Solving Thurston's equation in a commutative ring

Feng Luo

Abstract

We show that solutions of Thurston's equation on triangulated 3-manifolds in a commutative ring carry topological information. We also introduce a homogeneous Thurston's equation and a commutative ring associated to triangulated 3-manifolds. It is shown that solutions to homogeneous equations over the real numbers are critical points of an entropy function.

1. Introduction

1.1. Statement of results

Given a triangulated oriented 3-manifold (or pseudo 3-manifold) (M, \mathcal{T}) , Thurston's equation associated to \mathcal{T} is a system of integer coefficient polynomials. Thurston [16] introduced his equation in the field \mathbf{C} of complex numbers in order to find hyperbolic structures. Since then, there has been much research on solving Thurston's equation in \mathbf{C} , [1, 3, 13, 14, 17, 19] and others. Since the equations are integer coefficient polynomials, one could attempt to solve Thurston's equation in a ring with identity. The purpose of this paper is to show that interesting topological results about the 3-manifolds can be obtained by solving Thurston's equation in a commutative ring with identity. For instance, by solving Thurston's equation in the field $\mathbf{Z}/3\mathbf{Z}$ of three elements, one obtains a result that was known to H. Rubinstein and S. Tillmann that a closed 1-vertex triangulated 3-manifold is not simply connected if each edge has even degree.

THEOREM 1.1. Suppose that (M, \mathcal{T}) is an oriented connected closed 3-manifold with a triangulation \mathcal{T} and R is a commutative ring with identity. If Thurston's equation on (M, \mathcal{T}) is solvable in R, and \mathcal{T} contains an edge which is a loop, then there exists a homomorphism from $\pi_1(M)$ to PGL(2,R) sending the loop to a non-identity element. In particular, M is not simply connected.

We remark that the existence of an edge which is a loop cannot be dropped in the theorem. Indeed, it was observed in [8, 17, 18] that for simplicial triangulations \mathcal{T} and any commutative ring R, there are always solutions to Thurston's equation. Theorem 1.1 for $R = \mathbb{C}$ was first proved by Segerman–Tillmann [15]. A careful examination of the proof of [15] shows that their method also works for any field R. However, for a commutative ring with zero divisors, the geometric argument breaks down. We prove Theorem 1.1 by introducing a homogeneous Thurston's equation (HTE) and studying its solutions. Theorem 1.1 prompts us to introduce the universal construction of a Thurston ring of a triangulated 3-manifold. Theorem 1.1 can be phrased in terms of the universal construction (see Theorem 6.2).

Thurston's equation can be defined for any ring (not necessary commutative) with identity (see § 2). We do not know if Theorem 1.1 holds in this case. The most interesting non-commutative rings for 3-manifolds are probably the algebras of 2×2 matrices with real or

complex coefficients. Solving Thurston's equation in the algebra $M_{2\times 2}(\mathbf{R})$ has the advantage of linking hyperbolic geometry to $Ad(S^3)$ geometry. See [4] for related topics.

Motivated by Theorem 1.1, we propose the following two conjectures.

CONJECTURE 1. If M is a compact 3-manifold and $\gamma \in \pi_1(M) - \{1\}$, then there exists a finite commutative ring R with identity and a homomorphism from $\pi_1(M)$ to $\operatorname{PGL}(2,R)$ sending γ to a non-identity element.

Conjecture 2. If $M \neq S^3$ is a closed oriented 3-manifold, then there exists a 1-vertex triangulation \mathcal{T} of M and a commutative ring R with identity so that Thurston's equation associated to \mathcal{T} is solvable in R.

Conjecture 2 is supported by the main result in [12]. It states that if M is closed hyperbolic and \mathcal{T} is a 1-vertex triangulation so that all edges are homotopically essential, then Thurston's equation on \mathcal{T} is solvable in \mathbb{C} .

1.2. Organization of the paper

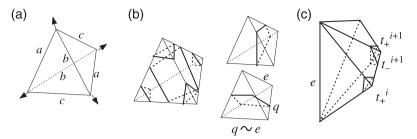
In § 2, we recall briefly triangulations of 3-manifolds and pseudo 3-manifolds and Thurston's equation. A HTE is introduced. In § 3, we recall the cross-ratio and the projective plane in a commutative ring. Theorem 1.1 is proved in § 4. In § 5, we show that solutions of Thurston's equation over the real numbers are related to critical points of an entropy function. In § 6, we introduce a universal construction of the Thurston ring of a triangulated 3-manifold. In the last section, some examples of solutions of Thurston's equation in finite rings are worked out.

2. Preliminaries on triangulations and Thurston's equation

All manifolds and tetrahedra are assumed to be oriented in this paper. We assume that all rings have the identity element.

