
We don’t know and we will never know

This is an introduction to descriptive set theory, but first a few words on AC, the Axiom of
Choice. Descriptive set theory grew out of real analysis, and most of the time in analysis one
doesn’t need the full strength of AC, but only some weak fragment of it such as ACω, the Axiom
of Countable Choice, which says any countable family (An : n < ω) of nonempty sets has a choice
function. Without ACω it could happen that R is a countable union of countable sets, which makes
measure theory rather awkward. Sometimes it is convenient to have a strengthening of ACω called
DC, the Axiom of Dependent Choice. It says if R is a binary relation on some nonempty set X
such that ∀x ∈ X∃y ∈ X(xRy), then there exists a sequence (xn : n < ω) of elements from X such
that xnRxn+1. In plain words, DC says we can make countably many choices where at each step
the set of things we choose from depends on the previous choices, in contrast to ACω which only
allows “independent choices”. DC is used in the standard proofs of Arzela–Ascoli theorem and Hahn
decomposition theorem, but it can be avoided in both cases; see [1, 2]. It seems open whether DC is
necessary for the proof of “every PID is a UFD”; see [3]. Anyway, in an introductory course to real
analysis, the only chance to use full AC is when one builds pathological examples like Vitali set or
Banach–Tarski Paradox, and otherwise DC is sufficient.

Lebesgue, like several other French mathematicians, was not a big fan of choice, as can be
seen from the cinq lettres between him and Baire, Borel and Hadamard; for an English translation
see the appendix to [4]. There is also the following interesting anecdote. Tarski proved that AC
is equivalent to the statement that for any infinite set A, there is a bijection between A and the
Cartesian product A × A. He submitted his paper to Comptes Rendus de l’Académie des Sciences
de Paris, but got rejected by both Lebesgue and Fréchet: Lebesgue said the equivalence of two
obviously false statements was uninteresting, and Fréchet said the equivalence of two obviously true
statements was uninteresting.

In an attempt to lay down the foundation for a “pathology-free” real analysis, Lebesgue published
in 1905 a paper titled Sur les fonctions représentables analytiquement, which initiated a systematic
study of the class of functions that are analytically representable. This is the smallest class F
of functions f : R → R that contains all polynomials and is closed under pointwise limit, i.e., if
(fn)n<ω ⊆ F and f(x) := limn→∞ fn(x) exists for each x, then f ∈ F . These are exactly what we
now call Borel functions: by Stone–Weierstrass we can use polynomials to approximate arbitrary
continuous functions, then we can get characteristic functions of intervals, then characteristic
functions of Borel sets, and finally arbitrary Borel functions. Conversely, it is not hard to see that
Borel functions are closed under pointwise limit.

Among the many results in Lebesgue’s paper was Theorem XVIII, which might be called a
“Borel implicit function theorem”. Its most basic form, phrased in modern terms, is as follows.

Theorem. If F : R2 → R is a Borel function such that ∀x∃!y F (x, y) = 0, then the function
f : R → R implicitly defined from F is Borel.

More precisely, f is defined by f(x) = the unique y such that F (x, y) = 0.

Proof. {(x, y) ∈ R2 : F (x, y) = 0} is exactly the graph of f , and is Borel by assumption, so it
suffices to show that if the graph G(f) of a function is Borel then so is the function. Note that the
preimage of B under f can be written as
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f−1(B) = proj1(G(f) ∩ (R × B))

as can be seen from the picture below.
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If B is Borel then so is R×B, and hence the intersection G(f)∩ (R×B), and hence its projection
onto the first coordinate, because projection of a Borel set is Borel by monotone class theoerm, so
we are done.

About ten years later, a student in Moscow named Mikhail Yakovlevich Suslin noticed that the
lemma casually claimed by Lebesgue—that the projection of a Borel set is Borel—is false. To apply
the monotone class theorem, it would suffice if projection commuted with increasing union and
decreasing intersection. Of course projection commutes with arbitrary union. Lebesgue thought
that projection also commuted with decreasing intersection, but that is far from true. Suslin told
this discovery to his teacher Luzin, and together they established the basic properties of analytic
sets—the projections of Borel sets. Some of the most fundamental properties are:

(1) there exist analytic sets that are not Borel;
(2) if both A and Ac are analytic, then A is Borel;
(3) analytic sets are Lebesgue measurable.
Property (2) implies that Lebesgue’s Borel implicit function is in fact true, since his argument

shows that f−1(B) is analytic whenever B is Borel, but then both f−1(B) and f−1(Bc) = f−1(B)c

are analytic. Property (3) has some applications in probability theory, such as showing the
measurability of first hit time in a continuous random process.

Unfortunately Suslin died young, and the project was continued by Luzin and several other
(mostly Polish) mathematicians, and became known as descriptive set theory—the study of sets
of reals that have “concrete descriptions” such as Borel sets and analytic sets. DST would remain
a somewhat niche area for a while, but starting from the 60s it has been shown to have deep
relations with topics in set theory such as large cardinal and inner model theory, and nowadays it is
inseparable from inner model theory. Also, since the 80s there has been an explosion of research
on Borel equivalence relations, or more generally orbit equivalence relations, which are equivalence
relations induced by actions of Polish groups. These are an abstraction of various classification
problems throughout mathematics, and they link descriptive set theory to such fields as group
theory, ergodic theory and geometry. There is also a relatively new area called Borel combinatorics,
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which studies, e.g., Borel colorings of Borel graphs. One of the most famous results here is Borel
circle squaring due to Marks and Unger.

We are going to give a reasonably detailed survey of the early results of descriptive set theory,
and briefly touch on its modern aspects. Two standard texts in descriptive set theory are:

Classical Descriptive Set Theory, Kechris [5]
Descriptive Set Theory, Moschovakis [6]
Kechris’ book is an encyclopedic introduction to the classical theory, while Moschovakis’ leans

towards the set theoretic aspect. Kechris’ book is not exactly beginner-friendly, and Moschovakis’ is
worse (but it contains lots of interesting historical remarks). Other helpful references include:

A Course on Borel Sets, Srivastava [7]
Introduction to descriptive set theory, Tserunyan [8]

1 Polish spaces

It turns out the natural setting of descriptive set theory is not R or Rn, but general Polish
spaces. They are useful even if one is only interested in Euclidean spaces.
Definition 1. A Polish space is a topological space X that is homeomorphic to a complete separable
(equivalently second-countable) metric space.

So a Polish space is basically a complete separable metric space, except we forget its metric
and only remember the topology; later we will even forget the topology and only remember the
σ-algebra generated by open sets. This allows more flexibility; for example, the open unit interval
(0, 1) is not complete under the usual metric, but is nevertheless Polish since it is homeomorphic to
R. This is a special case of the fact that any Gδ subset of a Polish space is Polish in the subspace
topology.

Below are some examples of Polish spaces. We use the set-theoretic convention that each natural
number coincides with the set of smaller natural numbers, so 0 = ∅, 1 = {0}, 2 = {0, 1}, etc. The
set of natural numbers is denoted ω, which is also the first infinite ordinal, and n < ω means the
same thing as n ∈ ω.

