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Mordell’s Theorem: Strategy

Let E : y2 = x3 + ax2 + bx+ c be an elliptic curve with rational
coefficients. Denote the group of rational points by E(Q). The
proof that E(Q) is finitely generated is based on four lemmas:

1. {P ∈ E(Q) : h(P ) ≤M} is finite.

2. h(P + P0) ≤ 2h(P ) + κ0

3. h(2P ) ≥ 4h(P )− κ

4. (weak Mordell) The quotient group E(Q)/2E(Q) is finite.

2 / 18



We first prove the weak Mordell Theorem assuming E(Q) has a
point of order two, or equivalently f(x) = x3 + ax2 + bx+ c has a
rational root. By translation we may assume c = 0. Note that
T = (0, 0) is on E. Also b ̸= 0 since we assume E to be smooth.

Then we can define a new curve E : y2 = x3 + ax2 + bx, where
a = −2a and b = a2 − 4b. There is a homomorphism ϕ : E → E
defined as follows:

ϕ(P ) =

O, P = O or P = T

(x, y) =

(
y2

x2
, y

(
x2 − b

x2

))
, P = (x, y), x ̸= 0

ϕ restricts to a homomorphism E(Q) → E(Q).

3 / 18



We first prove the weak Mordell Theorem assuming E(Q) has a
point of order two, or equivalently f(x) = x3 + ax2 + bx+ c has a
rational root. By translation we may assume c = 0. Note that
T = (0, 0) is on E. Also b ̸= 0 since we assume E to be smooth.

Then we can define a new curve E : y2 = x3 + ax2 + bx, where
a = −2a and b = a2 − 4b. There is a homomorphism ϕ : E → E
defined as follows:

ϕ(P ) =

O, P = O or P = T

(x, y) =

(
y2

x2
, y

(
x2 − b

x2

))
, P = (x, y), x ̸= 0

ϕ restricts to a homomorphism E(Q) → E(Q).

3 / 18



The definition of E and ϕ can be explained via uniformization by
Weierstrass ℘ functions[1]. There is also a more direct explanation
in Lectures on Elliptic Curves by Cassels[2].
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We can apply this procedure to E again to get E and ϕ. Direct

calculation shows E is y2 = x3 + 4ax2 + 16bx, which can also be
written as (y8 )

2 = (x4 )
3 + a(x4 )

2 + b(x4 ). Therefore it is isomorphic
to E and has the same rational points. Denote by ψ the

composition of ϕ and the isomorphism from E to E.

ψ ◦ ϕ : E → E is the duplication map. Recall the explicit formula

2P = 2(x, y) =

(
(x2 − b)2

4y2
,
(x2 − b)(x4 + 2ax3 + 6bx2 + 2abx+ b2)

8y3

)
Let Γ = E(Q), Γ = E(Q). We want to prove that Γ/2Γ = Γ/ψ ◦ ϕ(Γ)
is finite. It suffices to prove that Γ/ϕ(Γ) and Γ/ψ(Γ) are finite: for

a sequence A
f−→ B

g−→ C, if B/f(A) and C/g(B) are finite, then
C/g ◦ f(A) is also finite. We prove the finiteness of Γ/ψ(Γ).
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Proposition 1

Any rational point on the curve y2 = x3 + ax2 + bx+ c is of the
form (m

e2
, n
e3
), where (m, e) = 1 and (n, e) = 1.

Proof.

Suppose (mM ,
n
N ) is a rational point in reduced form. WLOG

M,N > 0. Plugging this into the equation gives us

n2

N2
=
m3 + am2M + bmM2 + cM3

M3

These are both in reduced form, so N2 =M3, which implies
N = e3 and M = e2 for some e.
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We now study ψ(Γ). We can describe it very concretely:

Lemma 2

(i) O ∈ ψ(Γ).
(ii) T = (0, 0) ∈ ψ(Γ) iff b ∈ Q∗2.
(iii) If P = (x, y) ∈ Γ and x ̸= 0, then P = (x, y) ∈ ψ(Γ) iff
x ∈ Q∗2.
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Proof of (ii):

T ∈ ψ(Γ) ⇔ ∃(x, y) ∈ Γ,
y2

x2
= 0

⇔ ∃x ̸= 0, x3 − 2ax2 + (a2 − 4b)x = 0

⇔ ∃x, x2 − 2ax+ (a2 − 4b) = 0
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We now study ψ(Γ). We can describe it very concretely:

Lemma 2

(i) O ∈ ψ(Γ).
(ii) T = (0, 0) ∈ ψ(Γ) iff b ∈ Q∗2.
(iii) If P = (x, y) ∈ Γ and x ̸= 0, then P = (x, y) ∈ ψ(Γ) iff
x ∈ Q∗2.

Proof of (iii): Suppose (x, y) ∈ Γ and x ̸= 0. If x = y2

x2
for some

(x, y) ∈ Γ then of course it is a rational square. Conversely if
x = w2 then one can explicitly write down a point that maps to P ,
see [1].
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Define a map α : Γ → Q∗/Q∗2 as follows:

α(O) = 1 mod Q∗2

α(T ) = b mod Q∗2

α(x, y) = x mod Q∗2 for x ̸= 0.

Note that the kernel of α is exactly ψ(Γ), so α induces an
embedding of Γ/ψ(Γ) into Q∗/Q∗2 (once we show that α is a
homomorphism). We don’t need to worry about ψ(Γ) henceforth.
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α is a homomorphism

α(P ) = α(x, y) = α(x,−y) = α(−P ). The group Q∗/Q∗2 has
exponent 2, so any element is its own inverse. This shows α
preserves inverse.

