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Our goal:

(i) Any real function definable in (R, <, 0, 1,+,−, ·, exp, log) is

bounded by some exponential tower ee
. .

.
ex

.

(ii) The inverse function of (log x)(log log x) is not asymptotic to
any function expressible using algebraic functions, exp, log,
arithmetic operations and compositions.

We use various “nice” expansions of the real field R, and also
some “nice” non-standard models of the corresponding theory.
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R

Recall RCF, the theory of real closed field in the language
(<, 0, 1,+,−, ·):

1. axioms for ordered field,

2. any positive element has a square root,

3. any odd degree polynomial has a root.

Theorem (Artin–Schreier-Tarski-Seidenberg)

RCF is complete and has quantifier-elimination.
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R

Some consequences:

1. RCF axiomatizes (R, <, 0, 1,+,−, ·). In particular Th(R) is
decidable.

2. RCF is model-complete, i.e., any embedding is elementary.

3. RCF is o-minimal, i.e., any 1-dimensional definable subset is
the union of finitely many intervals and points.

4. Higher dimensional definable sets are “tame”.
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Expansions of R

What if we add exp?

Let Rexp := (R, <, 0, 1,+,−, ·, exp). Wilkie proved that Th(Rexp)
is model-complete. It is also o-minimal, but it seems open whether
Rexp has QE even with log added.

A black-box that decides the existential part of Texp := Th(Rexp)
can be used to decide the whole theory. Assuming Schanuel’s
conjecture, such a black-box exists.
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Expansions of R

We can also add something else. For every n, consider power series
in n variables that converge in an open neighborhood of [−1, 1]n.
Denote by Ran the expansion of R by these functions.

Tan := Th(Ran) is model-complete and o-minimal, and admits QE
provided an extra symbol for reciprocal.

Tan is axiomatized by:

1. axioms for ordered field,

2. any positive element has an n-th root,

3. a collection of natural axioms about the functions f , for
example if f is the sum of g and h, then f = g + h is an axiom.
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Expansions of R

Ran,exp is model-complete and o-minimal, and admits QE provided
an extra symbol for log. Its theory Tan,exp := Th(Ran,exp) is
axiomatized by Tan plus the following:

E1. exp(x + y) = exp(x) exp(y).

E2. x < y → exp(x) < exp(y).

E3. x > 0→ ∃y exp(y) = x.

E4n. x > n2 → exp(x) > xn.

E5. −1 ≤ x ≤ 1→ exp(x) = E(x), where E is the function
symbol corresponding to the power series

∑ xn

n! .
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Power Series

One source of useful nonstandard model is generalized power series.

Definition 1

Let k be any field. k[[x]], the ring of formal power series over k,

consists of formal sums
∞∑
i=0

aix
i where ai ∈ k. The operations are

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)x
i

( ∞∑
i=0

aix
i

)
·

( ∞∑
i=0

bix
i

)
=
∞∑
i=0

(∑
s+t=i

asbt

)
xi
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Power Series

Facts:

1. Any series
∑∞

i=0 aix
i with a0 6= 0 is invertible; to find the

inverse, inductively solve the equations a0b0 = 1,
a1b0 + a0b1 = 0, a2b0 + a1b1 + a0b2 = 0, etc.

2. If k is an ordered field, we can compare two series by
comparing the first place where they differ; here we think of x
as infinitesimal.

3. If s, t ∈ k[[x]] and the constant term of t is zero, then s(t)
makes sense. For example if s =

∑∞
i=0 x

i and t = x+x2, then

s(t) = 1 + (x + x2) + (x + x2)2 + (x + x2)3 + (x + x2)4 + · · ·
= 1 + x(1 + x) + x2(1 + x)2 + x3(1 + x)3 + x4(1 + x)4 + · · ·
= 1 + x + 2x2 + 3x3 + 5x4 + · · ·
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Power Series

We can also consider k((x)), the field of formal Laurent series. Its

elements look like
∞∑

i=−n
aix

i for some n ∈ N.
−1∑

i=−n
aix

i is the

“purely infinite” part.
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Power Series

We can generalize k((x)) by allowing exponents to be rational,
real, or elements from an ordered abelian group.