1. Any countable (including finite) discrete space.

2. Rn, as well as any (Hausdorff and second-countable) manifold, say by Whitney embedding
theorem.

3. Separable Banach spaces such as c0, C[0, 1] and Lp(R) for 1 ≤ p < ∞ (but not ℓ∞ or L∞(R)).

4. If (Xn : n < ω) are Polish spaces, then so is their product
∏

n<ω Xn. Proof sketch: Suppose
dn is a compatible metric on Xn. Using the trick that if d(x, y) is a complete metric then
so is d̄(x, y) := min{d(x, y), 1}, we may assume each dn is bounded by 1. Then the metric d
defined on

∏
n<ω Xn by d(f, g) =

∑
n<ω dn(f(n), g(n))/2n can be verified to be complete and

compatible with the product topology. The space is separable because countable product of
second-countable spaces is second-countable.
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5. The Cantor space C = 2ω is the product of countably many copies of 2 = {0, 1} with discrete
topology. Equivalently, it consists of all functions from ω = {0, 1, 2, . . . } to 2. It is Polish by 1
and 4.
C is homeomorphic to the standard middle third Cantor set, and it coincides with the pointwise
convergence topology on infinite binary sequences, but it is best thought of as the set of
branches through the complete binary tree, as follows. Denote by 2n the set of all functions
from n = {0, 1, . . . , n − 1} to 2 = {0, 1}; we think of this as the set of all binary sequences
of length n. Then 2<ω =

⋃
n<ω 2n is the set of all finite binary sequences. For s ∈ 2<ω with

length n we define Ns = {x ∈ 2ω : x ↾ n = s}, where x ↾ n means the restriction of the function
x to the set n = {0, 1, . . . , n − 1}. By definition of product space, (Ns : s ∈ 2<ω) is a basis of
C; also note that each Ns is clopen, i.e., both closed and open.
We visualize 2<ω as the complete binary tree: a rooted tree with ω many levels, such that
each node has two children. The empty sequence ∅ is the root, and the n-th level consists of
sequences of length n. Each edge (rather than node!) is labeled with 0 or 1. The Cantor space
C can then be viewed as the space of all “branches” through the tree 2<ω, and Ns consists of
all branches through the node s.
In the picture below, the three marked nodes are r = ⟨0, 1⟩, s = ⟨1, 0, 1⟩ and t = ⟨1, 1, 1⟩. Ns

consists of all infinite sequences that start with 1, 0, 1, namely those branches of the tree that
pass through s. Trees are used extensively throughout DST.
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6. Similar to the Cantor space, the Baire space N = ωω is the product of countably many copies
of ω with discrete topology. Equivalently it is the space of all functions f : ω → ω under
pointwise convergence, or the space of branches through the complete infinitary tree Seq :=
ω<ω =

⋃
n<ω ωn. A clopen basis is given by (Ns : s ∈ Seq) where Ns = {x ∈ ωω : x ↾ n = s}.

The Cantor space and the Baire space play important roles in DST, arguably more so than
R. For example, they have the following universal properties: C injects into any uncountable
Polish space and N surjects onto any nonempty Polish space.
N turns out to be homeomorphic to the set R \ Q of irrational numbers with the subspace
topology from R. This could be slightly surprising since the induced metric on irrational
numbers is far from complete. One can establish a homeomorphism between N and R \ Q
directly using continued fraction, or indirectly using certain universal properties of N . Note
that R \ Q is a Gδ subset of R, so its Polishness also follows from the general result below.
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7. Clearly if X is Polish and F is a closed subset then it is Polish in the subspace topology. Now
if U is an open subset, define a continuous map from U to R that sends x ∈ U to 1

d(x, U c) ,

where d(x, U c) = inf{d(x, y) : y ∈ U c}. Since U is open, d(x, U c) is nonzero and the definition
makes sense. It can be checked that the graph of this map is closed in X × R. It is a general
fact that the graph of a continuous function is homeomorphic to the domain, so U is Polish.
A slight variant of this shows every Gδ subset of X is Polish.

8. If X is a Polish space, the collection K(X) of nonempty compact subsets of X equipped with
the Hausdorff distance is a complete separable metric space. The Hausdorff distance is defined
by d(E, F ) = max{δ(E, F ), δ(F, E)} where δ(E, F ) = sup{d(x, F ) : x ∈ E}. In short, E and
F are close just in case every point in E is close to some point in F and vice versa. The
topology induced by the Hausdorff distance coincides with the Vietoris topology, whose basis
consists of the sets {K ∈ K(X) : K ⊆ U, K ∩ V1 ≠ ∅, . . . , K ∩ Vn ̸= ∅} where U, V1, . . . , Vn

range over open subsets of X.

9. We can create a “Polish space of all countable infinite groups” as follows. Any countable
infinite group is isomorphic to one with ω as the underlying set and 0 as the unit element.
Set-theoretically this is just a function f : ω × ω → ω that satisfies the group axioms. For
example, the associativity axiom says

∀i∀j∀k f(f(i, j), k) = f(i, f(j, k))

Similar to N , the collection ωω×ω of all functions f : ω × ω → ω under pointwise convergence
is a Polish space, and Nijk := {f ∈ ωω×ω : f(i, j) = k}, i, j, k ∈ ω are a subbasis. Let’s show
that the collection of all associative functions is a closed subset. Note that

f(f(i, j), k) = f(i, f(j, k)) ⇔ ∀a∀b[f(i, j) = a ∧ f(j, k) = b → f(a, k) = f(i, b)]

For each 5-tuple i, j, k, a, b, the set of all f satisfying f(a, k) = f(i, b) can be written as either⋃
p∈ω Nakp ∩ Nibp or the complement of

⋃
p ̸=q Nakp ∩ Nibq, so it is clopen. If we denote this

set as Pijkab, then the set of f satisfying f(i, j) = a ∧ f(j, k) = b → f(a, k) = f(i, b) is
N c

ija ∪ N c
jkb ∪ Pijkab, also clopen (we are using that A → B is the same as ¬A ∨ B). Finally,

the set of all f satisfying associativity is
⋂

i∈ω

⋂
j∈ω

⋂
k∈ω

⋂
a∈ω

⋂
b∈ω(N c

ija ∪ N c
jkb ∪ Pijkab), a

closed subset of ωω×ω.
Essentially we are translating logical symbols into set operations: ∧ corresponds to intersection,
∨ corresponds to union, ¬ corresponds to complement, ∃n corresponds to countable union, etc.
This trick of “quantifier-counting” is known as Tarski–Kuratowski algorithm, and is handy
for estimating the complexity of a set. For example, “having 0 as unit” is easily seen to be a
closed condition, and “every element has an inverse” can be expressed as:

∀i ∃j f(i, j) = 0 ∧ f(j, i) = 0︸ ︷︷ ︸
clopen︸ ︷︷ ︸

open︸ ︷︷ ︸
Gδ
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So we have a Polish space of countable infinite groups. Similarly, we can construct the Polish
space of all countable abelian groups, the Polish space of all countable graphs, etc. As we will
explain later, these spaces provide a framework for certain characterization and classification
problems. For example, one can rigorously show there is no such thing as “the space of
isomorphism classes of countable groups”.

Definition 2. A Polish space is perfect if there is no isolated point, i.e., every nonempty open set
contains more than one point (and thus infinitely many points).

Theorem 3. (i) If X is a Polish space, then either it is countable or it has a nonempty close
subspace Y which is perfect.

(ii) If X is a nonempty perfect Polish space, then there is a continuous embedding of C into X.
Consequently, a Polish space is either countable or contains a copy of C.

Proof sketch. (i) The classical proof uses Cantor–Bendixson derivative: delete all isolated points
from X to get X(1), which could still contain isolated points (consider X = {0} ∪ {1/2n : n < ω}),
so we delete isolated points from X(1) to get X(2), etc. Because of second countability of X, only
countably many points are deleted at each step, and the transfinite recursion must stop at some
countable step.

