ(σ) iff ι(p) ≤ Jφ(ῑ(σ))K iff
j(ι(p)) ≤ Jφ(j∗(ῑ(σ)))K iff η(i(p)) ≤ Jφ(η̄(i∗(σ)))K iff i(p) ⊩ φ(i∗(σ)). If i is dense then j : B → C is
an isomorphism, and thus j∗ : V B → V C is an isomorphism of Boolean-valued models.

7 Cores and conventional names

Call u, v ∈ V B equivalent if Ju = vK = 1. For later use in the theory of iterated forcing, we
would like to choose a canonical representative from each equivalence class. There are several ways
for u ̸= v and yet Ju = vK = 1 to happen: u(x) = 0 for some x /∈ dom(v), Jx = yK = 1 for some
x, y ∈ dom(u), or u(x) < Jx ∈ uK. We shall see that if we make sure these don’t happen then we
indeed get a representative.

Inductively define cV B
α by cV B

0 = ∅, at limit stage take union, and at successor stage let cV B
α+1

be the union of cV B
α together with the set of all partial functions u from cV B

α to B such that:

(i) Ju = xK ̸= 1 for any x ∈ cV B
α ;

(ii) for any x ∈ cV B
α , x ∈ dom(u) iff Jx ∈ uK > 0, in which case u(x) = Jx ∈ uK.

The Boolean value is calculated in V B, which makes sense since by induction we have cV B ⊆ V B ;
actually cV B ⊆ V B

+ . Let’s call cV B =
⋃

α∈Ord cV
B

α the class of conventional names. We don’t want
to use the word canonical, since we also call x̌ the canonical name for x ∈ V , and Ġ = {(b̌, b) : b ∈ B}
the canonical name for the generic filter, etc.

Lemma 7.1. For every u ∈ V B, there exists a unique u′ ∈ cV B such that Ju = u′K = 1.

Proof. We show by induction on α that any u ∈ V B
α is equivalent to a name in cV B

α , and names
in cV B

α are mutually non-equivalent. It suffices to show this at successor stage. Let dom(u′) =
{x ∈ cV B

α : Jx ∈ uK > 0} and u′(x) = Jx ∈ uK. Using induction hypothesis it’s easy to show that
Ju = u′K = 1. Either u′ is already equivalent to some name in cV B

α , or u′ ∈ cV B
α+1, both of which

imply u is equivalent to some name in cV B
α+1.

If u, v ∈ cV B
α+1 \ cV B

α , then Ju = vK = 1 implies dom(u) = dom(v) and u(x) = v(x), and thus
u = v.

In general, {v ∈ V B : Jv ∈ uK > 0} or even {v ∈ V B
+ : Jv ∈ uK = 1} is a proper class; for example

if Ju = α̌K = b, Ju = 0̌K = b∗ and v = {(u, b∗)}, then Jv ∈ 2̌K = 1. However, we will show that
{v ∈ cV B : Jv ∈ uK = 1} is a set, called the core of u, and that if u ∈ cV B then its core is a subset
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of dom(u). An application of the mixing lemma shows that u can more or less be identified with its
core, provided that the core is nonempty.
Lemma 7.2. (i) If u, v ∈ cV B and Jv ∈ uK = 1 then v ∈ dom(u). Thus for any u ∈ V B,
Core(u) := {v ∈ cV B : Jv ∈ uK = 1} is a set.

(ii) If Ju ̸= ∅K = 1, then for any w ∈ V B, there exists v ∈ Core(u) s.t. Jw ∈ uK = Jw = vK.

Proof. (i) Let α be the smallest s.t. dom(u) ⊆ cV B
α , and Y =

⋃
x∈dom(u) dom(x). If v ∈ V B is such

that Jv ∈ uK = 1, let v′ = {(y, Jy ∈ vK) : y ∈ Y }. It can be checked that Jv = v′K = 1 and v′ ∈ V B
α ,

and thus the conventional name for v is in cV B
α . In particular, if v ∈ cV B then v ∈ cV B

α , and hence
v ∈ dom(u).

For the “thus” part, if u′ is the conventional name for u then Core(u) = Core(u′).

(ii) By maximal principle (which requires AC) Core(u) ̸= ∅. Choose v0 ∈ Core(u). For any
w ∈ V B, consider the antichain {Jw ∈ uK, Jw /∈ uK} and use the mixing lemma to get a name
v′

0 such that Jv′
0 = wK ≥ Jw ∈ uK and Jv′

0 = v0K ≥ Jw /∈ uK. It follows that Jv′
0 ∈ uK = 1 and

Jv′
0 = wK = Jw ∈ uK. Let v be the conventional name for v′

0.

A consequence of (ii) when we consider ctm is that uG = {vG : v ∈ Core(u)} for any G. Note
that (ii) is analogous to maximal principle: by definition Jw ∈ uK =

∨
v∈dom(u) u(v) ∧ Jw = vK. If

u ∈ cV B, then (ii) tells us the supremum is achieved by some v ∈ dom(u), and moreover u(v) = 1.

These results can be generalized to arbitrary posets, either by modifying the proof or by
the name translation map u 7→ τu = {(τx, p) : x ∈ dom(u) ∧ ι(p) ≤ u(x)}, where ι : P → B
is the Boolean completion; recall that τ̄u = u for u ∈ V B

+ , which implies that for σ ∈ V P,
Core(σ) := {τv : v ∈ Core(σ̄)} is a set of P-names having the analogous properties of a Boolean core.
E.g., if ∀p ∈ P p ⊩ π ∈ σ, then there is a unique τ ∈ Core(σ) s.t. ∀p ∈ P p ⊩ π = τ .

The argument used to prove (ii) is very common, so we isolate it as a lemma.
Lemma 7.3 (Existential completeness). (i) If J∃xφ(x)K = 1 and w ∈ V B, there exists v ∈ V B such
that Jφ(v)K = 1 and Jφ(w)K = Jw = vK.

(ii) Abbreviate ∀p ∈ P p ⊩ φ as ⊩P φ. If ⊩P ∃xφ(x) and V [G] |= φ(τG), then there exists π s.t.
⊩P φ(π) and τG = πG.

Proof. (i) Same as above, replacing x ∈ u by φ(x).

(ii) Let π be obtained as in (i). Since V [G] |= φ(τG), there exists p ∈ G s.t. p ⊩ φ(τ), and thus
p ⊩ τ = π and τG = πG.

So for example, if ⊩P ∃xφ(x) and we want to show that M [G] |= ∀x(φ(x) → ψ(x)), it suffices to
show that if ⊩P φ(τ) then ⊩P ψ(τ).

8 More examples

From now on we tend to drop the hats in canonical names for ground model elements, especially
ordinals.
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We already showed the consistency of ¬CH. Next we want to show the consistency of statements
such as 2ℵ0 = ℵ1 ∧ 2ℵ1 = ℵ3. Let κ be an infinite cardinal, |I| ≥ κ and |J | ≥ 2; denote by Fnκ(I, J)
the collection of all partial functions p : I ⇀ J such that |p| < κ, ordered by reverse inclusion, so
this is a partial order with maximal element ∅. As we will see, this poset isn’t very useful when κ is
singular, so usually it’s assumed to be regular. The special case Fnω(I, 2) has RO(2I) as its Boolean
completion, and we used the latter to show the consistency of ¬CH. An important ingredient was
that delta system lemma implies RO(2κ) has ccc property and thus preserves all cardinals. To study
Fnκ(I, J), we need a general delta system lemma.

