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Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers. —David Hilbert

In modern language: is there an algorithm that determines whether
a given (multivariate) polynomial with integer coefficients has any
integer root?

Theorem (Matiyasevich-Robinson-Davis-Putnam)

No.
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Positive results

One variable: yes, easy.

Degree one: yes.

Degree two: yes, but very nontrivial; in particular it’s decidable
whether a given number can be written as x2 − ny2.

Two variable: unknown.

Degree three: unknown.

Degree four: as hard as general equation (Skolem), and thus
undecidable by MRDP.
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Sum of three cubes

For what n does x3 + y3 + z3 = n have integer solution? It is
necessary that n ̸= ±4 mod 9; a folklore conjecture says this is
also sufficient.
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solution for all n <≤ 100 (that are not ±4 mod 9) except
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Sum of three cubes

1964: computer search carried out for 1 < n ≤ 1000,
|y| ≤ |x| ≤ 65536. For n ≤ 100 the only new discovery was
87 = 42713 − 41263 − 19723. The conclusion was that the
conjecture is likely false.

1992-1995: solutions found for n = 39, 75, 84.

1999-2000: n = 30, 52.

2016: n = 74.

2019: n = 33, 42.

33 = 8 866 128 975 287 5283 + (−8 778 405 442 862 239)3 +
(−2 736 111 468 807 040)3
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Diophantine equation

A simple observation: there is an algorithm deciding whether
f ∈ Z[X1, . . . , Xn] has integer solution ⇔ there is an algorithm
deciding whether f ∈ Z[X1, . . . , Xn] has natural number solution.

⇒: Lagrange’s four-square theorem says every natural number is
the sum of four squares of integers. So f(X1, . . . , Xn) has natural
number solution iff the following has integer solution.

f(X2
11 +X2

12 +X2
13 +X2

14, . . . , X
2
n1 +X2

n2 +X2
n3 +X2

n4)

⇐: For example, f(X,Y ) has integer solution iff one of f(X,Y ),
f(X,−Y ), f(−X,Y ) and f(−X,−Y ) has natural number
solution.
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Diophantine equation

A subset of Nm is Diophantine if it is of the form

{ā ∈ Nm : ∃x̄ ∈ Nn f(ā, x̄) = 0}

for some f ∈ Z[A1, . . . , Am, X1, . . . , Xn]

Theorem (Matiyasevich-Robinson-Davis-Putnam)

Diophantine sets are exactly the recursively enumerable sets.

There is an r.e. set S ⊆ Nm that is not recursive. If S is defined
by f(A,X), then there is no algorithm that determines whether
f(ā, X) has natural number solution for a given ā ∈ Nm.
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History of MRDP theorem

1949: Davis showed Diophantine sets are not closed under
complementation.

1950: Robinson realized if there is a function such that: (i) its
graph is Diophantine, (ii) it grows exponentially, then certain sets
(such as the set of all primes) are Diophantine.

1959: Davis and Putnam improved Robinson’s “certain sets” to all
r.e. sets, conditional on the then unproven Green-Tao theorem.

1960: Robinson removed the dependence on Green-Tao.

1961-1969: People found various other reductions.

1970: Matiyasevich showed the function n 7→ F2n works, where Fn

is the n-th Fibonacci number.
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Outline of the proof

We follow Lou’s notes for the proof of MRDP theorem.

After some initial reductions, enough to show that Diophantine
sets are closed under bounded universal quantification.

This can be done if we assume n 7→ 2n is Diophantine.

Define xa(n), ya(n) by xa(n) + ya(n)
√
a2 − 1 = (a+

√
a2 − 1)n,

i.e., (xa(n), ya(n)) is the n-th solution to he Pell’s equation
x2 − (a2 − 1)y2 = 1.

Use intricate congruence properties of these numbers to show
(a, n) 7→ ya(n) is Diophantine, which in turn implies that n 7→ 2n

is Diophantine.
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Basic properties

Convention: polynomials f(X) have integer coefficients; variables
a, b, c, x, y, z,m, n, u, . . . range over natural numbers.