2.1. Triangulations

A compact oriented triangulated pseudo 3-manifold (M,T) consists of a disjoint union $X = \sqcup_i \sigma_i$ of oriented Euclidean tetrahedra σ_i and a collection of orientation-reversing affine homeomorphisms Φ between some pairs of codimension-1 faces in X. The pseudo 3-manifold M is the quotient space X/Φ and the simplices in T are the quotients of simplices in X. The boundary ∂M of M is the quotient of the union of unidentified codimension-1 faces in X. If $\partial M = \emptyset$, then we call M closed. The sets of all quadrilateral types (to be called quads for simplicity) and normal triangle types in \mathcal{T} will be denoted by $\square = \square(\mathcal{T})$, and $\triangle = \triangle(\mathcal{T})$, respectively. See [6, 7] or [11] for more details. The most important combinatorics ingredient in defining Thurston's equation is a $\mathbb{Z}/3\mathbb{Z}$ action on \square , which we recall now. If edges of an oriented tetrahedron σ are labelled by a,b,c so that opposite edges are labelled by the same letters (see Figure 1(a)), then the cyclic order $a \to b \to c \to a$ viewed at vertices is independent of the choice of the outward normal vectors at vertices and depends only on the orientation of σ . Since a quad in σ corresponds to a pair of opposite edges, this shows that there is a $\mathbb{Z}/3\mathbb{Z}$ action on the set of all quads in σ by cyclic permutations. If $q, q' \in \square$, then we use $q \to q'$ to indicate that q, q' are in the same tetrahedron so that q is ahead of q' in the cyclic order. The set of all i-simplices in \mathcal{T} will be denoted by $\mathcal{T}^{(i)}$. If $s \in \mathcal{T}^{(i)}$ and $t \in \mathcal{T}^{(j)}$, then we use t > sor s < t to indicate that s is a face of t. Given an edge $e \in \mathcal{T}^{(1)}$, a tetrahedron $\sigma \in \mathcal{T}^{(3)}$ and a quad $q \in \square(\mathcal{T})$, we use $q \subset \sigma$ to indicate that q is inside σ and $q \sim e$ to indicate that q and e are in the same tetrahedron and q faces e (in the unidentified space X). See [11] for more



Three quads and Four normal triangles in a tetrahedron

FIGURE 1. Cyclic order on three quads in a tetrahedron.

details. An edge $e \in \mathcal{T}^{(1)}$ is called *interior* if it is not in the boundary ∂M . In particular, if (M, \mathcal{T}) is a closed triangulated pseudo 3-manifold, then all edges are interior.

2.2. Thurston's equation

DEFINITION 2.1. Given a compact triangulated oriented pseudo 3-manifold (M, \mathcal{T}) and a ring R (not necessary commutative) with identity, a function $x : \Box(\mathcal{T}) \to R$ is called a solution to Thurston's equation associated to \mathcal{T} if

(a) whenever $q \to q'$ in \square ,

$$x(q')(1 - x(q)) = (1 - x(q))x(q') = 1, (1)$$

(b) for each interior edge $e \in \mathcal{T}^{(1)}$ so that q_1, \ldots, q_n are quads facing e labelled cyclically around e,

$$x(q_1)\cdots x(q_n) = 1, \quad x(q_n)\cdots x(q_1) = 1.$$
 (2)

Note that equation (1) implies that both x(q) and x(q) - 1 are invertible elements in R with inverses 1 - x(q'') and x(q') where $q'' \to q$. Since each x(q) is invertible, equation (2) does not depend on the choice of the initial quad q_1 . If the ring R is commutative, which will be assumed from now on, then we only need one equation in each of (1) and (2).

EXAMPLE 2.2. If $R = \mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}$ is the field of three elements, then a solution x to Thurston's equation must satisfy x(q) = 2 for all q. In this case, the first equation (1) holds automatically. Equation (2) at an edge e becomes $2^k = 1$, where k is the degree of e. Since $2^k = 1$ if and only if k is even, we conclude that Thurston's equation has a solution in $\mathbb{Z}/3\mathbb{Z}$ if and only if each interior edge has even degree.

A related homogeneous version of Thurston's equation incorporates the following definitions.

DEFINITION 2.3 (HTE). Suppose that (M, \mathcal{T}) is a compact oriented triangulated pseudo 3-manifold and R is a commutative ring with identity. A function $z: \Box(\mathcal{T}) \to R$ is called a solution to the HTE if

(a) for each tetrahedron $\sigma \in \mathcal{T}$,

$$\sum_{q \subset \sigma} z(q) = 0,\tag{3}$$

(b) for each interior edge e so that the set of all quads facing it is $\{q_1, \ldots, q_n\}$,

$$\prod_{i=1}^{n} z(q_i') = \prod_{i=1}^{n} (-z(q_i'')),$$

where $q_i \to q_i' \to q_i''$ or simply

$$\prod_{q \sim e} z(q') = \prod_{q \sim e} (-z(q'')), \tag{4}$$

where $q \to q' \to q''$.

Note that if z solves HTE and $k: \mathcal{T}^{(3)} \to R$ is any function, then $w(q) = k(\sigma)z(q): \square \to R$, $q \subset \sigma$, is another solution to HTE.

LEMMA 2.4. Suppose that R is a commutative ring with identity and R^* is the group of all invertible elements in R.

- (a) If $z: \square \to R^*$ solves HTE, then $x: \square \to R$ given by x(q) = -z(q')/z(q'') solves Thurston's equation.
- (b) If $x: \square \to R$ solves Thurston's equation, then there exists a solution $z: \square \to R^*$ to HTE so that, for all $q \in \square$, x(q) = -z(q')/z(q'').
- (c) If $z: \square \to R^*$ solves HTE, then z(q'), -z(q'') and z(q') + z(q'') (= -z(q)) are in R^* . Furthermore, $w: \square \to R^2$ defined by $w(q) = \begin{pmatrix} z(q') \\ -z(q'') \end{pmatrix} \in R^2$ satisfies

$$w(q') = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} w(q). \tag{5}$$

Proof. To see part (a), equation (2) follows immediately from (4) by division. To see that (1) holds, we use z(q) = -z(q'') - z(q') for $q \to q' \to q''$ and calculate x(q') = -z(q'')/z(q) =z(q'')/(z(q'') + z(q')) = 1/(1 + z(q')/z(q'')) = 1/(1 - x(q)).