Lemma 8.1. Suppose ω ≤ λ < κ are regular cardinals and (xα)α<κ is a family of sets such that
|xα| < λ, and moreover τ<λ < κ for any τ < κ. Then there is an unbounded set A ⊆ κ (hence of
size κ) such that (xα)α∈A is a delta system.

Proof. The set Eκ
λ = {α < κ : cf(α) = λ} is stationary. For any α ∈ Eκ

λ we have |xα ∩ α| < λ,
and thus sup(xα ∩ α) < α since λ is regular. By Fodor’s lemma there exists a stationary A ⊆ Eκ

λ

and some β < κ such that sup(xα ∩ α) < β for all α ∈ A. If supxα, α ∈ A are bounded in κ, say
bounded by γ, then since γ<λ < κ and κ is regular, κ many of the xα are the same, which certainly
form a delta system. Otherwise, we can inductively pick a sequence (αi)i<κ such that αi ∈ A and
αi > supxαj for all j < i; then xαi ∩ xαj ⊆ β for any i < j < κ. Since β<λ < κ, we can refine the
sequence so that xαi ∩ β are the same for all i.

For an uncountable cardinal κ, we say that a poset P satisfies κ-chain condition (κ-cc) if any
antichain A ⊆ P has size strictly less than κ; thus ccc is the same as ℵ1-cc. For every poset P there
is a smallest cardinal κ such that P is κ-cc, and it can be shown that this κ must be regular; put
another way, if κ is singular and P has antichains of size arbitrarily large below κ, then it has an
antichain of size κ. See Jech Theorem 7.15 or Kunen Exercise III.3.94. Jech only proves it for
complete Boolean algebras but the proof can be modified to also work for poset; alternatively one
can consider the Boolean completion.

Lemma 8.2. If P is κ-cc, and λ ≥ κ is a regular cardinal, then λ remains a regular cardinal in
V [G]. It follows that forcing with P preserves all cardinals and cofinalities above κ, i.e., if λ ≥ κ is
a cardinal in V then it remains a cardinal in V [G], and if cf(λ) = τ ≥ κ in V then the same is true
in V [G].

Proof. Suppose θ < λ and f : θ → λ belongs to V [G]. Let ḟ ∈ V P be such that ḟG = f . By truth
lemma there exists p0 ∈ G such that p0 ⊩“ḟ is a map from θ to λ”. A key observation is that for
each α < θ, any p ≤ p0 has an extension q such that q decides f(α), namely q ⊩ ḟ(α) = β for some
β < λ, as can be seen from p0 ⊩“ḟ is a map from θ to λ” and the bounded quantification lemma for
poset. Thus for each α < θ the set Eα = {p ≤ p0 : ∃β < λ p ⊩ ḟ(α) = β} is open dense below p0;
choose an antichain Aα ⊆ Eα that is maximal below p0; for each p ∈ Aα there is by definition some
β < λ such that p ⊩ ḟ(α) = β, and we let Bα be the set of all such β as p varies. Note that Aα and
Bα are in V . We have |Bα| ≤ |Aα| < κ ≤ λ, so sup

(⋃
α<θ Bα

)
< λ by regularity in V . Since p0 ∈ G

and Aα is maximal below p0, we have f(α) ∈ Bα by construction, so the image of f is bounded.

We have shown that every regular cardinal λ ≥ κ remains regular in V [G]. Suppose µ > κ is
a singular cardinal with cf(µ) = λ ≥ κ in V ; first note that µ remains a cardinal in V [G] because
all regular cardinals large enough below µ remain cardinals, and a limit of cardinals is a cardinal.
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Next, it is still true in V [G] that cf(µ) = cf(λ), and since λ is regular in V , by the first paragraph
we have cf(µ) = cf(λ) = λ in V [G].

Lemma 8.3. Fnκ(I, J) is (|J |<κ)+-cc for any infinite cardinal κ. If κ is regular and |J | ≤ 2<κ

then Fnκ(I, J) is (2<κ)+-cc.

Proof. Let µ = |J |<κ. Suppose (pα)α<µ+ are conditions in Fnκ(I, J), so |pα| < κ. We will show
that there exists X ⊆ µ+ such that |X| = µ+ and pα ̸⊥ pβ for any α, β ∈ X, and thus Fnκ(I, J)
doesn’t have antichain of size µ+. We may assume κ is regular, since if it’s singular then there exists
a regular κ′ < κ such that µ+ many of those partial functions pα have size less than κ′.

Since κ is regular, using the induction formula for cardinal arithmetic it can be calculated that
µ<κ = µ. Apply delta system lemma to κ < µ+ and the collection (dom(pα) : α < µ+), we get
a subset X ⊆ µ+ of size µ+ such that dom(pα) ∩ dom(pβ) = R for all different α, β ∈ X, where
R ⊆ µ+ has size less than κ. Since there are only |J |R < µ+ many functions from R to J , by
refining X we may assume pα ↾ R are all the same, and thus pα ̸⊥ pβ for α, β ∈ X.

If κ is regular, then by the induction formula (2<κ)<κ = 2<κ.

We have shown that Fnκ(I, J) preserves all large enough cardinals. Now we show cardinals up
to κ are also preserved. For an uncountable cardinal κ, we say that a poset P is κ-closed if for any
λ < κ and any sequence of conditions (pi)i<λ such that pi ≤ pj whenever i > j, there exists a lower
bound p, namely p ≤ pi for all i < λ. By convention ℵ1-closed is often denoted σ-closed. Note that
it doesn’t matter whether we let λ range over ordinals or cardinals below κ. Clearly if κ is singular
and P is κ-closed then it is actually κ+-closed.

Lemma 8.4. If κ is uncountable regular and P is κ-closed, then for any λ < κ, any function
f : λ → V that is in V [G] is already in V . In particular, all cardinals λ ≤ κ remain cardinals in
V [G] and have the same cofinality.

Proof. Working in V , we shall show that whenever ḟ ∈ V P and p ∈ P are such that p ⊩“ḟ is a
function with domain λ”, there exists q ≤ p and some g : λ → V such that q ⊩ ḟ = g. This implies
that if p ⊩“ḟ is a function with domain λ” then D = {q ≤ p : ∃g q ⊩ ḟ = g} is dense below p, and
thus if G ∋ p then G ∩D ̸= ∅, which means ḟG = g for some g ∈ V .

Define a decreasing sequence of conditions (pi)i≤λ as follows. Let p0 = p, and pi+1 ≤ pi be some
condition that decides f(i), namely there exists x ∈ V such that pi+1 ⊩ ḟ(i) = x. If i ≤ λ is a limit,
by assumption we may let pi be a lower bound of (pj)j<i. Then pλ forces ḟ to equal the ground
model function g, defined by g(i) = the unique x such that pλ ⊩ ḟ(i) = x.

Consequently, any λ ≤ κ that is regular in V remains so in V [G], because there is no new
function from smaller cardinal to λ. Also, if µ < κ and cf(µ) = λ in V then cf(µ) = cf(λ) = λ in
V [G].

It is pretty clear that Fnκ(I, J) is κ-closed as long as κ is regular, so it preserves cardinals and
cofinalities up to κ. If J = {0, 1} and 2<κ = κ then Fnκ(I, J) is κ+-cc, so it preserves cardinals and
cofinalities starting from κ+, which means all cardinals and cofinalities are preserved. In particular,
if we start with V |= GCH and force with Fnℵ1(ℵ3, 2), then V [G] has the same cardinals as V . It also
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has the same P(ω), since the poset is σ-closed so it doesn’t add ω-sequences. A standard density
argument shows 2ℵ1 ≥ ℵ3 in V [G]. To show equality we need one more lemma, whose proof would
be a bit more elegant if we use Boolean completion.