There is also a simplified argument that achieves this in one step. Consider the collection U
of all countable open subsets of X. By second-countability, there exist U0, U1, U2, . . . in U whose
union is equal to the union of all open sets in U . Let S =

⋃
n Un, which is a countable open set, and

consider P = X \ S. It can be argued that either P is empty or it is a nonempty perfect space.
(ii) Fix a complete metric on X that is compatible with the topology. We build a Cantor scheme,

which is a family of subsets (Xs : s ∈ 2<ω) of X indexed by nodes of the complete binary tree 2<ω,
that satisfies suitable properties, and then define a map f : C → X by f(x) = the unique point that
belongs to

⋂
n<ω Xx↾n. For the map to be well-defined, continuous and injective, we arrange that:

(a) If s has length n, then Xs is a nonempty closed subset of X that has diameter most 1/2n

and nonempty interior. The requirement on diameter is partly to ensure continuity of f .
(b) For each s and i = 0, 1, Xs ⊇ Xs⌢i, where s⌢i means the sequence obtained by concatenating

s with i. This ensures
⋂

n<ω Xx↾n is a decreasing intersection, and together with (a) and the
completeness of X we know the intersection is a singleton, so f is well-defined.

(c) For each s, we have Xs⌢0 ∩ Xs⌢1 = ∅. This ensures injectivity of f .
It is not difficult to construct the tree of sets inductively. We can just let Xs be a suitable closed

ball; to get (c), we use that Xs has nonempty interior by induction hypothesis and that X is perfect,
so choose two points from the interior and let Xs⌢0, Xs⌢1 be small closed balls around them.

Theorem 4. If X is a nonempty Polish space, there is a continuous surjection f : N → X.

Proof sketch. Similar to the previous theorem, we build a Suslin scheme (Xs : s ∈ Seq); recall that
Seq = ω<ω. Inductively make sure that:

(a) If s has length n, then Xs is a nonempty closed subset with diameter at most 1/2n.
(b) For each s and n < ω, Xs ⊇ Xs⌢n.
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(c) X∅ = X, and Xs ⊆
⋃

n<ω Xs⌢n. This ensures surjectivity.
At induction step, for each x ∈ Xs pick a small open ball around x. These balls together

cover Xs. By second-countability there is a countable sub-cover, and we take Xs⌢n’s to be their
closures.

The following theorem illustrates another merit of working with Polish spaces instead of complete
separable metric spaces.

Theorem 5. If (X, T ) is Polish and B is a Borel subset, there is a finer Polish topology T ′ on X
which generates the same Borel sets, such that B ∈ T ′.

Proof sketch. If F is closed, then the topology generated by T ∪ {F} is Polish (and clearly generates
the same Borel sets), because this is the same as the disjoint union of F and X \ F . As mentioned
above, X \ F is Polish, and it is easy to check that disjoint union of two Polish spaces is Polish.
The general case follows from the base case together with the lemma that if Ti is a sequence of finer
and finer Polish topology on X, then the topology T ′ generated by

⋃
n<ω Tn is Polish, by looking at

the diagonal of the product space
∏

n<ω(X, Tn).

2 Analytic sets

A subset A of a Polish space X is analytic if it satisfies any of the equivalent conditions in the
following theorem.

Theorem 6. The following are equivalent:

(i) There exists a Polish space Z and a Borel map f : Z → X such that A = f(Z).
(ii) There exists a Polish space Z and a continuous map f : Z → X such that A = f(Z).
(iii) There exists a continuous map f : N → X such that A = f(N ).
(iv) There exists a closed subset F ⊆ N × X whose projection onto X is A.

Proof sketch. (iii)⇒(ii)⇒(i) is clear.
(ii)⇒(iii): Because Z is a continuous image of N by Theorem 5.
(iii)⇒(iv): Consider the graph of f , which is a closed subset of N × X.
(iv)⇒(ii): The closed set F with subspace topology is Polish.
(i)⇒(ii): Take a countable basis (Un : n < ω) of X. Each f−1(Un) is Borel. Using Theorem 4

we can get a Polish topology on Z where each f−1(Un) is open, and thus f is now continuous.

Since N is homeomorphic to a Gδ subset of R (namely the irrationals), it follows from (iv) that
any analytic subset of R is the projection of some Gδ subset of the plane R × R. However, note
that we cannot replace Gδ by closed, because any closed subset of R × R is σ-compact, and so is its
projection.
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Analytic sets are clearly closed under continuous (or even Borel) images. They are also closed
under countable union (consider disjoint union) and countable intersection (use the lemma below),
but not under complement. The complement of an analytic set is called coanalytic.

Lemma 7. If f : X → Y is a continuous map between Polish spaces and A ⊆ Y is analytic, then
so is f−1(A).

Proof sketch. Suppose g : Z → Y is continuous with g(Z) = A. Consider the pullback Z ′ = {(x, z) ∈
X × Z : f(x) = g(z)}, which is closed in X × Z and thus Polish. The projection of Z ′ onto X is
exactly f−1(A).

Theorem 8. Any uncountable Polish space X has an analytic subset that is not Borel.

Proof sketch. The key idea is to construct a universal analytic set A ⊆ X × X and use Cantor’s
diagonal argument. First note that if A is analytic then each section Ax = {y ∈ X : (x, y) ∈ A} is
also analytic, since section is a special case of inverse image. Universality of A means {Ax : x ∈ X}
exhaust all analytic subsets of X. Granted such a universal set A, define

B = {x ∈ X : (x, x) /∈ A}

In other words, we imagine A to be an “X by X” 0-1 matrix and flip the diagonal to get B.
First note that B is coanalytic, since it is the complement of {x ∈ X : (x, x) ∈ A}, which is the
preimage of A under the diagonal map x 7→ (x, x). Then note that B is not analytic, because of
universality and the fact that B ̸= Ax for any x, since x ∈ B ⇔ x /∈ Ax. So we have a coanalytic
and non-analytic set. This would not be the case if all analytic sets were Borel.

It remains to construct a universal analytic set. We first show that there exists an open subset
U ⊆ C × X such that {Uc : c ∈ C} exhaust open subsets of X. Fix a countable basis (Un : n < ω) of
X. Any open subset of X is of the form

⋃
c(n)=1 Un for some c ∈ C, so it is natural to consider the

set U = {(c, x) : x ∈
⋃

c(n)=1 Un}, and luckily this set is indeed open.
Taking complement, we see that there is a universal closed subset of C × X. Now we apply this

to the Polish space N × X to get a closed subset E ⊆ C × (N × X) whose C-sections exhaust closed
subsets of N × X. By Theorem 6, analytic sets in X are exactly projections of closed sets in N × X,
so the projection of E onto C × X, namely F = {(c, x) : ∃b ∈ N (c, (b, x)) ∈ E}, is universal for
analytic sets, that is {Fc : c ∈ C} exhaust all analytic subsets of X. Finally, since X is uncountable,
there is an embedding of C into X, which means we can transfer F into a subset of X × X.

Theorem 9 (Luzin separation theorem). (i) If A, B ⊆ X are disjoint analytic sets, there exists a
Borel set C that separates them, i.e., A ⊆ C and B ⊆ Cc.

(ii) If both A and Ac are analytic, then A is Borel.

Proof sketch. (i) First note that if A =
⋃

m<ω Am, B =
⋃

n<ω Bn, and Am can be separated from
Bn by some Cmn, then A can be separated from B by

⋃
m<ω

⋂
n<ω Cmn.