To see part (b), by definition, x(q) and 1-x(q) are invertible. Label the quads in each tetrahedron σ by q_1, q_2, q_3 so that $q_1 \to q_2 \to q_3$. We have $x(q_2) = 1/(1-x(q_1)), x(q_3) =$ $(x(q_1)-1)/x(q_1)$. Define a map $z: \square \to R^*$ by $z(q_1)=1-x(q_1), z(q_2)=x(q_1), z(q_3)=-1$. Then, by definition x(q) = -z(q')/z(q'') for all q and $\sum_{q \subset \sigma} z(q) = 0$ for each $\sigma \in \mathcal{T}^{(3)}$. Due to x(q) = -z(q')/z(q'') and $\prod_{q \sim e} x(q) = 1$, we see that $\prod_{q \sim e} z(q') = \prod_{q \sim e} (-z(q''))$. For part (c), the first statement follows from the definition that $z(q) \in R^*$. Now, $w(q') = \frac{z(q'')}{z(q'')}$

For part (c), the first statement follows from the definition that
$$z(q) \in R^*$$
. Now, $w(q') = \begin{pmatrix} z(q'') \\ -z(q) \end{pmatrix} = \begin{pmatrix} z(q'') \\ z(q') + z(q'') \end{pmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} z(q') \\ -z(q'') \end{pmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} w(q)$.

3. Cross-ratio and projective line in a commutative ring

Let R be a commutative ring with identity and R^* be the group of invertible elements in R. Let GL(2,R) be the general linear group and $PGL(2,R) = GL(2,R)/\sim$, where $M \sim \lambda M, \lambda \in R^*$, be the associated projective group. The group GL(2,R) acts linearly from the left on R^2 $\{ \begin{pmatrix} a \\ b \end{pmatrix} \mid a,$

 $b, \in \mathbb{R}$. Define the skew symmetric bilinear form \langle , \rangle on \mathbb{R}^2 by $\langle \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} \rangle = ad - bc$ which is the determinant of $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$. We use the transpose to write $\begin{pmatrix} a \\ b \end{pmatrix}$ as $(a, b)^t$.

By the basic properties of the determinant, we have the following lemma.

LEMMA 3.1. Suppose $A, B, A_1, \ldots, A_n \in \mathbb{R}^2$ and $X \in GL(2, \mathbb{R})$. Then

- (a) $\langle A, B \rangle = -\langle B, A \rangle$ and $\langle XA, XB \rangle = \det(X) \langle A, B \rangle$;
- (b) $\langle A_1, A_2 \rangle A_3 + \langle A_2, A_3 \rangle A_1 + \langle A_3, A_1 \rangle A_2 = 0$;

(c) let $R_{ijkl} = \langle A_i, A_j \rangle \langle A_k, A_l \rangle$; then $R_{ijkl} = R_{jilk} = R_{klij} = -R_{jikl} = -R_{ijlk}$ and $R_{ijkl} + R_{ijkl} = -R_{ijlk} = -R_{ijlk}$ $R_{ikli} + R_{ilik} = 0.$

DEFINITION 3.2 (Cross-ratio). Suppose $A_1, \ldots, A_4 \in R^2$. Then their cross ratio, denoted by $(A_1, A_2; A_3, A_4)$, is defined to be the vector $\binom{R_{1423}}{R_{1324}} = \binom{R_{1423}}{-R_{1342}} \in R^2$, where $R_{ijkl} = \binom{R_{1423}}{R_{1324}} = \binom{R_{1423}}{R_{1423}} = \binom$ $\langle A_i, A_i \rangle \langle A_k, A_l \rangle$.

For instance,

$$\left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle = \begin{pmatrix} -ay \\ -bx \end{pmatrix}. \tag{6}$$

By Lemma 3.1, we obtain the following corollary

COROLLARY 3.3. Suppose $A_1, \ldots, A_n \in \mathbb{R}^2$ and $\{i_1, i_2, i_3, i_4\} = \{1, 2, 3, 4\}$. Then

- (a) $(A_1, A_2; A_3, A_4) = (A_3, A_4; A_1, A_2) = (A_2, A_1; A_4, A_3)$ and $(A_{i_1}, A_{i_2}; A_{i_3}, A_{i_4}) = (A_1, A_2; A_3, A_4)$ $A_i; A_i, A_k);$
- (b) if $(A_1, A_2; A_3, A_4) = \begin{pmatrix} a \\ b \end{pmatrix}$, then $(A_2, A_1; A_3, A_4) = \begin{pmatrix} b \\ a \end{pmatrix}$;
- (c) $(A_1, A_2; A_3, A_4) + (A_1, A_3; A_4, A_2) + (A_1, A_4; A_2, A_3) = 0;$ (d) $(A_1, A_3; A_4, A_2) = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} (A_1, A_2; A_3, A_4)$ and

$$(A_1, A_4; A_2, A_3) = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} (A_1, A_2; A_3, A_4); \tag{7}$$