Now we show that α(P1 + P2) = α(P1) · α(P2). Let P1 + P2 = −P3.
For simplicity assume all three points are different from O, T . Since
α preserves inverse, α(−P3) = α(P1) · α(P2) is the same as saying
α(P1) · α(P2) · α(P3) = 1 mod Q∗2. If P1, P2, P3 lie on a line
y = px+ q, then substituting this into y2 = x3 + ax2 + bx we get
x3 + ax2 + bx− (px+ q)2 = 0, so x1x2x3 = q2 = 1 mod Q∗2.
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Lemma 3

The image of α is finite.

Proof.

Suppose (m
e2
, n
e3
) is a rational point in reduced form. Substituting

this into y2 = x3 + ax2 + bx and clearing denominators gives
n2 = m(m2 + ame2 + be4). Any integer can be uniquely written as
dq2, where d is a square-free integer. Suppose m = dq2. If p | d,
then for the product to be a square we must have
p | m2 + ame2 + be4; since p | m we get p | be4, and since
(m, e) = 1 we get p | b. Since m = d mod Q∗2, α(Γ) is
contained in the finite subgroup generated by −1 and all primes
dividing b.
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Theorem

If E is an elliptic curve defined over Q that has a point of order 2,
then E(Q) is finitely generated.

Theorem

If E is an elliptic curve defined over a number field K, then E(K)
is finitely generated.

The proof of number field case requires more machinery. For
general rational case there is a quite elementary proof in Cassels’
book; it’s concise and has a typo; [3] may be helpful.
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Let E : y2 = f(x) = x3 + ax2 + bx+ c be such that f(x) has no
rational root, i.e., irreducible (the proof actually also works for
reducible case with minor modification, but for simplicity let’s
focus on irreducible case). Also we may assume a, b, c ∈ Z.

Let θ, θ′, θ′′ ∈ A be the roots of f(x) and K = Q(θ),
L = Q(θ, θ′, θ′′). Define a map α : E(Q) → K∗/K∗2 as follows

α(O) = 1 mod K∗2

α(x, y) = x− θ mod K∗2
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α is a homomorphism

By the same argument as before, it suffices to show that if
P1, P2, P3 ∈ E(Q) lie on a line y = px+ q, then
α(P1)α(P2)α(P3) = 1 mod K∗2. x1, x2, x3 are the solutions to
f(x)− (px+ q)2 = 0, so x1 − θ, x2 − θ, x3 − θ are the solutions to
f(x+ θ)− (px+ pθ + q)2 = 0. The constant term of f(x+ θ) is
zero since θ is a root, so (x1 − θ)(x2 − θ)(x3 − θ) = (pθ + q)2 = 1
mod K∗2.
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The kernel of α is 2E(Q)
Suppose P = (x0, y0) is in the kernel, so x0− θ = 1 mod K∗2, or

x0 − θ = (pθ2 + qθ + r)2

for some p, q, r ∈ Q, p ̸= 0. Let g(x) = px2 + qx+ r, so

x0 − θ = g(θ)2

By Euclidean algorithm there exists s, t, u ∈ Q so that
(s− x)g(x) = tx+ u mod f(x), so

(s− θ)g(θ) = tθ + u

Therefore

(s− θ)2(x0 − θ) = (s− θ)2g(θ)2 = (tθ + u)2

This means h(x) = (tx+ u)2 − (s− x)2(x0 − x) has a root θ.
Since h(x) has degree 3 and leading term coefficient 1, it must be
equal to f(x)!

Consequently

(tx+ u)2 − (s− x)2(x0 − x) = f(x)

We can also rearrange it as

(tx+ u)2 − f(x) = (s− x)2(x0 − x)

Solving (tx+ u)2 − f(x) = 0 means finding the intersection points
of y = tx+ u and E : y2 = f(x), so by the above the line
y = tx+ u intersects E twice at (s, ts+ u) and once at
(x0, tx0 + u) = ±P . In either case P ∈ 2E(Q).
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The image of α is finite

Suppose (m
e2
, n
e3
) is a rational point in reduced form. We want to

show there are only finitely many possibilities for m
e2

− θ modulo

K∗2. Since f(x) = (x− θ)(x− θ′)(x− θ′′), we have

(
n

e3
)2 = (

m

e2
− θ)(

m

e2
− θ′)(

m

e2
− θ′′), or

n2 = (m− θe2)(m− θ′e2)(m− θ′′e2)

Passing to ideals in OL, we have

(n)2 = (m− θe2)(m− θ′e2)(m− θ′′e2)
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(n)2 = (m− θe2)(m− θ′e2)(m− θ′′e2)

Write (m− θe2) as IJ2 where I is square-free. If P is a prime
factor of I, then it must also divide either (m− θ′e2) or
(m− θ′′e2). Say P | (m− θ′e2). Note that

(m− θ′e2)− (m− θe2) = (θ − θ′)e2

θ(m− θ′e2)− θ′(m− θe2) = (θ − θ′)m

Thus P | (θ − θ′)(e2) and P | (θ − θ′)(m), and thus (because (e2)
and (m) are coprime) P | (θ − θ′).

Let F(L) be the group of nonzero fractional ideals in L. To
summarize, there are only finitely many possibilities for the ideal
generated by m− θe2 (equivalently m

e2
− θ) modulo F(L)2.
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Consider the sequence of maps

E(Q)/2E(Q)
α−→ K∗/(K∗)2

ψ−→ F(K)/F(K)2
η−→ F(L)/F(L)2

We have shown that the composition has finite image.

ker η is finite because only finitely many prime ideals of K ramify
in L. Also kerψ can be shown to be finite using finiteness of class
group and Dirichlet’s unit theorem. So α has finite image.
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