Math 244 Exam 2 Practice Problems

1. Consider the initial value problem

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0, \quad y(0)=1, y^{\prime}(0)=-4
$$

(a). Find the solution.
(b). Change the second initial condition to $y^{\prime}(0)=\beta$ and find the solution as a function of β. Then find the critical value of β that separates solutions that always remain positive from those that eventually become negative.
2.
a) Find the general solution of the differential equation $y^{(4)}-y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=0$
b) Determine a suitable form of the particular solution of the $y^{(4)}-y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=t^{2}+4+t \operatorname{sint}$. (You do not have to find the constants).
3. Use the variation of parameters method to find the general solution of: $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t^{2}+1}$
4. A mass weighing 4 lb stretches a spring 1.5 inches. The mass is displaced 2 inches in the positive direction from the equilibrium position and released. There is no damping and the mass is acted upon by an external force $F_{0}=2 \cos 3 t$ lbs.
a) Find the equation of motion.
b) If the external force is replaced by a force $F_{0}=4 \sin \omega t$ find the value of ω for which resonance occurs.
5. A 3.2 pound weight is attached to a spring with stiffness (i.e. spring constant) $k=2$, and the system is then immersed in a medium that imparts a damping force equal to 0.4 times the velocity. (Assume $g=32 \mathrm{ft}$ per $\sec ^{\wedge} 2$)
a) Find the equation of motion if the weight is released from rest 1 foot above the equilibrium.
b) Find the (quasi) frequency and the period.
c) Draw a rough sketch of the solution.
6.
a) Show that the following vectors are linear dependent by obtaining a linear relationship between them.

$$
\vec{x}^{(1)}=\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right), \quad \vec{x}^{(2)}=\left(\begin{array}{c}
-4 \\
1 \\
-6
\end{array}\right), \quad \vec{x}^{(3)}=\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right)
$$

b) Show that the following functions are linear independent by calculating their Wronskian.
$y_{1}=t, y_{2}=\sin t, y_{3}=\cos t$