- (e) if $X \in GL(2, R)$, then $(XA_1, XA_2; XA_3, XA_4) = \det(X)^2(A_1, A_2; A_3, A_4)$,
- (f) if $B, C \in \mathbb{R}^2$ and $A_{n+1} = A_1$, then

$$\prod_{i=1}^{n} (\langle B, A_{i+1} \rangle \langle C, A_{i} \rangle) = \prod_{i=1}^{n} (\langle B, A_{i} \rangle \langle C, A_{i+1} \rangle).$$

The only part that is required to be proved is (d). In this case, we use $(A_1, A_4; A_2, A_3) = \binom{R_{1342}}{-R_{1234}} = \binom{R_{1342}}{R_{1423} + R_{1342}} = \binom{0 - 1}{1 - 1} (A_1, A_2; A_3, A_4)$. Corollary 3.3 shows that the cross-ratio $(A_1, A_2; A_3, A_4) = (A_i, A_j; A_k, A_l)$ whenever $\{i, j\} = (A_i, A_j; A_k, A_l)$ whenever $\{i, j\} = (A_i, A_j; A_k, A_l)$

 $\{1,2\},\{k,j\}=\{3,4\}$ and (i,j,k,l) is a positive permutation of (1,2,3,4), that is, the cross-ratio depends only on the partition $\{i, j\} \sqcup \{k, l\}$ of $\{1, 2, 3, 4\}$ and the orientation of (1, 2, 3, 4). This shows that if σ is an oriented tetrahedron so that its ith vertex is assigned a vector $A_i \in \mathbb{R}^2$, then one can define the cross-ratio of a quad $q \subset \sigma$ to be $(A_i, A_i; A_k, A_l)$ where q corresponds to the partition $\{i,j\} \sqcup \{k,l\}$ of the vertex set $\{1,2,3,4\}$ and (i,j,k,l) determines the orientation of σ . Furthermore, equations (5) and (7) show that if q corresponds to $\{1,2\} \sqcup \{3,4\}$, then q'corresponds to $\{1,4\} \sqcup \{2,3\}$.

Example 3.4 (Solutions of HTE by cross-ratio). Given any compact triangulated pseudo 3-manifold (M,\mathcal{T}) and $f:\Delta(\mathcal{T})\to R^2$ so that f(t)=f(t') when two normal triangles t,t' share a common normal arc, we define a map $F: \Box(\mathcal{T}) \to \mathbb{R}^2$ by $F(q) = (f(t_1), f(t_2); f(t_3), f(t_4)) =$ $\begin{pmatrix} z(q') \\ y(q') \end{pmatrix}$, where t_1, \ldots, t_4 are the four normal triangles in the tetrahedron σ containing q so that q separates $\{t_1, t_2\}$ from $\{t_3, t_4\}$ and $t_1 \to t_2 \to t_3 \to t_4$ defines the orientation of σ . Then Corollary 3.3 shows that $z: \square \to R$ is a solution to HTE. Note that y(q') = -z(q'') with $q \to \infty$ $q' \rightarrow q''$.

This example serves as a guide for us to solve Thurston's equation and HTE. Indeed, the goal is to solve Thurston's equation by writing each solution $x: \square \to R$ in terms of cross-ratio in the universal cover.

Let R^2/\sim be the quotient space where $u\sim \lambda u,\,u\in R^2$ and $\lambda\in R^*$. If $x=(a,b)^t\in R^2$, then $[x]=[a,b]^t$ denotes the image of x in R^2/\sim .

DEFINITION 3.5. Let the projective line PR^1 be $\{A \in R^2 \mid \text{there exists } B \in R^2 \text{ so that } \langle A, B \rangle \in R^* \} / \sim$, where $A \sim \lambda A$ for $\lambda \in R^*$. A set of elements $\{A_1, \ldots, A_n\}$ (or $\{[A_1], \ldots, [A_n]\}$) in R^2 (or in PR^1) is called admissible if $\langle A_i, A_j \rangle \in R^*$ for all $i \neq j$. The cross-ratio of four points $\alpha_i, i = 1, 2, 3, 4$ in PR^1 , denoted by $[\alpha_1, \alpha_2; \alpha_3, \alpha_4]$, is the element $[(A_1, A_2; A_3, A_4)] \in R^2 / \sim$ so that $A_i \in \alpha_i$. We also use $[A_1, A_2; A_3, A_4] \in PR^1$ to denote $[\alpha_1, \alpha_2; \alpha_3, \alpha_4]$.

PROPOSITION 3.6. Suppose $\{i_1, i_2, i_3, i_4\} = \{1, 2, 3, 4\}.$

- (a) Given an admissible set of three elements $A_{i_1}, A_{i_2}, A_{i_3} \in \mathbb{R}^2$ and $v = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \in \mathbb{R}^2$, there exists a unique $A_{i_4} \in \mathbb{R}^2$ so that $(A_1, A_2; A_3, A_4) = v$. Furthermore, A_1, \ldots, A_4 form an admissible set if and only if $c_1, c_2, c_1 c_2 \in \mathbb{R}^*$.
- (b) Suppose $A_1, \ldots, A_4, B_1, \ldots, B_4 \in \mathbb{R}^2$ so that both $\{A_1, \ldots, A_4\}$ and $\{B_1, \ldots, B_4\}$ are admissible and $[A_1, A_2; A_3, A_4] = [B_1, B_2; B_3, B_2]$. Then there exists a unique $X \in \operatorname{PGL}(2, R)$ so that $[XA_i] = [B_i]$ for all i. In particular, if $Y \in \operatorname{GL}(2, R)$ so that $[YA_i] = [A_i]$, i = 1, 2, 3, then $Y = \lambda I$ for $\lambda \in \mathbb{R}^*$.