Definition 2

Let (Γ,+, <) be an ordered abelian group. k((xΓ)), the field of
generalized power series with exponents in Γ, consists of formal

sums s =
∑
g

agx
g, where supp s := {g ∈ Γ | ag 6= 0} is well

ordered.(∑
g

agx
g

)
·

(∑
g

bgx
g

)
=
∑
h

 ∑
g+k=h

agbk

xh
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Power Series

An element in R((xQ)) whose support has order type 2ω + 1:

x−1 + 2x−1/2 + 5x−1/4 + · · ·+ 1 + x1/2 + x2/3 + · · ·+ x

If we consider all series in R((xQ)) whose exponents have bounded
denominators, we get the field of Puiseux series, essentially
discovered and studied by Newton.
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Bad News

For our purpose it is more natural to view x as an infinite element,
so we re-define k((xΓ)) to be the collection of reverse well ordered
series. However we write from higher to lower terms, so it appears
as a well ordering. Example:

x + x1/2 + x1/3 + · · ·+ 1 + 2x−1/2 + 5x−2/3 + · · ·

13 / 25



Power Series

Facts:

1. If Γ is divisible and k is real closed, then k((xΓ)) is real closed.

2. If t ∈ k((xΓ)) is infinitesimal and s is a usual formal power
series, then s(t) exists. For example if s =

∑∞
i=0 aiX

i and
t = 1

x + 1
x2 , then

s(t) =

∞∑
i=0

ai(
1

x
+

1

x2
)i

=

∞∑
i=0

ai
1

xi
(1 +

1

x
)i

= · · ·

This is also true for multivariate power series.
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Construction of R((x))E

We want to construct nonstandard model of Tan,exp using
generalized power series.

First notice that restricted analytic functions can be interpreted
naturally in R((xΓ)): if (a1, ..., an) is a tuple of infinitesimal
elements in R((xΓ)), then f(a1, ..., an) is well-defined for any
formal power series f(x1, ..., xn), in particular for those converging
in a neighborhood of origin. If (a1, ..., an) is in the unit cube of
R((xΓ)), then it is infinitely close to some (c1, ..., cn), ci ∈ R, and
f(x1 + c1, ..., xn + cn) converges in a neighborhood of origin.
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Construction of R((x))E

Roughly speaking, R((x))E consists of all expressions like

ee
ex

(2x + 1) + 3ee
x
(4 +

1

x2
) + x + 1 +

1

x
+

1

x2
+ · · ·+ 1

ex

K0 := R, K1 := R((xR)), K2 6= K1((xK1))∑∞
n=0

an

n! ∈ K1 if a is finite, so we can define exp(a). However it
does not seem like we can find exp(x) in K1.

We define exp(x) to be a new expression ex that is larger than all
polynomials.

16 / 25



Construction of R((x))E

Roughly speaking, R((x))E consists of all expressions like

ee
ex

(2x + 1) + 3ee
x
(4 +

1

x2
) + x + 1 +

1

x
+

1

x2
+ · · ·+ 1

ex

K0 := R, K1 := R((xR)),

K2 6= K1((xK1))∑∞
n=0

an

n! ∈ K1 if a is finite, so we can define exp(a). However it
does not seem like we can find exp(x) in K1.

We define exp(x) to be a new expression ex that is larger than all
polynomials.

16 / 25



Construction of R((x))E

Roughly speaking, R((x))E consists of all expressions like

ee
ex

(2x + 1) + 3ee
x
(4 +

1

x2
) + x + 1 +

1

x
+

1

x2
+ · · ·+ 1

ex

K0 := R, K1 := R((xR)), K2 6= K1((xK1))

∑∞
n=0

an

n! ∈ K1 if a is finite, so we can define exp(a). However it
does not seem like we can find exp(x) in K1.

We define exp(x) to be a new expression ex that is larger than all
polynomials.

16 / 25



Construction of R((x))E

Roughly speaking, R((x))E consists of all expressions like

ee
ex

(2x + 1) + 3ee
x
(4 +

1

x2
) + x + 1 +

1

x
+

1

x2
+ · · ·+ 1

ex

K0 := R, K1 := R((xR)), K2 6= K1((xK1))∑∞
n=0

an

n! ∈ K1 if a is finite, so we can define exp(a). However it
does not seem like we can find exp(x) in K1.

