## Practice problems for the second midterm exam on $11 / 5 / 2015$, Math 421, Prof. Tumulka

The midterm exam will be about Chapters $8.1-8.8,8.10,8.12,12.1$, and 12.2 of the book. A review session will be held by Fei Qi on Monday 11/2/2015 at 6:40-9pm in the School of Engineering Building, room B102.

## Given formulas:

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta, \quad \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

Calculators, books and notes are not allowed. Good luck!

1) [worth 8 points out of 100] True or false?true $\square$ false

If $A$ is a $3 \times 2$ real matrix with full rank, then for every vector $b \in \mathbb{R}^{3}$ the equation $A x=b$ has a solution $x \in \mathbb{R}^{2}$.true false $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det} A$.truefalse A $2 \times 2$ matrix always has 2 eigenvalues (counted with multiplicity).truefalse Every real symmetric matrix is diagonalizable.truefalse Every orthogonal matrix is its own inverse.truefalse Every real symmetric matrix is invertible.truefalse The eigenvalues are the roots of the characteristic polynomial.truefalse The eigenvalues of a triangular matrix are the diagonal entries.
2) [6 points] (a) Specify the fundamental period $T$ (no proof required) of the function

$$
f(t)=\sum_{n=1}^{\infty} a_{n} \cos n \pi t
$$

where all coefficients $a_{n}$ are nonzero.
(b) What would the fundamental period be if $a_{1}=0$ ?
(c) What would the fundamental period be if for all odd $n, a_{n}=0$ ?
3) [20 points] Let $f(t)=t$ for $-\pi<t \leq \pi$.
(a) Draw the graph of the $2 \pi$-periodic extension of $f$. (Draw at least three full periods.)
(b) Expand $f$ into a Fourier series.
(c) Which value does the Fourier series of $f$ converge to at $t=\pi$ ?
(d) Which value does the Fourier series of $f$ converge to at $t=\pi / 2$ ?
(e) Write out the first 12 terms (i.e., up to $n=12$ ) in the Fourier series of $f$ for $t=\pi / 2$; evaluate expressions such as $\sin \frac{\pi}{2}$ and simplify as much as possible.
4) [8 points] Compute $\|f\|$ on the interval $[-\pi, \pi]$ for $f(x)=\sqrt{|x|}$.
5) [8 points] Do these three vectors form an orthonormal system in $\mathbb{R}^{3}$ ?
$u=\left(\begin{array}{c}4 / 5 \\ 0 \\ 3 / 5\end{array}\right), v=\left(\begin{array}{c}-3 / \sqrt{34} \\ 3 / \sqrt{34} \\ 4 / \sqrt{34}\end{array}\right), w=\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right)$
6) [8 points] For this problem $L=\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ c & b & 1\end{array}\right]$, where $a, b, c$ are parameters.
(a) Calculate $L^{-1}$ by row-reduction (Gauss-Jordan method, starting from $[L \mid I]$ ).
(b) Check your answer by calculating $L^{-1} L$.
7) [8 points] Suppose that $(f-g, h)=3$ and $(h, 2 f+g)=-1$, where $f, g, h$ are functions and ( , ) means the inner product of functions. Find $(f, h)$.
8) [8 points] Compute by expansion into cofactors:
$\left|\begin{array}{ccc}2 & 3 & 0 \\ 4 & 6 & 5 \\ -1 & -2 & 5\end{array}\right|=$
9) [8 points] Consider the matrix

$$
A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
x & y & z \\
y+z & x+z & x+y
\end{array}\right)
$$

Without expanding, show that $\operatorname{det} A=0$.
10) [10 points] Find the eigenvalues of $A=\left(\begin{array}{cc}2 & 2 \sqrt{3} \\ 2 \sqrt{3} & 6\end{array}\right)$ and an orthonormal system of eigenvectors.
11) [ 8 points] Find values of $a$ and $b$ so that the matrix

$$
P=\left(\begin{array}{cc}
1 / \sqrt{5} & b \\
a & 1 / \sqrt{5}
\end{array}\right)
$$

is orthogonal.