Proof. To see the existence part of (a), by Corollary 3.3(a), we may assume for simplicity that $i_1 = 1$, $i_2 = 2$, $i_3 = 3$. Let $A_i = (a_i, b_i)^t$ and consider $X = (1/\langle A_1, A_2 \rangle) \begin{bmatrix} b_2 & -a_2 \\ -b_1 & a_1 \end{bmatrix} \in GL(2, R)$. Then $XA_1 = (1, 0)^t$ and $XA_2 = (0, 1)^t$. By Corollary 3.3(e), after replacing A_i by XA_i , we may assume that $A_1 = (1, 0)^t$, $A_2 = (0, 1)^t$. Then by identity (6), $(A_1, A_2; A_3, A_4) = (-a_3b_4, -a_4b_3)^t$. By the assumption that $\langle A_i, A_3 \rangle \in R^*$ for i = 1, 2, we see that $a_3, b_3 \in R^*$. It follows that $a_4 = -c_1/b_3$ and $b_4 = -c_2/a_3$. This shows that A_4 exists and is unique.

Now given that $\{A_1, A_2, A_3\}$ is admissible, the set $\{A_1, \ldots, A_4\}$ is admissible if and only if $\langle A_i, A_4 \rangle \in R^*$. By the calculation above, $c_1 = -b_3 a_4$, $c_2 = -a_3 b_4$ and $c_1 - c_2 = \langle A_3, A_4 \rangle$. If $\{A_1, \ldots, A_4\}$ is admissible, then $a_i, b_i \in R^*$. Therefore $c_1, c_2, c_1 - c_2 \in R^*$. If $\{c_1, c_2, c_1 - c_2\} \subset R^*$, then $a_i, b_i \in R^*$ for i = 3, 4 and $\langle A_3, A_4 \rangle \in R^*$. This implies $\langle A_i, A_4 \rangle \in R^*$.

To see part (b), by the proof of part (a) and the assumption $\langle A_1, A_2 \rangle, \langle B_1, B_2 \rangle \in R^*$, after replacing A_i by YA_i and B_i by ZB_i for some $Y, Z \in GL(2, R)$, we may assume that $A_1 = B_1 = (1, 0)^t$ and $A_2 = B_2 = (0, 1)^t$. Let $A_3 = (a, b)^t, A_4 = (a', b')^t, B_3 = (c, d)^t$ and $B_4 = (c', d')^t$. Then the admissible condition implies that $a, b, c, d, a', b', c', d' \in R^*$. Furthermore, $[A_1, A_2; A_3, A_4] = [B_1, B_2; B_3, B_4]$ implies that there exists $\lambda \in R^*$ so that $a'b = \lambda c'd$ and $ab' = \lambda cd'$. This shows that the matrix $X = \begin{bmatrix} c/a & 0 \\ 0 & d/b \end{bmatrix} \in GL(2, R)$ satisfies $XA_1 = (c/a)B_1$, $XA_2 = (d/b)B_2$, $XA_3 = B_3$ and $XA_4 = \lambda (cd/ab)B_4$.

To see the uniqueness, say $YA_i = \lambda_i A_i$ for $\lambda_i \in R^*$. We claim that $\lambda_1 = \lambda_2 = \lambda_3$ and $Y = \lambda_1 I$. Indeed, by definition, $\det(Y)\langle A_i, A_j \rangle = \langle YA_i, YA_j \rangle = \lambda_i \lambda_j \langle A_i, A_j \rangle$. Since $\langle A_i, A_j \rangle \in R^*$, we obtain $\lambda_i \lambda_j = \det(Y)$. This implies that $\lambda_i = \lambda_1$ for i = 2, 3. We conclude that $Y[A_1, A_2] = \lambda_1[A_1, A_2]$. Since the matrix $[A_1, A_2] \in GL(2, R)$, it follows that $Y = \lambda_1 I$.

4. A proof of Theorem 1.1

We will prove a slightly general theorem which holds for compact oriented pseudo 3-manifolds (M, \mathcal{T}) . The main idea of the proof is based on the methods developed in [13, 15, 17, 19] which construct a pseudo-developing map and the holonomy associated to a solution to Thurston's equation over \mathbb{C} .

Let M^* be M with a small regular neighbourhood of each vertex removed and let \mathcal{T}^* be the ideal triangulation $\{s \cap M^* \mid s \in \mathcal{T}\}$ of the compact 3-manifold M^* .

THEOREM 4.1. Suppose that (M, \mathcal{T}) is a connected triangulated pseudo 3-manifold with $\partial M = \emptyset$ and R is a commutative ring with identity so that Thurston's equation on \mathcal{T} is solvable in R. Then each edge $e \in \mathcal{T}^*$ lifts to an arc in the universal cover \tilde{M}^* of M^* joining different boundary components of \tilde{M}^* . Furthermore, if M is a closed connected 3-manifold so that there exists an edge e having the same end point, then there exists a representation of $\pi_1(M)$ into $\mathrm{PGL}(2,R)$ sending the loop [e] to a non-identity element.