A Diophantine set is of form {ā : ∃x̄ f(ā, x̄) = 0}.

Examples:

▶ {(a, b) : a < b} ⊆ N2 is Diophantine: ∃x a+ x+ 1− b = 0.

▶ {(a, b) : a | b} ⊆ N2 is Diophantine: ∃x a · x− b = 0

▶ {(a, b, c) : a ≡ b mod c} ⊆ N3 is Diophantine:
∃x (a− b− cx) · (b− a− cx) = 0.
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Basic properties

Diophantine sets are closed under union and intersection: consider
f · g and f2 + g2 resp.

A function is Diophantine if its graph is. gcd(a, b) and rem(a, b)
are Diophantine. For gcd(a, b) consider
∃x∃y (ax− by = c ∨ by − ax = c) ∧ c | a ∧ c | b.

Diophantine functions are closed under composition. Preimage or
image of Diophantine set under Diophantine function is
Diophantine.
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Basic properties

Since ≤, ∧ and ∨ are Diophantine, any set defined by ∃x̄φ, where
φ is quantifier-free, is Diophantine.

Recall that r.e. sets are defined by ∃x̄φ where φ is bounded. To
show that r.e. sets are Diophantine, it suffices to show that
Diophantine sets are closed under bounded universal quantification.
To show this we temporarily assume that n 7→ 2n is Diophantine.

Lemma: If 2x is Diophantine, so are xy,
(
x
y

)
and x!.

2xy ≡ x mod 2xy − x

2xy
2 ≡ xy mod 2xy − x

xy = rem(2xy
2
, 2xy − x) if y > 1 (since xy < 2xy − x)
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Bounded quantification theorem

A small further reduction: we want to show a set of form

∀u ≤ x∃v̄ F (ā, x, u, v̄) = 0

is Diophantine, where
F (A,X,U, V ) ∈ Z[A1, . . . , Am, X, U, V1, . . . , Vn].

Note that

∀u ≤ x∃v̄ F (ā, x, u, v̄) = 0 ⇔ ∃y∀u ≤ x∃v̄ ≤ y F (ā, x, u, v̄) = 0

Enough to show ∀u ≤ x∃v̄ ≤ y F (ā, x, y, u, v̄) = 0 is Diophantine.

For simplicity assume n = 1.
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Bounded quantification theorem

∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0

F (A,X, Y, U, V ) ∈ Z[A1, . . . , Am, X, Y, U, V ].

Idea: this holds iff there are b and coprime pu’s for u ≤ x s.t.
rem(b, pu) ≤ y and F (ā, x, y, u, rem(b, pu)) = 0.

To express this for all u ≤ x, find a large number M s.t. M ≡ u
mod pu, and the above implies

F (ā, x, y,M, b) ≡ 0 mod
∏

u≤x pu.

Choose pu carefully plus some other stuff to make this sufficient.
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F (ā, x, y,M, b) ≡ 0 mod
∏

u≤x pu.

Choose pu carefully plus some other stuff to make this sufficient.

13 / 24



Bounded quantification theorem

∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0
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Bounded quantification theorem

∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0

F (A,X, Y, U, V ) ∈ Z[A1, . . . , Am, X, Y, U, V ].

Choose G(A,X, Y ) s.t. G(ā, x, y) > 2x+ 2, G(ā, x, y) > y + 1,
and G(ā, x, y) > |F (ā, x, y, u, v)| for all u ≤ x and v ≤ y. E.g., let
G(A,X, Y ) = F ∗(A,X, Y,X, Y ) + 2X + Y + 3 where F ∗ replaces
all coefficients in F by absolute values.

BQT: ∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0 ⇔
∃b

[(
b

y+1

)
≡ F (ā, x, y, g!− 1, b) ≡ 0 mod

(
g!−1
x+1

)]
where g = G(ā, x, y).
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∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0

F (A,X, Y, U, V ) ∈ Z[A1, . . . , Am, X, Y, U, V ].
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Bounded quantification theorem

Let g = G(ā, x, y), then ∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0 ⇔
∃b

[(
b

y+1

)
≡ F (ā, x, y, g!− 1, b) ≡ 0 mod

(
g!−1
x+1

)]

(
g!− 1

x+ 1

)
=

(g!− 1)(g!− 2) · · · (g!− x− 1)

1 · 2 · · · (x+ 1)

=
g!− 1

1
· g!− 2

2
· · · g!− x− 1

x+ 1

=

(
g!