We define exp(x) to be a new expression ex that is larger than all
polynomials.

16 / 25



Construction of R((x))E

Roughly speaking, R((x))E consists of all expressions like

ee
ex

(2x + 1) + 3ee
x
(4 +

1

x2
) + x + 1 +

1

x
+

1

x2
+ · · ·+ 1

ex

K0 := R, K1 := R((xR)), K2 6= K1((xK1))∑∞
n=0

an

n! ∈ K1 if a is finite, so we can define exp(a). However it
does not seem like we can find exp(x) in K1.

We define exp(x) to be a new expression ex that is larger than all
polynomials.

16 / 25



Construction of R((x))E

Formally, K1 as a real vector space is the direct sum of the purely
infinite part A1 and the finite part B1. Let x1 be a new variable
and define K2 := K1((xA1

1 )). xs1 should be thought of as es.

We then have an exponential map E1 : K1 → K2.

But now we
cannot define exp(xx1) in K2, so we let A2 be the “purely
exponential part” of K2, and let x2 be a new variable...

The union of all Kn is denoted by R((x))E . It satisfies Tan, but
not yet Tan,exp because log x does not exist.
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Construction of R((x))LE

There is a self-embedding Φ : R((x))E → R((x))E that
“substitutes” x by ex. Anything in Φ(R((x))E) has a logarithm.

Define R((x))LE to be the direct limit of

R((x))E
Φ−→ R((x))E

Φ−→ R((x))E
Φ−→ · · ·

R((x))LE is a model of Tan,exp, in particular an elementary
extension of Ran,exp.
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First Problem

Theorem 3

Any definable function in Ran,exp is bounded by some exponential
tower.

Proof.

By elementarity f can be viewed as a map R((x))LE → R((x))LE .
The sequence x, ex, ee

x
, ... is cofinal in R((x))LE , so

f(x) < expn(x) for some n. Suppose f is not bounded by expn in
R; by o-minimality Ran,exp |= ∃R∀r > R f(r) ≥ expn(r), so there
is some R ∈ R such that Ran,exp |= ∀r > R f(r) ≥ expn(r). By
elementarity f(x) ≥ expn(x) (since x > R), a contradiction.
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Second Problem

Theorem

The inverse function of (log x)(log log x) is not asymptotic to any
logarithmic-exponential function (algebraic functions, exp, log and
their combinations).

First we need to make the notion of LE function more precise.
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Hardy Fields

Consider all functions defined on some (a,∞). Two such functions
are called equivalent if they eventually agree. An equivalence class
is also called a germ. The collection of all germs form a ring,
denoted by G. A G-field is a subring of G that is a field.

Definition 4

A Hardy field is a G-field that consists of C1 functions and is
closed under differentiation.
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Hardy Fields

Examples:

1. R, R(x);

2. If R∗ an o-minimal expansion of R, the germs of functions
definable in R∗ is a Hardy field, denoted by H(R∗).

3. There is a natural embedding from H(R∗) to R((x))LE that
sends f to f(x).
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Second Problem

Let i(r) be the inverse function of r log r; it is asymptotic to r
log r .

Then ei(r) is the inverse of (log r)(log log r).

H(Ran,exp) is a Hardy field. Consider the smallest real closed
subfield that contains rational functions and closed under exp and
log, denoted by LE. f 7→ f(x) identifies LE with a subfield of
R((x))LE , denoted by HLE .

Theorem 5

ei(r) /∈ LE.
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Second Problem

Proof.

(1) i(r) /∈ LE by classical Liouville theory (which proves that, e.g.∫
ex

2
dx is not elementary).

(2) Suppose limr→∞
ei(r)

g(r) = 1 for some g ∈ LE, then

limr→∞ i(r)− h(r) = 0, where h(r) = log g(r). Then i(x)− h(x)
as an element in R((x))LE is infinitesimal.

(3) Because h(x) ∈ HLE , using some calculation in R((x))LE and
certain closure property about HLE , one can show that
i(x) ∈ HLE , a contradiction.
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