Lemma 8.5. In V , suppose P is κ-cc and µ = (|P|<κ)λ. Then in V [G] we have |P(λ)| ≤ µ.

Proof. Define a nice name for a subset of λ to be a name of form
⋃

α<λ{α̌} ×Aα where Aα ⊆ P is
an antichain. It’s easy to count in V that there are at most µ many nice names. If p and ẋ are
such that p ⊩“ẋ is a subset of λ”, choose for each α < λ an antichain Aα that is maximal among
subsets of {p : p ⊩ α ∈ ẋ}. Let ẏ =

⋃
α<λ{α̌} × Aα; then ẏ is a nice name and it can be checked

that p ⊩ ẋ = ẏ. Thus in V [G], any subset of λ is the interpretation of some nice name.

|Fnκ(I, J)| = supτ<κ |I|τ · |J |τ = (|I| · |J |)<κ. Therefore, if V |= GCH and we force with
Fnℵ1(ℵ3, 2), then in V [G] we have 2ℵ1 = 2ℵ2 = ℵ3 and 2ℵα = ℵα+1 for all other α.

Some notations: Fnκ(κ× λ, 2) for regular κ is also denoted Add(κ, λ), called the forcing that
adds λ many Cohen subsets of κ; note that if λ > κ then Fnκ(κ×λ, 2) ≃ Fnκ(λ, 2) and if λ ≤ κ then
Fnκ(κ× λ, 2) ≃ Fnκ(κ, 2). This forcing preserves all cardinals and cofinalities as long as 2<κ = κ.
On the other hand, Fnκ(κ, λ) for regular κ is denoted Col(κ, λ), called the standard forcing that
collapses λ to κ, since by a density argument, if G is a generic filter then

⋃
G is a surjection from κ

to λ. This is sometimes referred to as the Lévy collapse, but we reserve that name for the forcing
Col(κ,< λ) for inaccessible λ that collapses all cardinals in the interval (κ, λ) to κ and makes
λ = (κ+)V [G].

In general, we say that a cardinal κ ∈ V is preserved in a forcing extension V [G] if V [G] |=“κ is
a cardinal”; otherwise it is collapsed. For example, Col(ω, ω1) collapses ω1 and preserves all other
cardinals; we have ℵV [G]

1 = ℵV
2 , in fact ℵV [G]

n = ℵV
n+1 for all finite n, and ℵV [G]

α = ℵV
α for α ≥ ω.

Besides consistency proof, forcing also opens the gateway to many interesting new questions,
such as “what are the possible patterns of cardinal preservation in a forcing extension”. Some basic
observations: a singular cardinal in V either stays singular in V [G] or is collapsed, and a successor
cardinal either remains a successor or is collapsed. Can a regular cardinal κ become a singular
cardinal? Note that κ must be a limit cardinal in V , and hence an inaccessible. As we will see
later, the naive way to singularize κ doesn’t work, and an affirmative answer requires a measurable
cardinal.

As another example, it is open whether ℵV
ω+1 = ℵV [G]

2 is possible, or more generally whether a
successor of singular cardinal can become a successor of (uncountable) regular cardinal. Note that
Col(ω,ℵω) is ℵω+1-cc and achieves ℵV

ω+1 = ℵV [G]
1 , but the naive generalization Col(ℵ1,ℵω) doesn’t

work, because it is equivalent to Col(ℵ1,ℵℵ0
ω ) and thus collapses ℵω+1. To see why, by definition

Col(ℵ1,ℵω) = Fnℵ1(ℵ1,ℵω) ≃ Fnℵ1(ℵ1 × ℵ0,ℵω); a countable partial function from ℵ1 to ℵℵ0
ω can be

viewed as a countable partial function from ℵ1 × ℵ0 to ℵω via currying, which gives an embedding
of Col(ℵ1,ℵℵ0

ω ) into Fnℵ1(ℵ1 × ℵ0,ℵω); it’s not hard to see that this embedding is dense.

We mentioned that Fnκ(I, J) for singular κ isn’t very useful. For example, consider the poset
that “adds a Cohen subset of ℵω”, namely Fnℵω (ℵω, 2). We claim that it collapses ℵω. We may
equivalently consider Fnℵω (X, 2) where X =

⊔
n ℵn × ℵn, so the forcing adds a subset Gn of ℵn × ℵn

for each n; by a density argument, for each α < ℵω there exists n such that Gn is up to a small
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difference just a line ℵn × {α}; this defines a surjection from ω to ℵV
ω . By a so-called “absorption

theorem”, this shows Fnℵω (ℵω, 2) is actually equivalent to Col(ω,ℵω); see Jech Lemma 26.7.

This shows the naive way to force “ℵω is a strong limit and 2ℵω > ℵω+1” (namely ¬SCH at
ℵω) doesn’t work. In fact, forcing ¬SCH requires a measurable cardinal of Mitchell order κ++—
something quite a bit stronger than a mere measurable. We outline how to get the consistency of
¬SCH. First we need to get a measurable κ satisfying 2κ = κ++; this is easiest done by starting
with a κ that is supercompact, and then use the Silver’s method of Easton iteration to blow up 2κ

while ensuring it remains measurable. Then we use Prikry forcing to change the cofinality of κ to ω
while preserving all cardinals, thus obtaining ¬SCH at κ; to bring this down to ℵω requires “Prikry
forcing interleaved with collapse”.

Finally let us explain why the naive approach to singularize an inaccessible cardinal κ doesn’t
work. It is tempting to consider the poset P of all finite increasing sequences of ordinals below κ.
Unfortunately this collapses tons of things. Say the generic sequence is (αn : n < ω), then for any
α < κ, by density there exists n such that αn is of form β +α, where β > α is some indecomposable
ordinal (so that each n corresponds to at most one α), so in the extension there is a surjection from
ω to κ. We may try to modify the poset by only considering sequences of indecomposable ordinals,
or even cardinals, but then the same issue occurs: by density, for every α < κ there exists n for
which αn = ℵβ+α where β > α is indecomposable. So maybe we want the sequence to eventually
consist of limit cardinals, and also cardinals that are fixed points of ℵ function, cardinals that are
fixed points of fixed points, etc. Consider the forcing consisting of conditions (s, C) where s is a
finite increasing sequence of ordinals below κ and C belongs to the club filter; to extend (s, C) we
are allowed to extend s using finitely many elements from C and also shrinking C; this is starting
to look similar to Prikry forcing. However this still doesn’t work, because for every regular cardinal
τ < κ and every club C, there are many ordinals in C of cofinality τ , so by density αn 7→ cfV (αn)
surjects onto V -regular cardinals below κ. To fix this we would want the sequence to eventually
consist of regular cardinals, which suggests κ should be Mahlo. Continuing this line of thought, we
are eventually led to the standard Prikry forcing.

9 Iteration

From now on we assume for convenience that every poset P has a distinguished maximal element
1P (there might exist other maximal elements). Then ⊩P φ is the same as 1P ⊩ φ.

If we can force once we can force any finitely many times, but it’s not clear how to do it infinitely
many times, in order to, e.g., violate GCH at all ℵn. Say we force over Mn to get Mn+1; the union⋃

nMn is most often not a model of power set axiom. The idea is to first try to combine two steps
into one: if G is (M,P)-generic, Q ∈ M [G] and H is (M [G],Q)-generic, we will find a poset R ∈ M
and a filter K that is (M,R)-generic such that M [K] = M [G][H]. Then it is not difficult to combine
finitely many steps into one. Now for infinitely many steps, instead of taking the limit of models,
we take the limit of posets.