Let f, g : N → X be continuous maps with images A, B respectively. Suppose for contradiction
that A and B cannot be separated by a Borel set. Since A = f(N ) =

⋃
m<ω f(N⟨m⟩) (⟨n⟩ means

the sequence whose only entry is n) and B = g(N ) =
⋃

n<ω g(N⟨n⟩), by the first paragraph we know
there exist m, n such that f(N⟨m⟩) and g(N⟨n⟩) cannot be separated. Inductively, suppose we have
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found s, t ∈ ωn such that f(Ns) and g(Nt) cannot be separated, using the above argument we can
find s′, t′ ∈ ωn+1 extending s, t such that f(Ns′) and g(Nt′) cannot be separated. Continue this
forever, and we get two branches x, y ∈ N such that for any n < ω, the sets f(Nx↾n) and g(Nx↾n)
cannot be separated. But this is impossible, since by disjointness of A, B we have f(x) ̸= g(y), so
we can pick disjoint open balls U ⊇ f(x) and V ⊇ g(y), and by continuity there must exist some n
for which f(Nx↾n) ⊆ U and g(Nx↾n) ⊆ V .

(ii) Applying (i) to the disjoint pair A and Ac, we get a Borel C such that A ⊆ C and Ac ⊆ Cc.
Then A = C.

If you are a constructive-minded person, you may feel a bit uneasy reading the above proof. We
assumed a statement to be false, derived a contradiction, and concluded that it must be true. This
is perfectly fine in classical logic (which is what set theorists use) but not allowed in constructive
logic; compare with the proof that

√
2 is irrational, which is allowed in constructive logic. There

does exist a constructive proof of the separation theorem; see [6, 2E].
As mentioned earlier, this theorem corrects the mistake in Lebesgue’s proof of Borel implicit

function theorem. We state without proof two other fundamental results proved using Luzin
separation.
Theorem 10 (Borel injection theorem). If f : X → Y is continuous (or just Borel), and f is
injective when restricted to a Borel subset B, then f(B) is Borel.

Thus a Borel bijection between Polish spaces is automatically a Borel isomorphism, i.e., its
inverse is also Borel.
Theorem 11 (Borel isomorphism theorem). Any two uncountable Polish spaces are Borel isomorphic.

Thus if we forget about topology and only work with σ-algebras, all uncountable Polish spaces
become the same. There is an analogous measure isomorphism theorem that basically says there is
only one interesting measure space, namely [0, 1] with Lebesgue measure.

The last thing we will prove about analytic sets is that they are Lebesgue measurable. In fact
the proof shows that analytic sets are measurable with respect to any reasonable measure. The key
ingredient in the proof is the Suslin representation of analytic sets.
Definition 12. If (As : s ∈ Seq) is a family of subsets of R, the result of applying Suslin operation
to this family is A(As)s∈Seq :=

⋃
b∈N

⋂
n<ω

Ab↾n.

In plain words, we have a tree of sets, and for each branch b through the tree, we take the
intersection of all sets along this branch; the intersection could be empty, a singleton, or something
else. We then collect all these intersections together, and that is the result of Suslin operation. It is
not required that As ⊇ As⌢n, although there clearly exists a family that satisfies this and has the
same result.
Lemma 13. Any analytic set is of the form A(As)s∈Seq where As are closed sets.

Proof sketch. Suppose it is the image of a continuous map f : N → X. Take As = f(Ns), namely
the closure of f(Ns). By continuity,

⋂
n<ω

Ab↾n is exactly {f(b)}.
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The converse is also true: Suslin operation applied to any tree of closed (or even analytic) sets is
analytic, although we won’t need that.

Lemma 14. Any subset A ⊆ R can be optimally covered by a Lebesgue measurable set E, in the
sense that A ⊆ E and E has the smallest measure among all Lebesgue measurable sets that contain
A. Equivalently, if F is any other Lebesgue measurable set containing A then |E \ F | = 0.

Proof sketch. Suppose A has outer measure r. Let rn be a decreasing sequence with limit r, and let
En be an open set such that A ⊆ En and |En| ≤ rn. Can check that E :=

⋂
n<ω En works.

By the Suslin representation, to show that analytic sets are Lebesgue measurable, it suffices to
show that:

Theorem 15. If (As : s ∈ Seq) is a family of Lebesgue measurable sets, then A(As)s∈Seq is Lebesgue
measurable.

Proof sketch. For s ∈ Seq let A∗
s = A(As⌢t)t∈Seq, where s⌢t means concatenation of the sequences

s and t. Informally, we look at the part of the tree Seq above (including) s, which is itself a tree
with root s, and apply Suslin operation to the family of sets indexed by this tree. We claim that:

A(A∗
s)s∈Seq = A(As)s∈Seq

By definition we have A∗
s ⊆ As, and Suslin operation is clearly “monotone”, so ⊆ is clear. Now

suppose x ∈ A(As)s∈Seq, so there exists a branch b ∈ N such that x ∈
⋂

n<ω Ab↾n. Then if you draw
a picture of the tree, it’s not too difficult to convince yourself that x ∈

⋂
n<ω A∗

b↾n, which proves ⊇.
Now for each s pick an optimal cover Bs of A∗

s; since As is measurable and contains A∗
s we may

assume Bs ⊆ As. Thus we have

A(A∗
s)s∈Seq ⊆ A(Bs)s∈Seq ⊆ A(As)s∈Seq

but the first and third terms are equal, so all three are equal.
Our goal is to show that A∗

∅ (which equals A(As)s∈Seq, and thus any of the three things) is
measurable, which by definition of optimal cover is the same as showing B∅ \A∗

∅ = B∅ −A(Bs)s∈Seq

is null. We claim that

B∅ − A(Bs)s∈Seq ⊆
⋃

s∈Seq

(
Bs −

⋃
n<ω

Bs⌢n

)

This is just true in general for Suslin operation. Take any x that belongs to the left hand
side. Does x belong to any of the sets B⟨n⟩? If not then x belongs to the right hand side as
witnessed by s = ∅. If yes, then we choose an n and ask if x belongs to B⟨n,m⟩ for any m, etc. This
cannot continue forever since x /∈ A(Bs)s∈Seq, so we must get stuck at some node s, which means
x ∈ Bs −

⋃
n<ω Bs⌢n.

Lastly, note that each Bs −
⋃

n<ω Bs⌢n is null because A∗
s ⊆

⋃
n<ω A∗

s⌢n
⊆
⋃

n<ω Bs⌢n, and Bs

is an optimal cover of A∗
s.
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3 Examples of non-Borel sets

So what are analytic sets used for? The Lebesgue measurability of analytic sets as well as the
uniformization theorems that will be discussed in the next section have applications in probability
theory, control theory, economics, etc. But personally I think one of the most interesting applications
is to provide “pseudo-negative” answers to various characterization problems.

Here is my favorite example. We know that the radius of convergence of a complex power series∑∞
n=0 cnzn has a simple formula:

1
r

= lim sup
n→∞

|cn|
1
n

Now suppose we have a power series whose radius of convergence is 1. It is known that the
behavior of the power series on the unit circle T can be quite complicated: it may converge
everywhere on T , diverge everywhere on T , or converge at some points and diverge at others. Is
there a simple criterion to tell if the power series converges pointwise on T?

Theorem 16. Probably no.

