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Theorem (Banach-Tarski)

The unit ball B ⊆ R3 can be decomposed into finitely many pieces
and reassembled into two copies of itself.
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Paradoxical decomposition

Suppose the group G acts on a set X. Two subsets A,B ⊆ X are
G-equidecomposable, denoted A ∼ B, if there exist subsets
A1, . . . , An, B1, . . . , Bn and g1, . . . , gn ∈ G such that

A =

n⊔
i=1

An, B =

n⊔
i=1

Bn, Bi = giAi

We say E ⊆ X is G-paradoxical if E = A ⊔B where E ∼ A ∼ B.
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Paradoxical decomposition

Let E(n) be the group of isometries of Rn. It is generated by
rotations, translations and reflections.

Banach-Tarski: the unit ball B is E(3)-paradoxical.

Our goal: the unit disk is not E(2)-paradoxical. This has to do
with the fact that E(2) is amenable while E(3) (in fact SO3) is
not.
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Paradoxical decomposition

Lemma 1 (Banach-Schröder-Bernstein)

If A ∼ B1 ⊆ B and B ∼ A1 ⊆ A, then A ∼ B.

Proof.

Let f : A → B1 be the decompose-reassemble map, similarly
g : B → A1. Note that for any C ⊆ A we have C ∼ f(C).

Run the standard proof of Schröder-Bernstein to get a bijection
h : A → B that agrees with f on a set C and with g−1 on A \ C.
Then C ∼ f(C) = h(C) and similarly
A \ C ∼ g−1(A \ C) = h(A \ C), so A ∼ B.
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Proof of Banach-Tarski

Outline:

1. Find a paradoxical decomposition of the free group F2.

2. Find a subgroup H of SO3 isomorphic to F2.

3. Translate the decomposition from H to the sphere S2.

4. Extend it from S2 to B.
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Proof of Banach-Tarski

We have the following decomposition of F2:

F2 = {e} ∪ S(a) ∪ S(a−1) ∪ S(b) ∪ S(b−1)

where for example S(a) is the set of all reduced words starting
with a. Note that

aS(a−1) = {e} ∪ S(a−1) ∪ S(b) ∪ S(b−1)

bS(b−1) = {e} ∪ S(a) ∪ S(a−1) ∪ S(b−1)

So F2 ∼ S(a) ∪ S(a−1) ∼ S(b) ∪ S(b−1). We have almost shown
that F2 is F2-paradoxical w.r.t. the left translation on itself.
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Proof of Banach-Tarski

F2 ∼ S(a) ∪ S(a−1) ∼ S(b) ∪ S(b−1)

Let A = {e} ∪ S(a) ∪ S(a−1) and B = S(b) ∪ S(b−1), so
F2 = A ∪B. We have shown that F2 ∼ B and F2 ∼ A1 for some
subset A1 of A; since A is certainly equidecomposable with a
subset of F2 (i.e., A itself), we have F2 ∼ A. Thus F2 is
F2-paradoxical.
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Proof of Banach-Tarski

Let H be a subgroup of SO3 isomorphic to F2. The generators
could be rotation around x-axis and y-axis of angle arccos(1/3).

Consider the action of H on S2. Each element of H has two fixed
points, so the set D of all fixed points is countable; let
X = S2 \D, so the action of H on X is free (no group element
has fixed point).

Let M ⊆ X be a set of representatives w.r.t. to the H action.
Recall that H has a paradoxical decomposition H = A ∪B. It can
be checked that X = AM ∪BM is a paradoxical decomposition.

Thus X = S2 \D is SO3-paradoxical. It can be shown that
S2 \D ∼SO3 S2, so S2 is also SO3-paradoxical. This implies
B \ {0} is SO3-paradoxical. Finally one can show
B \ {0} ∼E(3) B, which finishes the proof.
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The pieces used in Banach-Tarski cannot all be Lebesgue
measurable, since Lebesgue measure is E(3)-invariant.

If G acts on X, E ⊆ X and there is a finitely additive measure
µ : P(X) → [0,∞] s.t. 0 < µ(E) < ∞, then E cannot be
G-paradoxical.

Banach-Tarski shows there cannot be a f.a. measure
µ : P(R3) → [0,∞] that is E(3)-invariant with 0 < µ(B) < ∞.

Our main goal is to show that such a measure does exist in
dimension 1 and 2 (it can even extend the Lebesgue measure). In
particular, there is no Banach-Tarski paradox for the unit disk.
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Amenable group

A group G is amenable if there is a finitely additive probability
measure µ : P(G) → [0, 1] that is (left) G-invariant, namely:

1. A ∩B = ∅ ⇒ µ(A ∪B) = µ(A) + µ(B)

2. µ(G) = 1

3. µ(gA) = µ(A)

G acts on itself by left translation. If G is amenable then G is not
G-paradoxical. By a theorem of Tarski, this is actually equivalent
to amenability.
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Amenable group

F2 is not amenable. Any subgroup of an amenable group is
amenable. For many natural classes of groups, amenability is the
same as not containing F2.