4.1. Definition of a pseudo-developing map

Let $\pi: \tilde{M}^* \to M^*$ be the universal cover and $\tilde{\mathcal{T}}$ be the pull-back of the ideal triangulation \mathcal{T}^* of M^* to \tilde{M}^* . We use $\tilde{\Delta}$ and $\tilde{\Box}$ to denote the sets of all normal triangle types and quads in $\tilde{\mathcal{T}}$, respectively. The sets of all normal triangle types and quads in \mathcal{T}^* are the same as those of \mathcal{T} and will still be denoted by Δ and \Box . The covering map π induces a surjection π_* from $\tilde{\Delta}$ and $\tilde{\Box}$ to Δ and \Box , respectively, so that $\pi_*(d_1) = \pi_*(d_2)$ if and only if d_1 and d_2 differ by a deck transformation element.

Suppose $x: \Box \to R$ solves Thurston's equation on \mathcal{T} and $z: \Box \to R^*$ is an associated solution to HTE constructed by Lemma 2.4. Let $w: \Box \to PR^1$ be the map $w(q) = [z(q'), -z(q'')]^t$, where $q \to q'$. Let $\tilde{x} = x\pi_*$, $\tilde{z} = z\pi_*$ and $\tilde{w} = w\pi_*$ be the associated maps defined on $\tilde{\Box}$. By the construction, \tilde{x} and \tilde{z} are solutions to Thurston's equation and HTE on $\tilde{\mathcal{T}}$.

DEFINITION 4.2 (See [13, 15, 17, 19]). Given a solution x to Thurston's equation on (M, \mathcal{T}) , a map $\phi : \tilde{\Delta} \to PR^1$ is called a pseudo-developing map associated to x if

- (a) whenever t_1, t_2 are two normal triangles in $\tilde{\triangle}$ sharing a normal arc, denoted by $t_1 \sim t_2$ in the sequel, then $\phi(t_1) = \phi(t_2)$,
- (b) if t_1, t_2, t_3, t_4 are four normal triangles in a tetrahedron σ , then $\{\phi(t_1), \dots, \phi(t_4)\}$ is admissible and the cross-ratio

$$[\phi(t_1), \phi(t_2); \phi(t_3), \phi(t_4)] = \tilde{w}(q), \tag{8}$$

where $t_1 \to t_2 \to t_3 \to t_4$ determines the orientation of the tetrahedron σ and $q \subset \sigma$ is the quad separating $\{t_1, t_2\}$ from $\{t_3, t_4\}$.

The following theorem is the main result in this section, which implies Theorem 4.1.

THEOREM 4.3. Given any solution x to Thurston's equation on a connected pseudo 3-manifold (M, \mathcal{T}) with $\partial M = \emptyset$, there exists a pseudo-developing map associated to x. Furthermore, if ϕ_1 and ϕ_2 are two pseudo-developing maps associated to x, then there exists a unique $A \in GL(2, R)$ so that $\phi_1(t) = A\phi_2(t)$ for all $t \in \tilde{\Delta}$.

To prove it, we begin with a recall of Poincaré dual polyhedral decomposition of $\tilde{\mathcal{T}}$ and the edge path groupoid.

4.2. Poincaré dual and edge paths

The Poincaré dual polyhedral decomposition X of the ideal triangulation \tilde{T} is a CW complex defined as follows. Each simplex $s \in \tilde{T}^{(k)}$ of dimension $k \ge 1$ corresponds to a (3-k)-dimensional (polyhedral) cell D(s) in X so that for each tetrahedron $\sigma \in \tilde{T}^{(3)}$, the intersection $D(s) \cap \sigma$ is the convex hull (in the natural linear structure on σ) of the barycentres of simplexes $\tau < \sigma$ with $\tau > s$. We use |X| to denote the geometric realization of X and consider it as a subset of \tilde{M}^* . By the construction, for each tetrahedron σ , $\sigma \cap |X|$ is a strong deformation retract of σ ; see Figure 2. Therefore, |X| is a strong deformation retract of \tilde{M}^* . In particular, |X| is simply connected.

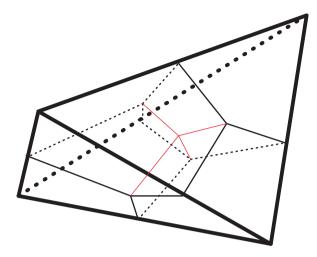


FIGURE 2 (colour online). Poincaré dual decomposition in each tetrahedron.