The simplest case of iteration is when Q ∈ M , namely a product P × Q. It is easy to show
that a filter K on P × Q is the same as a product of filters G×H. Using the complete embedding
i : P → P × Q, p 7→ (p, 1Q), or alternatively the projection π : P × Q → P, (p, q) 7→ p, we see that if
K is generic over M then so is G, similar for H. But the converse doesn’t hold: G and H being
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generic over M doesn’t imply that G×H is generic. For example, G×G is almost never generic,
essentially for the same reason that the diagonal D = {(x, y) ∈ R2 : x = y} is nowhere dense. It
turns out we need H to be generic over M [G].

Lemma 9.1 (Factoring a product). K = G×H is (M,P × Q)-generic iff G is (M,P)-generic and
H is (M [G],Q)-generic.

Proof. Suppose G × H is P × Q generic over M . That G is (M,P)-generic is immediate since P
completely embeds into P × Q. Let p0 ∈ G s.t. p0 ⊩ Ḋ is a dense set in Q. Let E = {(p, q) : p ⊩
q ∈ Ḋ}.

H ∩D ̸= ∅ ⇔ ∃q ∈ H(q ∈ D)
⇔ ∃q ∈ H∃p ∈ G(p ⊩ q ∈ Ḋ)
⇔ ∃(p, q) ∈ G×H (p, q) ∈ E

So it suffices to show that E is dense below (p0,1).

p0 ⊩ Ḋ is dense in Q
⇔ p0 ⊩ ∀q∃q′ ≤ q(q′ ∈ Ḋ)
⇔ ∀q p0 ⊩ ∃q′ ≤ q(q′ ∈ Ḋ)
⇔ ∀q∀p ≤ p0∃p′ ≤ p∃q′ ≤ q(p′ ⊩ q′ ∈ Ḋ)
⇔ E is dense below (p0,1)

where for example, ∀q abbreviates ∀q ∈ Q, to which we apply the bounded quantification lemma.
Thus H ∩D ̸= ∅, and H is (M [G],Q)-generic.

Conversely suppose G is (M,Q)-generic and H is (M [G],Q)-generic, and E ⊆ P × Q is a dense
set in M .

(G×H) ∩ E ̸= ∅
⇔ ∃q ∈ H∃p ∈ G, (p, q) ∈ E

⇐ {q : ∃p ∈ G, (p, q) ∈ E} is dense in Q
⇔ ∀q∃q′ ≤ q∃p ∈ G, (p, q′) ∈ E

⇔ ∀q∃p ∈ G∃q′ ≤ q, (p, q′) ∈ E

⇐ ∀q {p : ∃q′ ≤ q, (p, q′) ∈ E} is dense in P
⇔ ∀q∀p∃p′ ≤ p∃q′ ≤ q, (p′, q′) ∈ E

So G×H is generic.
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When both P and Q are Cohen forcing, this is related to the Kuratowski-Ulam theorem.

The simplest two step iteration that is not a product is when Q ∈ M [G] is a subset of some
(Q0,≤) ∈ M with the induced order. Let Q̇ be such that Q̇G = Q. A reasonable guess of the
iteration poset is P ∗ Q̇ := {(p, q) ∈ P × Q0 : p ⊩ q ∈ Q̇}, a subposet of the product poset. This
indeed works. More generally, if Q̇, ≤̇Q, and 1̇Q are three P-names such that ⊩P“Q̇ equipped with
≤̇Q is a poset with maximal element 1̇Q”, then the composite poset is defined as

P ∗ Q̇ := {(p, q̇) ∈ P × dom(Q̇) : p ⊩ q ∈ Q̇}, whose order is

(p1, q̇1) ≤ (p2, q̇2) iff p1 ≤P p2 and p1 ⊩P q̇1≤̇Qq̇2.

It can be checked that this is a poset (usually not a partial order) with maximal element (1P, 1̇Q).
It’s natural that if p1 ≤ p2 then we should have (p1, q̇) ≤ (p2, q̇), and if p ⊩P q̇1≤̇Qq̇2 we should have
(p, q̇1) ≤ (p, q̇2), and these forces the above definition of the order. The map p 7→ (p, 1̇Q) is a complete
embedding of P into P ∗ Q̇, and (p, q̇) 7→ p is a projection. The set {(p, q̇) : ∃p′[p ≤ p′ ∧ (q̇, p′) ∈ Q̇]}
is dense in P ∗ Q̇, which is sometimes useful.

Lemma 9.2 (Factoring a two-step iteration). (i) If K is (M,P ∗ Q̇)-generic, and G is the (M,P)-
generic filter induced by K, then H := {q̇G : ∃p (p, q̇) ∈ K} is (M [G], Q̇G)-generic.

(ii) If G is (M,P)-generic and H is (M [G], Q̇G)-generic, then K = G ∗H := {(p, q̇) ∈ P ∗ Q̇ :
p ∈ G ∧ q̇G ∈ H} is (M,P ∗ Q̇)-generic. It follows that we have K = G ∗H in (i).

Proof. (i) H is a filter because if (p1, q̇1) and (p2, q̇2) are in K, then there exists (p3, q̇3) ∈ K s.t.
p3 ≤ p1, p3 ≤ p2, p3 ⊩ q̇3 ≤ q̇1 and p3 ⊩ q̇3 ≤ q̇2; since p3 ∈ G we have (q̇3)G ≤ (q̇1)G and
(q̇3)G ≤ (q̇2)G. Upward closure is similar.

Suppose p0 ∈ G forces that Ḋ is dense in Q̇.

H ∩ ḊG ̸= ∅ ⇔ ∃(p, q̇) ∈ K q̇G ∈ ḊG

⇔ ∃(p, q̇) ∈ K ∃(p′, 1̇) ∈ K p′ ⊩ q̇ ∈ Ḋ

⇔ ∃(p, q̇) ∈ K p ⊩ q̇ ∈ Ḋ

so it suffices to show that E = {(p, q̇) : p ⊩ q̇ ∈ Ḋ} is dense below (p0, 1̇).

p0 ⊩ Ḋ is dense
⇔p0 ⊩ ∀q ∈ Q̇∃q′ ∈ Q̇ q′ ≤ q ∧ q′ ∈ Ḋ

⇔∀q̇ ∈ dom(Q̇)∀p ≤ p0, p ⊩ q̇ ∈ Q̇ → p ⊩ ∃q′ ∈ Q̇ q′ ≤ q̇ ∧ q′ ∈ Ḋ

⇔∀(p, q̇) ≤ (p0, 1̇) p ⊩ ∃q′ ∈ Q̇ q′ ≤ q̇ ∧ q′ ∈ Ḋ

⇔∀(p, q̇) ≤ (p0, 1̇) {p′ : ∃q̇′ ∈ dom(Q̇)[p′ ⊩ q̇′ ∈ Q̇ ∧ p′ ⊩ q̇′ ≤ q̇ ∧ q̇′ ∈ Ḋ]} is dense below p

⇔∀(p, q̇) ≤ (p0, 1̇)∀r ≤ p∃p′ ≤ r∃q̇′ ∈ dom(Q̇)[p′ ⊩ q̇′ ∈ Q̇ ∧ p′ ⊩ q̇′ ≤ q̇ ∧ q̇′ ∈ Ḋ]
⇔∀(p, q̇) ≤ (p0, 1̇)∀r ≤ p∃(p′, q̇′) ≤ (r, q̇) p′ ⊩ q̇′ ∈ Ḋ

⇔∀(p, q̇) ≤ (p0, 1̇)∃(p′, q̇′) ≤ (p, q̇) p′ ⊩ q̇′ ∈ Ḋ
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⇔E is dense below (p0, 1̇)

(ii) Let E ⊆ P ∗ Q̇ be a dense open set.