1
− 1

)
·
(
g!

2
− 1

)
· · ·

(
g!

x+ 1
− 1

)
Claim: each prime factor of

(
g!−1
x+1

)
is > g, and g!

u+1 − 1 are coprime.

For each u ≤ x let pu be a prime factor of g!
u+1 − 1. So g!− 1 ≡ u

mod pu, and for any b we have
F (ā, x, y, g!− 1, b) ≡ F (ā, x, y, u, rem(b, pu)) mod pu
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Bounded quantification theorem
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(
g!−1
x+1

)]
(
g!− 1

x+ 1

)
=

(g!− 1)(g!− 2) · · · (g!− x− 1)

1 · 2 · · · (x+ 1)

=
g!− 1

1
· g!− 2

2
· · · g!− x− 1

x+ 1

=

(
g!

1
− 1

)
·
(
g!

2
− 1

)
· · ·

(
g!

x+ 1
− 1

)
Claim: each prime factor of

(
g!−1
x+1

)
is > g, and g!

u+1 − 1 are coprime.

For each u ≤ x let pu be a prime factor of g!
u+1 − 1. So g!− 1 ≡ u

mod pu, and for any b we have
F (ā, x, y, g!− 1, b) ≡ F (ā, x, y, u, rem(b, pu)) mod pu
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Let g = G(ā, x, y), then ∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0 ⇔
∃b

[(
b

y+1

)
≡ F (ā, x, y, g!− 1, b) ≡ 0 mod

(
g!−1
x+1

)]
⇐: Suppose such a b exists, in particular pu |

(
b

y+1

)
for each

u ≤ x, so pu | b · (b− 1) · · · (b− y), so pu | (b− k) for some k ≤ y.
Thus rem(b, pu) ≤ y, and by assumption on g we have

|F (ā, x, y, u, rem(b, pu))| < g < pu,

but this is also congruent mod pu to F (ā, x, y, g!− 1, b), so it’s 0.
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Bounded quantification theorem

Let g = G(ā, x, y), then ∀u ≤ x∃v ≤ y F (ā, x, y, u, v) = 0 ⇔
∃b

[(
b

y+1

)
≡ F (ā, x, y, g!− 1, b) ≡ 0 mod

(
g!−1
x+1

)]
⇒: Suppose for every u ≤ x there exists such a vu ≤ y. By CRT
there is a b <

(
g!−1
x+1

)
s.t. rem(b, g!

u+1 − 1) = vu. Thus

g!
u+1 − 1 | (b− vu) | b · (b− 1) · · · (b− y)

Then
(
g!−1
x+1

)
|
(

b
y+1

)
since each prime factor of

(
g!−1
x+1

)
is > g and

g > y + 1. Also easy to check g!− 1 ≡ u mod g!
u+1 − 1, so

F (ā, x, y, g!− 1, b) ≡ 0 mod g!
u+1 − 1 for each u ≤ x, and the

result follows.
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Pell’s equation

It remains to show n 7→ 2n is Diophantine. For this we use the
properties of Pell’s equation

x2 − dy2 = 1

(x, y) ∈ N2 is a solution iff x+ y
√
d is a unit in the ring OQ(

√
d); if

x1 + y1
√
d and x2 + y2

√
d are units then so is their product, so

(x1x2 + dy1y2, x1y2 + x2y1) is a solution.

The Indian mathematician Bhāskara II (c. 1114–1185) was the
first to show that there always exist nontrivial solutions. In modern
language, the group of units of OQ(

√
d) is isomorphic to

{−1, 1} × Z, and the generator for Z is the element x+ y
√
d with

x > 1 minimal.
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Pell’s equation

The minimal solution to Pell’s equation varies wildly, e.g., when
d = 61 it’s x = 1766319049, y = 226153980, due to Fermat.