We will show that all abelian groups are amenable, and that
amenability is preserved in group extension; since E(2) is solvable,
it is amenable. Then we use amenability to construct
E(2)-invariant measure on R2.

As a warmup we show Z is amenable, but before that we need to
introduce ultrafilters.
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A sort of duality

Let X be a reasonable topological space, and Cb(X) be the
Banach space of real bounded continuous functions on X.

Every point x ∈ X defines a functional χ : Cb(X) → R, f 7→ f(x)
that has the following properties:

1. χ(1) = 1

2. f ≥ 0 ⇒ χ(f) ≥ 0

3. |χ(f)| ≤ ∥f∥

13 / 30



A sort of duality

Let S be the set of functionals with above properties. It is convex,
namely if χ, η ∈ S and 0 < λ < 1 then λχ+ (1− λ)η ∈ S.

If χ ∈ S is an extreme point (cannot be expressed as combinations
of other functionals in S), must it be the evaluation at some point
x ∈ X?

The answer is yes if X is compact, but no in general.
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A sort of duality

Let’s look at the case X = N, so Cb(X) is the same as ℓ∞.
Suppose χ ∈ (ℓ∞)∗ is an extreme point; we claim that for any
A ⊆ N, χ(1A) is either 0 or 1. Otherwise, let λ := χ(1A), and we
have for any f ∈ ℓ∞,

χ(f) = χ(f1A + f1Ac) = χ(f1A) + χ(1Ac) =

λ · χ(f 1A
λ

) + (1− λ) · χ(f 1Ac

1− λ
)

contradicting that χ is an extreme point. It is also easy to check
that if χ(1A) = 1 and χ(1B) = 1 then χ(1A∩B) = 1.
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A sort of duality

The collection of sets U = {A ⊆ N : χ(1A) = 1} satisfies:

1. N ∈ U , ∅ /∈ U

2. A,B ∈ U ⇒ A ∩B ∈ U

3. A ∈ U ∧A ⊆ B ⇒ B ∈ U

4. either A ∈ U or Ac ∈ U

A collection that satisfies 1-3 is called a filter on N; a filter that
satisfies 4 is called an ultrafilter.
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Ultrafilter

Every n ∈ N corresponds to an ultrafilter {A ⊆ N : A ∋ n}. This is
called a principal ultrafilter. The existence of non-principal
ultrafilter follows from Zorn’s lemma.

Lemma 2

Any filter can be extended to an ultrafilter.

Key: if F is a filter that is not ultra, there exists A s.t. A /∈ F and
Ac /∈ F . We claim that either A or Ac can be added to F and still
generate a filter. Otherwise, there exists B ∈ F with A ∩B = ∅
and C ∈ F with Ac ∩ C = ∅; then B ∩ C = ∅, contradiction.
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Ultrafilter

An ultrafilter on N is the same as a finitely additive measure
µ : P(N) → {0, 1}.

A non-principal ultrafilter can be thought of as a “generalized
point” of N. The set βN of all ultrafilters on N is a compact
Hausdorff space, called the Stone-Čech compactification of N.

If X is a topological space and x ∈ X, then
{U ⊆ X : U is open and U ∋ x} is a filter. Any filter can be
thought of as a kind of convergence. An ultrafilter is a special kind
of convergence.

One can analogously define ultrafilters on any set X.
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Ultrafilter

Recall that any χ ∈ (ℓ∞)∗ that is an extreme point defines an
ultrafilter U . Conversely χ can be recovered from U as follows: say
f ∈ ℓ∞ has range in [0, 1]. Then

either {n : f(n) ∈ [0, 12 ]} ∈ U or {n : f(n) ∈ [12 , 1]} ∈ U

In the latter case,

either {n : f(n) ∈ [12 ,
3
4 ]} ∈ U or {n : f(n) ∈ [34 , 1]} ∈ U

etc. Thus we have a sequence of nested intervals, whose limit r is
the unique number s.t. for any neighborhood B ∋ r, f(n) ∈ B for
almost all n (modulo U).

Denote this limit by limU f . The map f 7→ limU f recovers χ.
Equivalently we can also integrate f w.r.t. the f.a. measure U .
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Equivalent definition of amenability

A functional χ : L∞(G) → R is an (left) invariant mean if:

1. χ(1) = 1

2. f ≥ 0 ⇒ χ(f) ≥ 0

3. χ(g · f) = χ(f) for any g ∈ G, f ∈ L∞(G)

where (g · f)(x) = f(g−1x).