Proof sketch. We view the Polish space Cω of complex sequences as “the space of power series”, by
identifying a sequence (cn)∞

n=0 with the power series
∑∞

n=0 cnzn. The subset X of all power series
with radius of convergence 1 is easily seen to be Borel by quantifier counting:

lim sup
n→∞

|cn|
1
n ≤ 1 ⇔ ∀q ∈ Q+∃N∀n ≥ N |cn|

1
n ≤ 1 + q

lim sup
n→∞

|cn|
1
n ≥ 1 ⇔ ∀q ∈ Q+∀N∃n ≥ N |cn|

1
n > 1 − q

where Q+ is the set of positive rationals; note that for each fixed n, the collection of sequences
satisfying |cn|

1
n ≤ 1 + q is closed. In contrast, it turns out the set

Y = {(cn)∞
n=0 ∈ Cω : ∀z ∈ T

∞∑
n=0

cnzn converges}

is true coanalytic, meaning it is coanalytic and non-Borel, and so is the intersection Y ∩X. It is not
difficult to see that Y is coanalytic, since its complement is defined by ∃z ∈ T

∑∞
n=0 cnzn diverges;

this is the projection of a Borel subset of T × Cω onto Cω, hence analytic, so Y is coanalytic. Of
course the gist of the proof is to show Y is non-Borel, which we refer to the wonderful article [9].

There is a simple criterion which determines if the radius of convergence of a given power series
is equal to one, namely lim supn→∞ |cn|

1
n = 1, and this defines a Borel set. It is conceivable that any

simple criterion should give rise to a Borel set. Therefore the non-Borelness of Y probably means
there cannot be a simple criterion that determines whether a power series converges pointwise on
T . Also, there is a sense in which “Borel” is a generalization of “computable”; see the chapters in
Moschovakis about effective descriptive set theory. For example, if we have a computer with infinite
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power and storage that can do infinitely many operations per second (here infinite means countably
infinite), then we can calculate lim supn→∞ |cn|

1
n . In contrast, since Y is true coanalytic, there is

no way of getting rid of the quantification ∀z ∈ T in its definition, so we really need to check every
single point on the unit circle T , which is impossible even with an infinite computer.

This is of course not a rigorous proof, but empirically, whenever we have some kind of charac-
terization problem and the set of things we want to characterize is non-Borel, the problem cannot
be given a satisfactory answer. It is thus of interest to analyze the complexity of various sets that
appear in nature. Below are some examples of natural non-Borel sets. All of them are from [9], and
some of the proofs can be found in chapters 27, 33 and 34 of [5].

1. (Hurewicz) Recall that K(X) is the Polish space of nonempty compact subsets of X. The sets
{K ∈ K([0, 1]) : K is countable} and {K ∈ K([0, 1]) : K ⊆ Q} are both true coanalytic. This
was published in 1930 and was the first natural example.

2. (Mazurkiewicz) Let C[0, 1] be the Polish space of real-valued continuous functions on [0, 1].
The subset of pointwise differentiable functions is true coanalytic. This may feel a little strange
since we regard differentiability as a very simple concept, and the result seems to say it is
hard to characterize whether a function is differentiable. What it really says is it is hard to
characterize differentiability in terms of the uniform norm on C[0, 1].

3. (Ajtai–Kechris) Both of the following sets are true coanalytic:
{f ∈ C[0, 2π] : the Fourier series of f converges pointwise}
{(cn)n∈Z ∈ CZ :

∑
n∈Z cneinx converges pointwise}

Some background: as long as f ∈ L1, it is meaningful to ask if its Fourier series
∑

n∈Z f̂(n)einx

converges pointwise, where f̂(n) = 1
2π

∫ 2π
0 f(x)e−inxdx. It is known that if the Fourier series

converges at x0, it must converges to f(x0). There are many classical sufficient conditions
for pointwise convergence, but the first result of Ajtai–Kechris suggests that a necessary
and sufficient condition is hopeless. The second result changes the perspective and looks at
convergence of trigonometric series (not every trigonometric series arises as Fourier series).
Of course the Fourier series converges to f in L2 sense. Also, it turns out {f ∈ C[0, 2π] :
the Fourier series of f converges uniformly} is Borel. Descriptive set theory seems only rele-
vant for problems concerning pointwise convergence, which is admittedly less important.

4. (Ajtai–Becker) {K ∈ K(R2) : K is path-connected} is Π1
2, which means it is the complement

of some continuous image of a coanalytic set (see next section). It is not coanalytic, and not
known to be analytic.

5. (Kaufman) For any bounded analytic set A ⊆ C, there exists a bounded linear operator
T : c0 → c0 whose point spectrum {λ ∈ C : ∃u ∈ c0 T (u) = λu} is equal to A.

6. (Kaufman–Solovay) {K ∈ K([0, 2π]) : K is a set of uniqueness} is true coanalytic. For an
introduction to sets of uniqueness and how set theory basically grew out of trigonometric
series, see [10] or [11]. Here is a brief summary. Cantor, building on work of Riemann and
others, showed that if

∑
n∈Z cneinx converges to zero for each x ∈ [0, 2π], then the coefficients
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cn must all be zero. A set A ⊆ [0, 2π] is called a set of uniqueness if Cantor’s theorem remains
true if we only assume the series converges to zero for any x ∈ [0, 2π] \ A. Cantor showed that
any A that becomes empty after countably many Cantor-Bendixson derivatives is a set of
uniqueness, and this led him to the discovery of ordinals and thus set theory.
All countable sets are sets of uniqueness, and uncountable sets of uniqueness exists, such as
the middle-third Cantor set. We can modify the construction of middle-third Cantor set by
changing the ratio 1/3 to some real number 0 < ξ < 1/2, obtaining a Cantor-like set E(ξ).
It turns out E(ξ) is a set of uniqueness iff 1/ξ is a Pisot number—a real algebraic integer
greater than 1 whose conjugates all have absolute value less than 1. We can further generalize
E(ξ) by varying the ratios at each step of the construction, and it is open if there is a nice
criterion in terms of the sequence of ratios for the resulting set to be a set of uniqueness. The
result of Kaufman–Solovay shows the problem for compact subsets of [0, 2π] in general might
be hopeless.

The most common strategy to prove something is non-Borel is as follows. Continuous (or even
Borel) preimage of Borel set is Borel. Start with a set A ⊆ X known to be true analytic. If we
can find a continuous map f : X → Y such that f−1(B) = A, then B must also be true analytic.
We think of the map f as some kind of “reduction”. This is analogous to many-one reduction in
computer science: to show a problem is NP-complete, reduce to it a problem that is known to
be NP-complete; to show a problem is undecidable, reduce to it a problem that is known to be
undecidable, such as the halting problem. The counterpart of halting problem in DST is the set
IL of ill-founded trees, defined as a certain subset of the power set of Seq. It is not difficult to
show that IL is true analytic, in fact complete analytic, which means any analytic set reduces to
IL. Then one reduces IL to other sets to prove they are true analytic.

Empirically, a decision problem in computer science is either computable or at least as difficult as
the halting problem, that is, we don’t know any natural example of Turing degrees strictly between
0 and 0′, although abstractly they do exist by Friedberg–Muchnik theorem. Something similar
happens in DST: all natural examples of true analytic set are in fact complete analytic. Do we have
an anologue of Friedberg–Muchnik theorem, namely does there exist a non-complete true analytic
set? Turns out the answer is independent of ZFC. Even worse (or better, if you like set theory), the
answer involves large cardinals.
Theorem (Harrington [12]). The following are equivalent:

1. Any true analytic set is complete analytic.

2. For any set of natural number x, its sharp x# exists.

x# is a kind of large cardinal notion and implies the existence of lots of inaccessible cardinals in
the constructible universe. We will see more examples of DST interacting with set theory in the
next section.

4 Projective sets, perfect set property, uniformization

The projection of a coanalytic set may be neither analytic nor coanalytic, so we can get a
new class of sets by taking projections of coanalytic sets. More generally, Luzin and Sierpinski
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independently came up with the idea of projective sets. This is the smallest collection of subsets of
R (or general Polish spaces) that contains the Borel sets and closed under continuous images and
complements. Projective sets naturally form a hierarchy:

• Σ1
1(X) is the collection of all analytic sets of the Polish space X.