(G ∗H) ∩ E ̸= ∅
⇐{q̇G : ∃p ∈ G (p, q̇) ∈ E} is dense in Q̇G

⇔∀q̇0 ∈ dom(Q̇)[∃p0 ∈ G p0 ⊩ q̇0 ∈ Q̇ → ∃p ∈ G∃q̇ ∈ dom(Q̇) q̇G ≤ (q̇0)G ∧ (p, q̇) ∈ E]
⇔∀q̇0 ∈ dom(Q̇)[∃p0 ∈ G p0 ⊩ q̇0 ∈ Q̇ → ∃p ∈ G∃q̇ ∈ dom(Q̇) p ⊩ q̇ ≤ q̇0 ∧ (p, q̇) ∈ E]
⇐∀q̇0 ∈ dom(Q̇){p : [p ⊩ q̇0 /∈ Q̇] ∨ [∃q̇ ∈ dom(Q̇) p ⊩ q̇ ≤ q̇0 ∧ (p, q̇) ∈ E]} is dense in P
⇔∀q̇0 ∈ dom(Q̇)∀p0 p0 ⊩ q̇0 ∈ Q → ∃p∃q̇ ∈ dom(Q̇)[p ≤ p0 ∧ p ⊩ q̇ ≤ q̇0 ∧ (p, q̇) ∈ E]
⇔∀(p0, q̇0)∃(p, q̇) ≤ (p0, q̇0) (p, q̇) ∈ E

⇔E is dense

So G ∗H is generic. In (i) it can be checked that K ⊇ G ∗H, and since they are both generic
they are equal.

This definition of iteration is as in Kunen. Although it’s quite natural, the requirement p ⊩ q ∈ Q̇
in the definition of P ∗ Q̇ makes the proof quite messy compared to the case of product. More
problematic is the restriction q̇ ∈ dom(Q̇); this works well for finite iteration or more generally finite
support iteration (which is enough for showing consistency of Martin’s axiom), but is badly behaved in
general; roughly speaking, under the “correct” definition, a countable support iteration of countably
closed forcings is again countably closed, but under Kunen’s definition there exist counterexamples;
see Kunen p.356. Jech defines the iteration poset as P ∗ Q̇ := {(p, q̇) : p ∈ P ∧ 1P ⊩ q ∈ Q̇}, but of
course this is a terrible definition since it defines a proper class. We can remedy this by using core.
So let’s redefine the iteration poset as P ∗ Q̇ := P × Core(Q̇), with the same order as before; note
that Core(Q̇) ̸= ∅ since 1P forces that Q̇ is a poset. The factor lemma still holds. This definition of
two step iteration is equivalent to the previous one: denote Kunen’s iteration by P ∗K Q̇; recall that
if p ⊩ q̇ ∈ Q̇ then there exists ẋ ∈ Core(Q̇) s.t. p ⊩ q̇ = ẋ; define a map (p, q̇) 7→ (p, ẋ); it can be
checked that this is a dense embedding from P ∗K Q̇ to P ∗ Q̇.

We can then define three step iteration (P ∗ Q̇) ∗ Ṙ, where Q̇ is a P-name for a poset and Ṙ is a
P ∗ Q̇-name, and then ((P ∗ Q̇) ∗ Ṙ) ∗ Ṡ, etc. If we have a sequence P0, Q̇0, Q̇1, Q̇2 . . . where Q̇n is
a Pn-name for a poset, Pn = P0 ∗ Q̇0 ∗ · · · ∗ Q̇n−1 (left associative), then there is both a complete
embedding from Pn to Pn+1 and a projection from Pn+1 to Pn; at the ω-th stage we can either
form the direct limit of the complete embeddings, or the inverse limit of the projections; the direct
limit would be the same as finite support iteration, and the inverse limit the same as countable/full
support iteration.

To avoid handling ugly expressions like (((p, q̇), ṙ), ṡ), we replace them by tuples (p, q̇, ṙ, ṡ). Thus
we define general transfinite iteration as follows.

Definition 9.3. An α-stage iterated forcing consists of ((Pξ,≤ξ, 1ξ) : ξ ≤ α) and ((Q̇ξ, ≤̇Qξ
, 1̇Qξ

) :
ξ < α), such that:
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(i) Pξ is a set of sequences of length ξ, and (Pξ,≤ξ, 1ξ) is a poset with maximal element 1ξ; in
particular P0 = {∅} and 1ξ = ∅.

(ii) Q̇ξ, ≤̇Qξ
, and 1̇Qξ

are Pξ-names such that ⊩Pξ
“Q̇ξ equipped with ≤̇Qξ

is a poset with maximal
element 1̇Qξ

”, and 1̇Qξ
∈ Core(Q̇ξ).

(iii) A sequence p of length ξ + 1 belongs to Pξ+1 iff p↾ξ ∈ Pξ and p(ξ) ∈ Core(Q̇ξ).

The order ≤ξ+1 is defined by p1 ≤ξ+1 p2 iff p1↾ξ ≤ξ p2↾ξ and p1↾ξ ⊩Pξ
p1(ξ)≤̇Qξ

p2(ξ).

(iv) If γ ≤ α is a limit, then Pγ is a subset of {p : dom(p) = γ ∧ ∀ξ < γ[p↾ξ ∈ Pξ]}. If equality
holds, we say the iteration takes inverse limit at γ.

Pγ must also contain the set {p : dom(p) = γ ∧ ∃ξ < γ[p↾ξ ∈ Pξ ∧ ∀ξ ≤ η < γ p(η) = 1̇Qη ]}. If
equality holds, we say the iteration takes direct limit at γ.

We also require that if p ∈ Pγ , ξ < γ and q ≤ξ p↾ξ (implicitly q ∈ Pξ), then q⌢p↾[ξ, γ) ∈ Pγ ,
where q⌢p↾[ξ, γ) means the sequence p′ defined by p′(η) = q(η) if η < ξ and p′(η) = p(η) if ξ ≤ η < γ.

The order ≤γ is defined by p1 ≤γ p2 iff p1↾ξ ≤ξ p2↾ξ for all ξ < γ.

(v) It follows by induction that the sequence (1̇Qη : η < ξ) is in Pξ and is a maximal element.
We require that 1ξ is equal to this element.

Note that Pξ+1 is isomorphic to Pξ ∗ Q̇ξ via the map p⌢q̇ 7→ (p, q̇). The third clause in the
limit case ensures the restriction map from Pγ to Pξ is a projection, and the map from Pξ to Pγ

defined by concatenating p ∈ Pξ with 1̇Qη , ξ ≤ η < γ is a complete embedding; by induction this
is true for all γ, not just limits. For brevity we often simply write, e.g., (Q̇ξ : ξ < α) instead of
((Q̇ξ, ≤̇Qξ

, 1̇Qξ
) : ξ < α). The iteration is completely determined by ((Q̇ξ, ≤̇Qξ

, 1̇Qξ
) : ξ < α) and

what happens at limit stages.

If G = Gα is Pα-generic, then it induces a Gξ that is Pξ-generic, and Gξ+1 induces an Hξ that is
(Q̇ξ)Gξ

-generic. This is enough for many applications of iterated forcing.