An invariant mean defines an invariant measure on G by
considering the characteristic functions. Conversely, starting from
an invariant measure we can get an invariant mean by integration:
first define the integral of simple functions, and then extend to all
of L∞(G) by density of simple functions.

Warning: this definition works for locally compact groups in
general, but in this talk all groups are discrete.
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Amenability of Z

Fix a nonprincipal ultrafilter U on N. Let Fn = [−n, n] ∩ Z. For
each f ∈ L∞(Z) define f̄ ∈ ℓ∞ by

f̄(n) = average of f on Fn

The map f 7→ limU f̄ is an invariant mean on L∞(Z), because if g
is a translate of f then ḡ − f̄ tends to zero, and limU extends the
ordinary limit.

This generalizes to the following: if (Fn)n is a sequence of finite

subsets of G s.t.
|gFn△Fn|

|Fn|
→ 0 for any g ∈ G, then G is

amenable. This is known as a Følner sequence.
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Properties of amenable groups

1. Amenability is preserved under quotient.

2. Amenability is preserved under subgroup.

3. 0 → H → G → G/H → 0

If both H and G/H are amenable then so is G.

4. If all f.g. subgroups of G are amenable then so is G.
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Properties of amenable groups

1. Amenability is preserved under quotient π : G → K.

Let ν be the pushforward of the invariant measure µ on G, defined
by ν(A) = µ(π−1(A)). To show that ν(hA) = ν(A), choose
g ∈ G with π(g) = h, and note that

x ∈ π−1(hA) ⇔ x ∈ π−1(π(g)A)

⇔ π(x) ∈ π(g)A

⇔ π(g−1x) ∈ A

⇔ g−1x ∈ π−1(A)

⇔ x ∈ gπ−1(A)
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Properties of amenable groups

2. Amenability is preserved under subgroup H ≤ G.

Choose a set M of representatives for right H-cosets, and define
ν(A) = µ(AM) for A ⊆ H.

Equivalently, for any g ∈ G there is a unique k ∈ M with
Hg = Hk, or gk−1 ∈ H. We define a map π : G → H by
π(g) = gk−1. Can check that ν is the pushforward measure of µ,
and it’s invariant because π is a homomorphism of H-sets.
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Properties of amenable groups

3. 0 → H → G → G/H → 0

If both H and G/H are amenable then so is G.

Let χ, η be invariant means on L∞(H) and L∞(G/H). For
f ∈ L∞(G), we can take the “average over gH”, which is
χ((g−1 · f)|H). Can check that because χ is invariant, if
g1H = g2H then the average is the same. So

gH 7→ average over gH

is a map on G/H, to which we apply η. The result is an invariant
mean on L∞(G).
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Properties of amenable groups

4. If all f.g. subgroups of G are amenable then so is G.

Let (Gi : i ∈ I) be all the f.g. subgroups of G; for each i let χi be
an invariant mean on L∞(Gi).

For each g ∈ G let Fg = {i ∈ I : Gi ∋ g}; then {Fg : g ∈ G} has
finite intersection property so generate a filter on I; extend this
filter to some ultrafilter U .

For f ∈ L∞(G), define χ(f) = limU f̄ where
f̄ : I → R, i 7→ χi(f |Gi). This is an invariant mean.
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Properties of amenable groups

Finitely generated abelian groups are amenable (similar to Z), so
all abelian groups are amenable. By closure under extension, any
solvable group is amenable.

E(2) is solvable, because SE(2) has index 2 in E(2), and SE(2)
is the semidirect product of SO2 ≃ S1 and translation.

If an amenable G acts on X then there is a f.a. G-invariant
probability measure on X, namely the pushforward along the map
g 7→ gx for some fixed x ∈ X. Thus X is not G-paradoxical, as
with any positive set. However, if we apply this construction to the
action of E(2) on R2 then the unit disk always has measure zero.
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No Banach-Tarski in dimension 1 or 2

Let m : P(R2) → [0,∞] be any f.a. measure that extends the
Lebesgue measure. Its existence can be proven using ultrafilter, or
Hahn-Banach.

Let µ be the invariant f.a. probability measure on E(2). For
A ⊆ R2 define m̄(A) by

m̄(A) = average of the map g 7→ m(g−1A) w.r.t. µ

Then m̄ is a f.a. E(2)-invariant measure on P(R2) that extends
the Lebesgue measure; in particular the unit disk has finite positive
measure, hence non-paradoxical.
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Fun facts

Circle-squaring is possible, even in a Borel way.

ZF+ DC+“all sets are measurable” is equiconsistent with
ZFC+“there exists inaccessible cardinal”; however, the consistency
of ZF+ DC+“no Banach-Tarski” doesn’t require inaccessible.

“There is an extension of Lebesgue measure to P(R) that is
countably additive (necessarily not translation-invariant)” is
equiconsistent with measurable cardinal.
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