• Π1
n(X) = {Ac : A ∈ Σ1

n(X)}. In particular, Π1
1(X) is the collection of coanalytic sets.

• Σ1
n+1(X) is the collection of all sets that are projections of some sets in Π1

n(X × N ), or
equivalently the continuous/Borel images of sets in Π1

n(Y ) as Y ranges over all Polish spaces.

•
⋃

n<ω

Σ1
n(X) =

⋃
n<ω

Π1
n(X) is the collection of projective sets of X.

• ∆1
n(X) = Σ1

n(X) ∩ Π1
n(X).

Some remarks:

• For expressions like Σm
n we read the superscript first and then subscript, so Σ1

2 reads “Sigma
one two”.

• By Theorem 9 (ii), ∆1
1(X) is exactly the collection of Borel subsets of X.

• Note that all our Σ, Π, ∆ are in boldface. There is also a lightface version Σ, Π, ∆ which has
to do with effective DST.

• As long as X is an uncountable Polish space, we have the following diagram (with the space
X omitted). Each arrow indicates strict containment.

Σ1
1 Σ1

2 Σ1
3 Σ1

4 · · ·

∆1
1 ∆1

2 ∆1
3 ∆1

4 · · ·

Π1
1 Π1

2 Π1
3 Π1

4 · · ·

• There is a similar transfinite hierarchy Σ0
α, α < ω1 of Borel sets, where Σ0

1 is the collection of
open sets, Π0

α is the collection of complements of Σ0
α sets, and Σ0

α+1 consists of countable
unions of sets from Π0

α.

• That the projective hierarchy is strict is proved using diagonal argument, similar to the
existence of true analytic set. It follows that projective sets are not closed under countable
union or intersection, and we can continue the hierarchy into transfinite just like the Borel
hierarchy, but for various reasons this generalization doesn’t show up a lot.

14



• Each Σ1
n is closed under continuous image, countable union and countable intersection, and

similar for Π1
n. It follows that each ∆1

n is a σ-algebra.

The previous section mentioned a natural example of Π1
2 set, but natural examples with subscripts

at least 3 are rare. Still, all of these are pretty “concrete” sets, in the sense that we are just playing
around with Borel sets by taking projections and complements, instead of using AC to create
something like a Vitali set. So we may expect that all these sets are, e.g., Lebesgue measurable,
just like the analytic sets Σ1

1. That was the hope of early descriptive set theorists like Luzin and
Sierpinski, but they soon encountered enormous difficulty: besides basic results like the projective
hierarchy being strict, there seemed to be no general statements one could say about projective sets;
people had no clue how to extend properties of the first level of the projective hierarchy to higher
levels; in some cases it was not even clear if certain properties of analytic sets are true of coanalytic
sets. Luzin was so frustrated that he famously said the following in 1925 [13, 14]:

One does not know and one will never know whether projective sets are Lebesgue measurable.

This turns out to be true, in some sense, since the statement “all projective sets are Lebesgue
measurable” is independent of ZFC, the Zermelo-Fraenkel set theory with choice. That is, assuming
either this statement or its negation does not lead to a contradiction in ZFC.

Theorem (Gödel). In Gödel’s constructible universe there exists a ∆1
2 set that is not Lebesgue

measurable.

Theorem (Solovay–Shelah). The following systems are equiconsistent, i.e., either none or all of
them lead to contradiction.

1. ZFC plus the statement “all projective sets are Lebesgue measurable”.

2. ZFC plus the statement “all Σ1
3 sets are Lebesgue measurable”.

3. ZF + DC plus the statement “all sets of reals are Lebesgue measurable”.

4. ZFC plus the statement “there exists an inaccessible cardinal”.

Gödel’s constructible universe is an example of a model of set theory. Solovay built another
model of set theory using Cohen’s method of forcing. More precisely, he starts with a base model
that satisfies ZFC+“there exists an inaccessible cardinal”, and carefully engineers it into a model of
say, ZFC+“all projective sets are Lebesgue measurable”. This is a bit similar to how one proves the
consistency of hyperbolic geometry by building a model for it, such as the Poincaré disk, based on
Euclidean geometry.

One may suspect that the assumption of inaccessible cardinal can be avoided using a more clever
construction, but Shelah showed that’s not the case—the inaccessible cardinal is necessary—by
showing that starting with a model of ZFC+“all projective sets are Lebesgue measurable” we
can extract a model of ZFC+“there exists an inaccessible cardinal”. Inaccessible cardinal is at
the lower end of the large cardinal spectrum. We won’t say what large cardinals are, but only
they are powerful things that are used throughout set theory. They also imply the consistency
of ZFC, so by Gödel’s second incompleteness theorem, ZFC cannot prove the existence or even
the consistency of large cardinals. It is truly intriguing that we would ever run into set theory
while thinking about Borel sets, projections and complements! So what if you don’t believe in the
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consistency of inaccessible cardinal? Then by Shelah’s result you must believe that you can contruct
a non-measurable projective set in ZFC, and also a non-measurable set in ZF + DC. Nobody has
ever succeeded in doing that, which might be taken as evidence for the consistency of inaccessible
cardinals.

Note that there is a difference from Harrington’s theorem mentioned in the previous section: the
statement “any true analytic set is complete analytic” is equivalent to sharps, while “all projective
sets are Lebesgue measurable” is equiconsistent with, but not equivalent to inaccessible cardinal.

We are going to give a light-speed survey of some other DST problems that turned out to be
entangled with set theory; if you don’t like set theory you may want to jump to the next section. A
notion analogous to Lebesgue measurability is Baire measurability. A set of reals is nowhere dense if
its closure has empty interior, and is meager (or of first category) if it is a countable union of nowhere
dense sets. A set of real is Baire measurable, or has the property of Baire, if its symmetric difference
with some open set is meager. A closed set E is Baire measurable since E \ E̊ is closed and nowhere
dense. It is then straightforward to show all Borel sets are Baire measurable. The proof of Lebesgue
measurability of analytic sets works almost verbatim for Baire measurability. What about general
projective sets? As expected, the answer is again independent: the non-Lebesgue measurable ∆1

2 set
in Gödel’s constructive universe is also non-Baire measurable, and Solovay’s model for projective
Lebesgue measurability also satisfies projective Baire measurability. But then the differences emerge:
Shelah proved that the use of inaccessible cardinal was necessary for Lebesgue measurability, but
not for Baire measurability, namely there is indeed a more clever construction than Solovay’s that
avoids inaccessible cardinal and achieves projective Baire measurability.

We now turn to the perfect set property. This grew out of an early attempt to prove the
continuum hypothesis, that any set of real numbers is either countable or has the same size as R;
in other words R is the “smallest uncountable set”. Under AC this is equivalent to saying there is
a bijection between R and the first uncountable ordinal ω1; the latter can be shown in ZF to be
a “minimal uncountable set”, but without AC cardinalities are not linearly ordered, and it could
happen that R and ω1 are two different minimal uncountable sets, along with many others.

Back to DST. The Cantor space C has the same size as R, so Theorem 3, which says any Polish
space is either countable or contains a copy of C, implies that any closed (in fact Gδ) subset of R is
either countable or has size continuum. We say a set of reals has perfect set property (PSP) if it is
either countable or contains a copy of C, so closed sets have PSP, and obviously so do open sets.
It was hoped that one could prove the continuum hypothesis by proving PSP for more and more
complicated sets. Alexandroff and Hausdorff independently accomplished the task for Borel sets
in 1916 (before Suslin’s discovery of analytic sets!). One way to prove this is to use the topology
refining trick in Theorem 4. Suslin and Luzin extended PSP to analytic sets. Now there is no reason
why PSP of analytic sets should imply that of coanalytic sets. Indeed there exist counterexamples
in—you got it—Gödel’s constructible universe. On the other hand, Solovay’s model satisfies “all
projective sets have PSP”, and the necessity of inaccessible for projective PSP had been known even
before Cohen discovered forcing.