A natural question is whether ∗ is associative, i.e., whether (P ∗ Q̇) ∗ Ṙ is the same as P ∗ (Q̇ ∗ Ṙ).
It is not immediately clear what Q̇ ∗ Ṙ even means. Essentially we need to prove a factor lemma for
general iteration, namely for any β < α, Pα can be viewed as the iteration Pβ followed by another
iteration of length α− β (the unique ordinal γ s.t. β + γ = α). Here is the plan: first we show that
for any complete embedding i : P → R between posets, there is a P-name Q̇ for a poset so that R is
equivalent to P ∗ Q̇; so complete embedding and iteration are actually the same thing. In particular,
if Pα is an iterated forcing and β < α, the complete embedding Pβ → Pα induces an equivalence
between Pα and some Pβ ∗ Ṙβα, where Ṙβα is thought of as the “remainder”. Then we show that
Rβα can be viewed as an iteration in M [Gβ].

We wish to motivate this using Boolean algebra, so let us digress for a moment and redo the
basic two step iteration using Boolean algebra. Suppose M |= B is a complete Boolean algebra and
MB |=“Ċ is a complete Boolean algebra”. Let D = Core(Ċ). Then D is naturally endowed with a
Boolean algebra structure. For example, if d1, d2 ∈ D then MB |= ∃d(d ∈ Ċ and d = d1 ∨Ċ d2), so by
maximal principle and the property of core, there exists a unique d ∈ D for which MB |= d = d1∨Ċd2,
which we define as d1 ∨ d2; also d1 ≤ d2 iff MB |= d1 ≤Ċ d2. This D is complete, since if X ⊆ D

then MB |= ∃d(d ∈ Ċ and d =
∨Ċ Ẋ), where Ẋ = {(d, 1) : d ∈ X}.
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Let us write D = B ∗b Ċ to distinguish this from the poset iteration. We want to show that
they are somehow the same. Firstly, there is a complete embedding i : B → D defined as follows:
let 0̇, 1̇ ∈ D be the minimal and maximal element of D respectively; for b ∈ B, let ub be a B-name
such that Jub = 1̇K = b and Jub = 0̇K = b∗ (using the mixing lemma); observe that Jub ∈ ĊK = 1, so
ub is equivalent to some unique element of D, which is defined as i(b).

Now what is the name for the positive part of Ċ? It is not D \ {0̇}. It can be shown that
b ⊩ d ̸= 0̇ iff b is a reduct of d w.r.t. the complete embedding i. Thus a natural name for the positive
part of Ċ is Ċ+ := {(d, b) ∈ D × B+ : b is a reduct of d}. Then the Kunen iteration B+ ∗K Ċ+

contains {(b, d) ∈ B ×D : b is a reduct of d} as a dense subset, and is ordered by (b1, d1) ≤ (b2, d2)
iff b1 ≤ b2 and b1 ⊩ d1 ≤Ċ d2. The map from B+ ∗ Ċ+ to D+ that sends (b, d) to i(b) ∧ d is a dense
embedding. This shows the Boolean iteration D = B ∗b Ċ is equivalent to the poset iteration.

Conversely, if M |= i : B → D is a complete embedding between complete Boolean algebras,
then we shall show that there exists a B-name Ċ such that MB |=“Ċ is a complete Boolean algebra”
and D ≃ B ∗b Ċ. If G is (M,B)-generic, then i(G) generates a filter on D in M [G].

Lemma 9.4. The quotient Boolean algebra D/i(G) is complete. Equivalently, in the preorder ≤G

defined on D by d1 ≤ d2 iff d1 ∧ i(b) ≤ d2 ∧ i(b) for some b ∈ G, any X ⊆ D has a supremum.

Proof. We write down full details mainly for practice, as this is Exercise 16.4 in Jech. As a warm
up let’s show if X ∈ M then it has a supremum. We claim that e =

∨D X is the supremum. If f is
an upper bound of X, then for any d ∈ X there exists b ∈ G such that d ∧ f∗ ∧ i(b) = 0. Recall the
reduction map π : D → B defined by π(d) =

∧
{b ∈ B : i(b) ≥ d}; it has the property that π(d) is

the smallest b s.t. i(b) ≥ d; thus π(
∨

i di) =
∨

i π(di). Since d ∧ f∗ ⊥ i(b) = 0, by definition of π
we have π(d ∧ f∗) ⊥ b, namely π(d ∧ f∗)∗ ∈ G. By M -completeness of G,

∧
d∈X π(d ∧ f∗)∗ ∈ G, so

π(e ∧ f∗)∗ ∈ G, π(e ∧ f∗) ⊥ b for some b ∈ G, and iπ(e ∧ f∗) ⊥ i(b) = 0. Since iπ(e ∧ f∗) ≥ e ∧ f∗

we have e ∧ f∗ ⊥ i(b) = 0, so e ≤G f .

In general, if JẊ ⊆ DK = 1, in M let e =
∨

{d ∧ i(Jd ∈ ẊK) : d ∈ D}. Suppose f is an upper
bound of ẊG. For every d ∈ D, if Jd ∈ ẊK ∈ G then d ≤G f , which by the same argument as above
implies π(d ∧ f∗)∗ ∈ G. Thus for arbitrary d ∈ D, Jd ∈ ẊK∗ ∨ π(d ∧ f∗)∗. By M -completeness
we have G ∋

∧
d∈D[Jd ∈ ẊK∗ ∨ π(d ∧ f∗)∗] =

[∨
d∈DJd ∈ ẊK ∧ π(d ∧ f∗)

]∗, so there exists b ∈ G
s.t. b ⊥

∨
d∈DJd ∈ ẊK ∧ π(d ∧ f∗), and therefore i(b) ⊥

∨
d∈D i(Jd ∈ ẊK) ∧ d ∧ f∗, or i(b) ⊥ e ∧ f∗,

recalling that i is a complete embedding, and also iπ(d) ≥ d. It follows that e ≤G f , thus finishing
the proof that D/i(G) is a complete Boolean algebra.

Now we actually need a B-name for the Boolean algebra D/i(G), but it’s a bit tedious to write
down directly so we omit it. Instead note that the poset ({d ∈ D+ : d ̸⊥ i(b), ∀b ∈ G},≤) densely
embeds into ((D/i(G))+,≤G), and it has a simple name Ṙ = {(ď, π(d)) : d ∈ D}. Then the Kunen
iteration B+ ∗K Ṙ is equivalent to D+, and thus B ∗b Ċ ≃ D. Indeed, B+ ∗K Ṙ contains the dense
subset {(b, ď) : b ≤ π(d)}, which is isomorphic to {(b, d) ∈ B+ ×D+ : b ≤ π(d)} viewed as a subposet
of B+ × D+. The map (b, d) 7→ i(b) ∧ d is a dense embedding into D; compatibility is preserved
because if (b1, d1) ⊥ (b2, d2) then b1 ∧ b2 ⊥ π(d1 ∧ d2), so i(b1) ∧ i(b2) ∧ d1 ∧ d2 = 0.

Here is how to generalize the above to posets. Suppose i : P → R is a complete embedding. Let
Q̇ = {(ř, p) : r ∈ R∧ p ∈ P∧ p is a reduct of r}, viewed as a (random) subposet of R, then both the
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iteration P ∗ Q̇ and R densely embed into the Boolean completion of R, and are therefore equivalent
for forcing. See also Kunen p.351.