For an oriented edge e in X, we use orig(e) and end(e) to denote its starting and ending vertices, respectively, and use e^{-1} to denote the edge with the reversed orientation. An edge path γ in X is a finite sequence of oriented edges e_1, \ldots, e_n so that $\operatorname{orig}(e_{i+1}) = \operatorname{end}(e_i)$. We write $\gamma = e_1 \cdots e_n$; call $\operatorname{orig}(e_1)$ and $\operatorname{end}(e_n)$ the starting and ending points of γ and denote them by $\operatorname{orig}(\gamma)$ and $\operatorname{end}(\gamma)$, respectively. The constant edge path (that is, n=0) consists of a single vertex v with $\operatorname{orig}(v) = \operatorname{end}(v) = v$. If $\operatorname{orig}(\gamma) = \operatorname{end}(\gamma)$, then γ is called an edge loop based at $\operatorname{orig}(\gamma)$. The inverse of γ is the edge path $e_n^{-1}e_{n-1}^{-1}\cdots e_2^{-1}e_1^{-1}$, denoted by γ^{-1} . If $\delta = d_1 \cdots d_m$ is another edge path starting at $\operatorname{orig}(d_1) = \operatorname{end}(\gamma)$, then we define the product of γ and δ to be the edge path $\gamma \delta = e_1 \cdots e_n d_1 \cdots d_m$. Suppose that f is a 2-cell in X; we use $\partial f = e_1 \cdots e_k$ to denote a boundary edge loop of f where the initial edge e_1 and its orientation are arbitrarily chosen.

DEFINITION 4.4. Two edge paths α and β in X are related by an elementary move, denoted by $\alpha \sim \beta$, if one of the following holds:

- $\begin{array}{ll} (1) \ \ \alpha = \beta \gamma \gamma^{-1}, \ {\rm or} \ \ \beta = \alpha \gamma \gamma^{-1}, \ {\rm or} \\ (2) \ \ \alpha = \beta \delta(\partial f) \delta^{-1} \ {\rm or} \ \ \beta = \alpha \delta(\partial f) \delta^{-1} \ {\rm for \ some \ 2-cell} \ f \ {\rm in} \ X. \end{array}$

A well-known fact from algebraic topology shows the following lemma.

Lemma 4.5 (See [5]). Suppose α and β are two edge paths in a simply connected CW complex X. Then the following two conditions are equivalent:

- (1) $\operatorname{orig}(\alpha) = \operatorname{orig}(\beta)$ and $\operatorname{end}(\alpha) = \operatorname{end}(\beta)$;
- (2) there exists a sequence of edge paths $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_n = \beta$ so that $\alpha_i \sim \alpha_{i+1}$ for all indices i.

Let $X^{(0)}$ be the set of all 0-cells in X. Fix a 0-cell $\sigma_* \in X^{(0)}$ and let P be the set of all edge paths in X starting at σ_* .

COROLLARY 4.6. For a simply connected CW complex X, if $F: P \to Y$ is a function so that whenever $\alpha \sim \beta$, $F(\alpha) = F(\beta)$, then $\hat{F}(\text{end}(\alpha)) = F(\alpha) : X^{(0)} \to Y$ is a well-defined function. Back to the Poincaré dual complex X, the 0-cells can be identified with tetrahedra $\sigma \in \tilde{\mathcal{T}}^{(3)}$, the oriented edges in X can be identified with the triple (σ_1, f, σ_2) , where $f \in \tilde{\mathcal{T}}^{(2)}$ is a triangular face adjacent to $\sigma_1, \sigma_2 \in \tilde{\mathcal{T}}^{(3)}$ and σ_1 is the starting vertex. A 2-cell D(e) in X dual to an edge $e \in \tilde{\mathcal{T}}^{(1)}$ has the boundary edge loop of the form $\epsilon_1 \cdots \epsilon_n$, where n is the degree of e, $\epsilon_i = (\sigma_i, f_i, \sigma_{i+1})$, where $f_i > e$ and $\sigma_{n+1} = \sigma_1$.

4.3. Construction of map $\hat{\Phi}: \tilde{\mathcal{T}}^{(3)} \to (PR^1)^4$

We will use Corollary 4.6 to define the map $\hat{\Phi}$ by constructing $\Phi: P \to (PR^1)^4$. Label the four normal triangle types in each tetrahedron $\sigma \in \tilde{\mathcal{T}}^{(3)}$ by $t_1(\sigma), t_2(\sigma), t_3(\sigma)$ and $t_4(\sigma)$ so that $t_1(\sigma), t_2(\sigma), t_3(\sigma), t_4(\sigma)$ determine the orientation of σ . Let the normal quad in σ separating $\{t_1(\sigma), t_2(\sigma)\}$ from $\{t_3(\sigma), t_4(\sigma)\}$ be $q_1(\sigma)$.

For the initial tetrahedron σ_* , let $\tilde{w}(q_1(\sigma_*)) = \begin{bmatrix} a \\ b \end{bmatrix} \in PR^1$. Define

$$\Phi(\sigma_*) = \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -b \\ -a \end{bmatrix} \right) \in (PR^1)^4.$$
 (9)

By the construction, the cross-ratio of $[1,0]^t$, $[0,1]^t$, $[1,1]^t$, $[-b,-a]^t$ is $\tilde{w}(q_1(\sigma_*))$, that is, (8) holds for $q_1(\sigma_*)$.

By Lemma 2.4(b) and the fact that x solves Thurston's equation, we have $a, b, a - b \in R^*$. This shows that $\{[1,0]^t, [0,1]^t, [1,1]^t, [-b,-a]^t\}$ is an admissible set.