Finally let us discuss uniformization. As remarked at the beginning, in DST one usually works
with DC instead of full AC, and one may ask to what extent can we “construct” choice functions.
For example, if U is the collection of nonempty open subsets of a Polish space X, then there exists
a function f : U → X such that f(U) ∈ U . Fix a countable basis (Un : n < ω) and pick a point
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xn ∈ Un. We can define a choice function by letting f(U) be xn where n is the least number such
that Un ⊆ U . What about closed sets? If X = R we can consider the least n such that [−n, n]
intersects a given closed set F , and consider sup(F ∩ [−n, n]). In the general case, using a surjection
from N to X we can reduce it to the case of closed subsets of N , which turn out to correspond
nicely to subtrees of Seq, and we can pick the “leftmost branch” of each tree.

We cannot have a choice function for the collection of nonempty Borel sets, or even Fσ sets,
because countable sets are Fσ, and if we could choose a point from each countable set we would be
able to construct a Vitali set, which consistently does not exist under ZF + DC (e.g., it is not Baire
measurable). The uniformization problem asks for something weaker than a choice function: if we
have, e.g., a Borel family of Borel sets, in other words a Borel subset E of the plane R × R, can
we choose a point from each nonempty vertical section? That is, we want an A ⊆ E, called the
uniformization of E, such that proj1(A) = proj1(E) and (x, y) ∈ A ∧ (x, z) ∈ A → y = z (so A is
the graph of a partial function). Note that it is allowed that Ex = Ey while A(x) ̸= A(y). In case
proj1(E) = R, we are basically asking if the surjective map proj1 : E → R has a right inverse.

Luzin already knew that not every Borel set E ⊆ R × R admits a Borel uniformization A,
although it does have a coanalytic uniformization, which essentially boils down to picking leftmost
branch. The first significant result on uniformization was:

Theorem (Kondo–Novikov). Every coanalytic set has a coanalytic uniformization.

This implies that every Σ1
2 set has a Σ1

2 uniformization. For analytic E we can do a little better.
Let σΣ1

1 be the σ-algebra (on a Polish space X) generated by the analytic sets. This is strictly
smaller than ∆1

2, as well as the σ-algebra of Lebesgue measurable sets.

Theorem (Jankov–von Neumann). If E ⊆ R × R is Σ1
1, then it has a uniformization A such that

A regarded as a partial funtion R → R is σΣ1
1-measurable, and in particular Lebesgue measurable.

For more on measurable uniformization theorems, see [15].
Does every projective set have a projective uniformization? Believe it or not, this time Gödel’s

constructible universe gives a positive answer. Recall that in the constructible universe there is a
∆1

2 set E that is neither Lebesgue measurable nor Baire measurable. In fact E is a ∆1
2 well-ordering

of R, namely E is a linear order on R such that every nonempty set has a least element, and E as
a subset of R × R is ∆1

2. A well-ordering of R gives us a choice function on sets of reals for free,
which makes it trivial to uniformize any set whatsoever. Though a positive answer, this is regarded
by many set theorists as a “bad answer”, partly because a well-ordering also leads to such things as
projective Vitali sets. So a more interesting question might be: is it consistent that all projective
sets are Lebesgue measurable, Baire measurable, and have projective uniformization? This was
shown in [16] to have the consistency strength of strong cardinals—way above inaccessible cardinal
or sharps, but still quite a bit lower than expected, since it had been known for a while that:

1. The consistency strength of AD, the Axiom of Determinacy, is at the level of Woodin cardinals.
AD roughly says for certain perfect information two-player game that last for ω steps, one of
the players must have a winning strategy. AD contradicts AC and implies many regularity
properties, such as Lebesgue measurability, for arbitrary sets of reals
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2. The consistency strength of PD, the Axiom of Projective Determinacy, is slightly lower than
that of AD, but still at the level of Woodin cardinals.

3. “All sets are Lebesgue and Baire measurable, and all Σ2
1 sets can be uniformized” is equivalent

to AD over ZF + DC.

So people thought that if we restrict 3 to projective sets we might get PD, which turned out not
to be the case.

We summarize several DST statements and their (approximate) large cardinal strength in the
following table. There are countless other results along this line, especially various restrictions or
strengthenings of determinacy. Nowadays determinacy is almost synonymous with inner model
theory, and is the most important tool for providing lower bounds for consistency strength of set
theoretic statements such as the proper forcing axiom, which is totally unrelated to DST at first
sight.

Axiom of Determinacy Woodin cardinal
Axiom of Projective Determinacy Woodin cardinal

Projective measurability+uniformization strong cardinal
True analytic sets are complete sharps

Projective measurability inaccessible cardinal
Projective sets have PSP inaccessible cardinal

5 Equivalence relations and Borel combinatorics

The set theoretical aspect of DST surveyed in section 4 is not what most “descriptive set
theorists” work on today. Since the 90s, the main trend in DST has been the study of equivalence
relations on Polish spaces. This is in the same spirit as section 3 but it is a much richer theory. It
can be viewed as a framework to compare the difficulty of various classification problems throughout
mathematics. This framework is only meaningful when there are uncountably many equivalence
classes, so classification of finite simple groups or closed surfaces do not count (but open surfaces
do). Before describing the framework, let us recall some typical examples of classification.

1. As a toy example, we have a nice classification of n × n matrices up to similarity: two matrices
A and B are similar just in case they have the same Jordan normal form. To make this
sentence literally true, we need to make Jordan normal form unique. First we can linearly
order C by viewing it as R × R and use the lexicographical order. Now we define Jordan
normal form so that the blocks are ordered according to their eigenvalues, and blocks of the
same eigenvalue are ordered by size.
Thus we have a nice function φ : Mn(A) → Jn(A) where Mn(A) is the collection of all n × n
matrices, Jn(A) is the set of n × n Jordan normal form (which is a closed subset of Mn(A)),
and φ simply maps a matrix to its normal form. Jn(A) can also be thought of as the “space
of equivalence classes of matrices”. The Jordan normal form can be described by finitely many
real numbers and integers, so we have found “complete numeric invariants” for n × n matrices
up to similarity.
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2. A far more sophisticated example is Ornstein’s theorem in ergodic theory that Bernoulli shifts
are classified by entropy. Here we again have a complete numeric invariant.

3. Moduli spaces studied in geometry give another family of examples. E.g., the equivalence
classes of complex structures on the torus T 2 naturally form a space, called its Teichmüller
space, and can be identified with the upper half complex plane H. This provides a complete
numeric invariant for complex structures on T 2.

4. There are many classification problems where although complete invariants exist, they are
structures like groups and rings instead of numbers. Open 2-manifolds are classified by a tuple
of end spaces; see [17]. The end spaces are profinite, and thus by Stone duality correspond
to (countable) Boolean algebras. This gives in some sense a classification of 2-manifolds by
countable algebraic structures, and DST tells us this is the best we can do: there is no way to
classify open 2-manifolds by assigning numbers to them, and there is no way we can build a
space of “open 2-manifolds up to homeomorphism” like Teichmüller space; see Clinton Conley’s
answer to [18].