Back to general iteration. If Pα is an α-stage iteration and β < α, then there is a complete
embedding i : Pβ → Pα defined by filling in 1̇Qξ

s. Applying the above definition literally may not be
the best option, since although q ∈ Pβ is a reduct of p ∈ Pα if q ≤β p↾β, the converse may not hold
if Pβ is not separative. So we simply define the Pβ-name Ṙβα by Ṙβα = {(p̌, p↾β) : p ∈ Pα}. Then
Pβ ∗ Ṙβα is forcing equivalent to Pα. Indeed, the Kunen iteration Pβ ∗K Ṙβα has {(q, p̌) : q ≤β p↾β}
as a dense subset, which in turn has a dense set {(q, p̌) : q = p↾β} that is isomorphic to Pα; recall
that if q ≤β p↾β then q⌢p↾[β, α) ∈ Pα. So Pα densely embeds into Pβ ∗ Ṙβα.

Recall our convention that G is Pα-generic and Gβ is the induced Pβ-generic filter. It is clear
that Rβα := (Ṙβα)Gβ

= {p ∈ Pα : p↾β ∈ Gβ}. Now we want to show that in M [Gβ], Rβα looks like
an iteration (P(β)

ξ : ξ ≤ α− β) built from some (Q̇(β)
ξ : ξ < α− β). Informally, P(β)

ξ = Rβ,β+ξ and
Q̇(β)

ξ = Q̇β+ξ; the problem is that Q̇β+ξ is a Pβ+ξ-name, but Q̇(β)
ξ is supposed to be a P(β)

ξ -name for
a poset.

We need a name translation map from the ground model to a forcing extension. In general,
for a two step iteration P ∗ Q̇, given a P-generic G, there is a map i in M [G] that transforms a
P ∗ Q̇-name τ to a Q̇G-name i(τ), such that for any Q̇G-generic H, i(τ)H = τK where K = G ∗H =
{(p, q̇) : p ∈ G ∧ q̇G ∈ H}. Inductively let i(τ) = {(i(θ), q̇G) : ∃p ∈ G (θ, (p, q̇)) ∈ τ}; recall that
q̇ ∈ Core(Q̇) in our definition of iteration so q̇G ∈ Q̇G always holds. Then i(τ)H = {i(θ)H : ∃q̇∃p ∈
G[(θ, (p, q̇)) ∈ τ ∧ q̇G ∈ H]} = {θK : ∃(p, q̇) ∈ K[(θ, (p, q̇)) ∈ τ ]} = τK .

For any p, if p ∈ G then (p, q̇) ⊩ φ(τ) in M implies q̇G ⊩ φ(i(τ)) in M [G], because H ∋ q̇G →
K ∋ (p, q̇) → M [K] |= φ(τK) → M [G][H] |= φ(i(τ)H). Moreover, we claim that i is surjective
from MP∗Q̇ to M [G]Q̇G . For this we need to find canonical P-names for Q̇G-names, i.e., elements
in M [G]Q̇G . Inductively define Xα such that {τG : τ ∈ Xα} = M [G]Q̇G

α , as follows. X0 = ∅ and
Xα =

⋃
β<αXβ if α is a limit. An element in M [G]Q̇G

α+1 is a subset of M [G]Q̇G
α × Q̇G, so it is equal to

some πG where π consists of certain pairs (op(σ, q̇), p) where σ ∈ Xα, p ∈ P and q̇ ∈ Core(Q̇). Let
Xα+1 be the set of all such π. Also let X =

⋃
α∈OrdM Xα. Next we define a map that inductively

sends π ∈ Xα to π̄ ∈ MP∗Q̇
α , such that πG = i(π̄); this would prove the surjectivity of i. Simply

define π̄ by replacing all (op(σ, q̇), p) ∈ π with (σ̄, (p, q̇)).

Theorem 9.5 (Factoring a general iteration). In M [Gβ], Rβα densely embeds into an iteration
(P(β)

ξ : ξ ≤ α− β) built from some (Q̇(β)
ξ : ξ < α− β).

Proof. First fix some notations. For any 0 ≤ ξ ≤ α− β, there is a map that changes a Pβ+ξ-name
to a Pβ ∗ Ṙβ,β+ξ-name, since the former densely embeds into the latter; then in M [Gβ ] there is the
above procedure that transforms a Pβ ∗ Ṙβ,β+ξ-name to Rβ,β+ξ-name. Denote the composition as
iξ, which transforms a Pβ+ξ name to a Rβ,β+ξ-name. So iξ(Q̇β+ξ) is a Rβ,β+ξ-name for a poset.
Working in M [Gβ ], we inductively do the following for ξ ≤ α− β: define P(β)

ξ , as well as a surjective
(hence dense) embedding ιξ : Rβ,β+ξ → P(β)

ξ ; then ιξ induces a map ιξ∗ that changes a Rβ,β+ξ-name
to a P(β)

ξ -name, and (except for ξ = α− β) we let Q̇(β)
ξ = ιξ∗(iξ(Q̇β+ξ)).

P(β)
0 = {∅} must hold by our definition of iteration. Rβ,β is by definition Gβ , which when viewed
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as a poset is directed, so the constant map ι0 from Rβ,β to P(β)
0 is a surjective embedding. As

indicated above, we use ι0∗ to change the Rβ,β-name i0(Q̇β) to a P(β)
0 -name for a poset, denoted

Q̇(β)
0 . It is essentially just (Q̇β)Gβ

.

At a successor ξ+1, let P(β)
ξ+1 be defined as in the definition of iteration forcing, namely it consists of

all p⌢q̇ where p ∈ P(β)
ξ and q̇ ∈ Core(Q̇(β)

ξ ). Define ιξ+1 : Rβ,β+ξ+1 → P(β)
ξ+1 as follows. If p ∈ Rβ,β+ξ+1

then p↾ξ ∈ Rβ,β+ξ and p(ξ) ∈ Core(Q̇β+ξ). Let ιξ+1(p) = ιξ(p↾ξ)⌢q̇, where q̇ ∈ Core(Q̇(β)
ξ ) is

determined as follows. Since ⊩Pβ+ξ
p(ξ) ∈ Q̇β+ξ, we have ⊩Rβ,β+ξ

iξ(p(ξ)) ∈ iξ(Q̇β+ξ), and
therefore ⊩P(β)

ξ

ιξ∗(iξ(p(ξ))) ∈ Q̇(β)
ξ ; we let q̇ ∈ Core(Q̇(β)

ξ ) be the unique element such that

⊩P(β)
ξ

ιξ∗(iξ(p(ξ))) = q̇. Then Q̇(β)
ξ+1 is defined using ιξ+1∗ as before.

We need to check surjectivity of ιξ+1, which boils down to the surjectivity of p(ξ) 7→ q̇. Using
the induction hypothesis that ιξ is a dense embedding, if ⊩P(β)

ξ

q̇ ∈ Q̇(β)
ξ then there is a Rβ,β+ξ-name

ẋ such that ⊩P(β)
ξ

ιξ∗(ẋ) = q̇, and thus also ⊩Rβ,β+ξ
ẋ ∈ iξ(Q̇β+ξ). By “essential surjectivity” of iξ

there exists a Pβ+ξ-name τ such that ⊩Rβ,β+ξ
iξ(τ) = ẋ; recall that iξ is the composition of two name

translation maps, one induced by dense embedding and one surjective. By Lemma 7.3 there exists
σ such that ⊩Pβ+ξ

σ ∈ Q̇β+ξ and ⊩Pβ+ξ
σ = τ ↔ τ ∈ Q̇β+ξ; we may assume σ ∈ Core(Q̇β+ξ). Thus

⊩Rβ,β+ξ
iξ(σ) = iξ(τ) ↔ iξ(τ) ∈ iξ(Q̇β+ξ); together with ⊩Rβ,β+ξ

ẋ ∈ iξ(Q̇β+ξ) and ⊩Rβ,β+ξ
iξ(τ) = ẋ

we get ⊩Rβ,β+ξ
iξ(σ) = ẋ, so ιξ∗(iξ(σ)) = q̇. Thus ιξ+1 is surjective “at ξ”; combining this with the

surjectivity of ιξ we are done.