We are going to consider the family x2 − (a2 − 1)y2 = 1, whose
minimal solution is obviously (a, 1). Define xa(n), ya(n) by

xa(n) + ya(n)
√
a2 − 1 = (a+

√
a2 − 1)n

They satisfy various formulas, such as

ya(m+ n) = xa(m)ya(n) + xa(n)ya(m)

ya(n+ 2) = 2aya(n+ 1)− ya(n)
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Pell’s equation

Growth rate: (2a− 1)n ≤ ya(n+1) < (2a)2, 2n ≤ ya(n) for n ≥ 2

Congruence rules: ya(n) ≡ n mod a− 1,
ya(n) ≡ yb(n) mod a− b

Periodicity: if ya(n) ≡ 0 mod m then ya(k) ≡ ya(l) mod m for
any k = l mod 2n

1st step-down lemma: ya(m) | ya(n) ⇔ m | n
ya(m)2 | ya(n) ⇔ mya(m) | n

2nd step-down lemma: if ya(k) ≡ ya(l) mod xa(n) then k ≡ ±l
mod 2n
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Pell’s equation

Claim: for a, y, n ≥ 2, we have y = ya(n) iff there are x, u, v, s, t, b
such that

(i) 2n ≤ y (vi) b ≡ 1 mod y
(ii) x2 − (a2 − 1)y2 = 1 (vii) t ≡ y mod u
(iii) v ≥ 1 & u2 − (a2 − 1)v2 = 1 (viii) t ≡ n mod y
(iv) b ≥ 2 & s2 − (b2 − 1)t2 = 1 (ix) y2 | v
(v) b ≡ a mod u

Idea?: (ii) implies y = ya(k) for some k. By the growth bound we
have 2k ≤ y, and some intricate (but completely elementary)
arguments show n ≡ ±k mod y.
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Exponentiation is Diophantine

(2a− 1)n ≤ ya(n+ 1) < (2a)2, (4a− 1)n ≤ y2a(n+ 1) < (4a)2

(4a− 1)n

(2a)n
≤ y2a(n+ 1)

ya(n+ 1)
≤ (4a)n

(2a− 1)n

2n
(
1− 1

4a

)n

≤ y2a(n+ 1)

ya(n+ 1)
≤ 2n

(
1 +

1

2a− 1

)n

Some simple estimation shows if a ≥ 2ny3(n+ 1) + 1 then∣∣∣∣y2a(n+ 1)

ya(n+ 1)
− 2n

∣∣∣∣ < 1

2
,

so 2n = m ⇔ 2|y2a(n+ 1)−mya(n+ 1)| < ya(n+ 1)
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Variants

One can also ask about solutions in other rings or fields. The
theories of Qp, R and C are decidable, so there exist algorithm for
checking, e.g., whether a given polynomial with integer coefficients
has real solution.

MRDP extends to many (but currently not all) number rings.

An important open case is Hilbert tenth for rationals. Robinson
proved in 1949 that Z is definable in Q, using a formula of form
∀x̄∃ȳ∀z̄f(n, x̄, ȳ, z̄) = 0. Consequently, the theory of Q is
undecidable.

Poonen improved this to ∀∃, and Koenigsmann found a
∀-definition. If there is an ∃-definition then Hilbert tenth for
rationals would have a negative answer, but this is impossible
assuming the Bombieri-Lang conjecture in number theory.
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∀x̄∃ȳ∀z̄f(n, x̄, ȳ, z̄) = 0. Consequently, the theory of Q is
undecidable.

Poonen improved this to ∀∃, and Koenigsmann found a
∀-definition. If there is an ∃-definition then Hilbert tenth for
rationals would have a negative answer, but this is impossible
assuming the Bombieri-Lang conjecture in number theory.

23 / 24



Reference

Recursion Theory, Lou van den Dries, online notes

A Course in Mathematical Logic, Yuri Manin

Undecidability in number theory, Bjorn Poonen, online notes

24 / 24