5. A classical theorem of Baer says rank 1 torsion-free abelian groups, or equivalently subgroups
of (Q, +), are classified by their heights. If A is such a group and a ∈ A, for each prime
number p let hp(a) be the largest natural number n such that a can be divided by p for n
times; if a is divisible for all n then hp(a) = ∞. Because A has rank 1, any two elements a, b
are rational multiple of each other, so hp(a) = hp(b) for all but finitely many p, and the height
sequence H(A) := (hp(a) : p is a prime) is well-defined up to eventual equality. It turns out
A ≃ B iff H(A) and H(B) are equivalent. Here the complete invariant is neither a number
nor a structure, but an equivalence class of the eventualy equality relation.

The general theme of classification is that we have an equivalence relation E on a collection X of
things, and we look for complete invariants. Of course a trivial complete invariant for x ∈ X is just
the equivalence class of x under E, but this is useless. Often we want complete numeric invariants,
which at least on an abstact level is equivalent to the existence of “moduli space of equivalence
classes”. If that is impossible, we would like our invariants to be as simple as possible; usually we
want to turn topological invariants into algebraic ones, and ideally the algebraic structures should
be countable. Moreover, in most if not all examples, we can make X into a Polish space (or at least
a standard Borel space), and the computation of the complete invariants are Borel in certain sense.

At last, we introduce the notions central in modern DST. They aim at a formalization of the
above phenomena that occur in various different fields.

Definition 17. 1. If X is a Polish space, a Borel equivalence relation E on X is a reflextive,
symmetric and transitive relation on X such that {(x, y) ∈ X × X : xEy} is Borel. Similarly
one can define analytic/coanalytic/projective equivalence relation.

2. Suppose E and F are equivalence relations on X and Y respectively. A function f : X → Y
is a Borel reduction if it is Borel and satisfies:

xEy ↔ f(x)Ff(y)
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If there exists such a Borel reduction, we say E is Borel reducible to F , denoted E ≤B F . If
both E ≤B F and F ≤B E, we say E are F are bireducible, denoted E ∼B F . If E ≤B F but
F ̸≤B E, we say E is strictly below F , denoted E <B f .
Note that E ≤B F implies but is usually stronger than saying the set E reduces to the set F
in the sense of reduction in section 3; the structure of the preorder ≤B turns out to be very
rich even if we focus on CBERs.
One interpretation of E ≤B F is that we assign to each x ∈ X the equivalence class [y]F ,
which is a complete invariant for E. Another interpretation is that “determining whether
two things are F -equivalent is at least as difficult as determining whether two things are
E-equivalent”, or in short “F is more complicated than E”.

3. idR is the identity relation on R. In case E ≤B idR we say E is smooth, or concretely classifiable.
This is equivalent to saying E reduces to the identity relation on some arbitrary Polish space X
(e.g., Jordan normal form and moduli spaces), by the Borel isomorphism theorem. Smoothness
is an abstraction of “there exist complete numeric invariants”. In the previous examples, the
similarity relation on matrices, isomorphism relation on Bernoulli shifts, and biholomorphic
relation on complex structures on T 2 are smooth, while the homeomorphism relation on
surfaces and the isomorphism relation on rank 1 torsion-free abelian groups are not.

4. A countable Borel equivalence relation, often abbreviated as CBER, is a BER whose every
equivalence class is countable. For example, any OER induced by the action of a countable
group is a CBER. By a fundamental theorem of Feldman and Moore, any CBER is induced
by the Borel action of a countable group. Thus group theory is a big part of modern DST.
One of the most important CBERs is E0, the equivalence relation on infinite binary strings
defined by eventual equality. E0 is not smooth, but by the Glimm–Effros dichotomy mentioned
below, it is the “simplest” non-smooth BER. Baer’s result essentially says the isomorphism
relation of rank 1 torsion-free abelian groups is bireducible with E0.

5. A Polish group is a topological group whose topology is Polish; note that every countable
group (like Q) is Polish if we equip it with discrete topology. If G × X → X is a continuous (or
more generally Borel) action of the Polish group G on the Polish space X, we define the orbit
equivalence relation EG

X induced by the action by xEG
Xy ↔ ∃g ∈ G gx = y. Orbit equivalence

relations are analytic, and in general may or may not be Borel.

6. Recall that the collection of all group structures on the set ω of natural numbers might be
called the “Polish space of all countable groups”, and similar for countable graphs, countable
fields, etc. Let S∞ be all bijections of ω with itself. S∞ is a Polish group and naturally
acts on the spaces of groups, graphs, fields, etc. If E is reducible to some OER induced
by such an action of S∞, we say E is classifiable by countable structures. An example is
homeomorphism relation on surfaces, since it can be reduced to homeomorphism of end spcaes,
which correspond to countable Boolean algebras.

Many results about general OER, BER and CBER have been discovered. Arguably the first
major result was the Harrington–Kechris–Louveau theorem known as Glimm–Effros dichotomy,
which says if E is a BER then either it is smooth or E0 ≤B E. This generalized previous work of
Glimm and Effros which was motivated by operator algebra. A dozen of other dichotomy theorems
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were subsequently discovered, and we now have a moderately good idea of what the Borel reducibility
preorder looks like.

There has also been huge effort on calibrating the complexity of particular equivalence relations.
For example, the homeomorphism relation of compact metric space is quite complicated: it is
bireducible with the so-called universal OER by [19]. Note that isometry of compact metric space is
“easy”, in fact there is a nice moduli space based on Gromov–Hausdorff distance. Wild knots are
not classifiable by countable structures [20], and as a corollary there is no hope of classifying open
subsets of R3 up to ambient homeomorphism, but whether the same is true of the homeomorphism
relation seems open.

The majority of results about equivalence relations are “anti-classification”: they tell you not to
waste your time looking for, e.g., complete numeric invariants for open 2-manifolds. We end with
mentioning a more positive side of DST, namely the young field of Borel combinatorics. A Borel
graph on the Polish space X is a Borel set E ⊆ X × X which as a binary relation is irreflexive and
symmetric; if xEy or equivalently yEx we say there is an edge between x, y. Consider a rotation
of the unit circle S by the angle απ where α is a fixed irrational number, and consider the graph
formed by connected each point with its image. Abstractly this is a disjoint union of paths, so the
chromatic number is 2, but it turns out the Borel chromatic number is greater than 2: there cannot
be a partition of S into two independent sets A, B. The actual Borel chromatic number is 3, which
follows from a (nontrivial) Borel version of the basic combinatorics theorem “if the maximal degree
is ∆ then the chromatic number is at most ∆ + 1”.

Plenty of other combinatorics notions and theorems have Borel counterparts. Borel combinatorics
has applications to usual combinatorics. It also features in the following spectecular result:

Theorem (Marks–Unger). It is possible to partition the unit square into about 10200 pieces of Borel
(in fact ∆0

5) sets and reassemble them into a disk of the same area using only translation.

The motivation comes from the Banach–Tarski paradox, which implies that in dimension at
least 3, any ball can be partitioned into finitely many pieces and reassembled into a cube of any
volume. There is no Banach–Tarski in dimension 1 or 2 because the isometry group of the plane is
amenable, which implies there is a finitely additive extension of Lebesgue measure to all subsets of
the plane which is isometry-invariant. So Tarski asked whether a circle and a square in the plane are
equidecomposible provided they have the same area. This was answered affirmatively by Laczkovich,
but he used non-Lebesgue measurable sets. Grabowski–Máthé–Pikhurko eliminated non-measurable
sets from the proof, but they still relied on AC to handle certain null sets. Then comes Marks and
Unger’s constructive result. One ingredient of their proof is the matching theory of Borel graphs.
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