Now suppose we are at a limit stage γ. It follows from our construction that if p ∈ Rβ,β+γ and
ξ1 < ξ2 < γ, then ιξ1(p↾ξ1) is an initial segment of ιξ2(p↾ξ2). We define ιγ(p) to be the limit of the
sequences ιξ(p↾ξ) as ξ → γ; in other words [ιγ(p)](ξ) = [ιξ+1(p↾(ξ + 1))](ξ). Then we let P(β)

γ be the
image of ιγ , so ιγ is trivially surjective, and define Q̇(β)

γ as before.

The gross details that ιξ preserves order and incompatibility is left to our future selves.

In practice, knowing the remainder Rβα can be viewed as an iteration P(β)
α−β is often not enough—

we would also like to know that P(β)
α−β is of the same type of iteration (finite support, countable

support, Easton support, etc.) as Pα, which is not always the case. If γ ≤ α− β is a limit and Pα is
an iteration that takes direct limit at β + γ, then (in M [Gβ]) the iteration P(β)

α−β also takes direct
limit at γ. This is not true of inverse limit in general, i.e., it is not true that Pα taking inverse
limit at stage β + γ implies P(β)

α−β doing so at stage γ, but it is true in some important cases. The
following warm-up example is, similar to the factor lemma, essentially trivial modulo all the name
translations.

Lemma 9.6. Suppose the iteration Pα takes inverse limit at every limit stage, then so does P(β)
α−β.

Proof. If Gβ+ξ is (M,Pβ+ξ)-generic, let Gβ be the induced (M,Pβ)-generic filter, and G
(β)
ξ be the

(M [Gβ],P(β)
ξ )-generic filter that corresponds to the (M [Gβ],Rβ,β+ξ)-generic filter via the dense

embedding ιξ; it can then be checked that (Q̇β+ξ)Gβ+ξ
= (Q̇(β)

ξ )
G

(β)
ξ

.
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Back in M , let Ṗ(β)
α−β ∈ MPβ be the name for the iteration P(β)

α−β . Suppose ḟ ∈ MPβ is such that
⊩Pβ

“ḟ is a sequence of length α− β such that for any ξ < α− β, ḟ↾ξ ∈ Ṗ(β)
ξ ”; in particular, it is

forced that the ξ-th element of ḟ is in the core (as constructed in the extension by Pβ) of Q̇(β)
ξ . Our

goal is to show that ⊩Pβ
ḟ ∈ Ṗ(β)

α−β.

Still in M , let ẋξ be the Pβ+ξ-name defined as follows; imagine there is a (M,Pβ+ξ)-generic
filter Gβ+ξ, then ḟ is interpreted as a sequence f = ḟGβ

in M [Gβ], and f(ξ) ∈ Core(Q̇(β)
ξ ); thus

f(ξ)
G

(β)
ξ

∈ (Q̇(β)
ξ )

G
(β)
ξ

= (Q̇β+ξ)Gβ+ξ
; if we consider some Pβ+ξ-name τ for this element, then

⊩Pβ+ξ
τ ∈ Q̇β+ξ, so τ is equivalent to a unique member of Core(Q̇β+ξ), which we define as ẋξ.

Define a sequence g of length α by g(β + ξ) = ẋξ and g(η) = 1̇Qη for η < β. Clearly g ∈ Pα since
inverse limit is taken everywhere. Then g ∈ Rβα, and by construction, for any Gβ we have in M [Gβ ]
that h := ια−β(g) and f are pointwise equivalent. Pointwise equivalence means ⊩P(β)

ξ

h(ξ) = f(ξ)
for every ξ < β − α; this is because h(ξ)

G
(β)
ξ

= ιξ∗(iξ(ẋξ))
G

(β)
ξ

= (ẋξ)Gβ+ξ
= f(ξ)

G
(β)
ξ

. Since we are

using cores, in fact h(ξ) = f(ξ), and thus f = h = ια−β(g) ∈ P(β)
α−β.

The next lemma is more useful. In particular it implies that the remainder of Easton support
iteration also has Easton support, which is used in Silver’s forcing construction of a measurable κ s.t.
2κ = κ++; following that by a Prikry forcing, we get the failure of Singular Cardinal Hypothesis.

Again, let Pα be an iteration and β < α. Let Kβ = {ξ < α− β : Pα takes direct limit at β + ξ}.
Call a set X ⊆ α− β Kβ-thin if sup(X ∩ ξ) < ξ for any ξ ∈ Kβ; being Kβ-thin is absolute.

Lemma 9.7. (i) Suppose α is a limit, and the iteration Pα takes either direct or inverse limit at
every limit stage; furthermore, every Kβ-thin set X in M [Gβ ] is covered by some Kβ-thin set Y in
M . Then P(β)

α−β takes inverse limit at α− β iff Pα takes inverse limit at α.

(ii) Suppose α is a limit, Pα takes only direct and inverse limits, and also it takes inverse limit
at every limit γ > β such that cf(γ) ≤ |Pβ|, then for every ξ < α− β, P(β)

α−β takes inverse limit at ξ
iff Pα takes inverse limit at β + ξ.

Proof. (i) Since Pα only takes direct and inverse limits, it can be shown by induction that if p
is a sequence of length α, p↾β ∈ Pβ and p(β + ξ) ∈ Q̇β+ξ for every ξ < α − β, then p ∈ Pα iff
supp(p) := {ξ < α− β : p(β + ξ) ̸= 1̇Qβ+ξ

} is Kβ-thin.

Suppose f ∈ M [Gβ ] is a sequence of length α− β such that f↾ξ ∈ P(β)
ξ for every ξ < α− β. We

may assume ḟ ∈ MPβ is forced by 1Pβ
to have these properties. Then supp(f) is Kβ-thin, because

supp(f) ∩ ξ is Kβ-thin for every ξ < α − β, since f↾ξ = ιξ(p) for some p ∈ Rβ,β+ξ ⊆ Pβ+ξ. By
assumption there exists a Kβ-thin set Y ∈ M s.t. supp(f) ⊆ Y ; by truth lemma there exists p0 ∈ Gβ

s.t. p0 ⊩ supp(ḟ) ⊆ Y . Define g as in the proof of previous lemma, except that g(β + ξ) = ẋξ only
for ξ ∈ Y , and g is 1 everywhere else. By the first paragraph we have g ∈ Pα; then it can be shown
as before that ια−β(g) = f in M [Gβ], so f ∈ P(β)

α−β.

(ii) It suffices to show that Pβ+γ satisfies the covering assumption in (i) for every γ ≤ α − β.
Suppose ⊩Pβ

Ẋ is a Kβ-thin subset of γ. We claim that Y := {ξ < γ : ∃p ∈ Pβ p ⊩ ξ ∈ Ẋ} is
Kβ-thin, which clearly contains X. This is because Pβ is |Pβ|+-cc, so if ζ < γ has cofinality greater
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than |Pβ|, then the set {ξ < ζ : ∃p ∈ Pβ p ⊩ sup(Ẋ ∩ ζ) = ξ} has size at most |Pβ| so is bounded
below ζ. It follows that Y is bounded below ζ too.
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