Suppose $\gamma = e_1 \cdots e_n$ is an edge path so that $\Phi(\gamma) = (a_1, a_2, a_3, a_4) \in (PR^1)^4$ is defined, $\{a_1, a_2, a_3, a_4\}$ is admissible and e is an edge with $\operatorname{orig}(e) = \operatorname{end}(\gamma) = \sigma_1$. We define $\Phi(\gamma e)$ as follows. Let the edge e (in X) be (σ_1, f, σ_2) , where $f \in \tilde{\mathcal{T}}^{(2)}$ and σ_i are tetrahedra adjacent to f. Let the normal triangles in σ_1 (and σ_2) having a normal arc in f be $t_{i_1}, t_{i_2}, t_{i_3}$ (and $s_{j_1}, s_{j_2}, s_{j_3}$ in σ_2) so that $t_{i_k} \sim s_{j_k}$, that is, t_{i_k} and t_{i_k} and t_{i_k} share a common normal arc in t. Define

$$\Phi(\gamma e) = (b_1, b_2, b_3, b_4) \in (PR^1)^4 \tag{10}$$

so that

$$b_{j_k} = a_{i_k} \tag{11}$$

for k=1,2,3 and the last entry b_{j_4} ($\{j_1,j_2,j_3,j_4\}=\{1,2,3,4\}$) is determined by the cross-ratio equation

$$[b_1, b_2; b_3, b_4] = \tilde{w}(q_1(\sigma_2)). \tag{12}$$

Since $\{b_{j_1}, b_{j_2}, b_{j_3}\}$ is admissible and $\tilde{w}(q_1(\sigma_2)) = [c_1, c_2]^t$ satisfies $c_1, c_2, c_1 - c_2 \in R^*$, by Proposition 3.6(a) there exists a unique b_{j_4} solving (12) so that $\{b_1, b_2, b_3, b_4\}$ is admissible. Note that by (7) and (5), equation (12) implies that if $q(\sigma_2)$ is any quad in σ_2 separating $\{s_i, s_j\}$ from $\{s_k, s_l\}$, we have the cross-ratio equation

$$[b_i, b_i; b_k, b_l] = \tilde{w}(q(\sigma_2)). \tag{13}$$

By the initial condition (9) and above, we can define Φ on any edge path starting at σ_* . The basic property of the function Φ is the following lemma.

LEMMA 4.7. Suppose that γ, δ are edge paths, e is an oriented edge and f is a 2-cell in X. Assume all edge path multiplications are defined below. Then

- (a) $\Phi(\gamma e e^{-1}) = \Phi(\gamma);$
- (b) $\Phi(\gamma\delta\delta^{-1}) = \Phi(\gamma);$
- (c) $\Phi(\gamma(\partial f)) = \Phi(\gamma)$;
- (d) $\Phi(\gamma\delta(\partial f)\delta^{-1}) = \Phi(\gamma)$.

Proof. Part (a) follows from the definition (12) of Φ and the uniqueness part of Proposition 3.6(a). Indeed, suppose $\Phi(\gamma ee^{-1}) = (a'_1, a'_2, a'_3, a'_4)$. By definition, we have $a'_{i_k} = b_{j_k} = a_{i_k}$,

k = 1, 2, 3. Now both cross-ratios $[a'_1, a'_2, a'_3, a'_4] = \tilde{w}(q_1(\sigma_1)) = [a_1, a_2, a_3, a_4]$. Therefore by Proposition 3.6, all $a_i = a'_i$ for all i.

Part (b) follows from the induction. Write $\delta = e_1 \cdots e_k$. If k = 1, then the result follows from part (a). Suppose it holds for k - 1. Then, in the case of k, we have, by part (a),

$$\Phi(\gamma e_1 \cdots e_{k-1} e_k e_k^{-1} e_{k-1}^{-1} \cdots e_2^{-1} e_1^{-1}) = \Phi(\gamma e_1 \cdots e_{k-1} e_{k-1}^{-1} \cdots e_2^{-1} e_1^{-1}).$$

The right-hand side is $\Phi(\gamma)$ by the induction hypothesis.

Note by the same argument, part (d) follows from part (c) and part (b). It remains to prove part (c).

Suppose the 2-cell f is the dual D(e) to an edge $e \in \tilde{\mathcal{T}}^{(1)}$ of degree n so that the boundary edge loop ∂f is $\epsilon_1 \epsilon_2 \cdots \epsilon_n$, where $\epsilon_i = (\sigma_{i-1}, f_i, \sigma_i), f_i > e, \sigma_n = \sigma_0$ and $\operatorname{end}(\gamma) = \operatorname{orig}(\epsilon_1) = \sigma_0$. We will show that $\Phi(\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_n) = \Phi(\gamma)$.

Let the end points of e be in the boundary components v_0 and v_∞ of \tilde{M}^* .

Case 1. In the special case where the labelling of the normal triangles $t_i(\sigma_i)$ are such that:

- (1) $t_1(\sigma_i), t_2(\sigma_i), t_3(\sigma_i)$ have normal arcs in f_i ;
- (2) $t_1(\sigma_i)$ is in v_0 and $t_2(\sigma_i)$ is in v_∞ ;
- (3) $t_1(\sigma_i) \sim t_1(\sigma_{i-1}), t_2(\sigma_i) \sim t_2(\sigma_{i-1}), t_3(\sigma_i) \sim t_4(\sigma_{i-1}), i = 0, 1, 2, \dots, n \text{ and } \sigma_{-1} = \sigma_{n-1}, \sigma_0 = \sigma_n.$

Let $\Phi(\gamma \epsilon_1 \cdots \epsilon_i) = (a_{1,i}, a_{2,i}, a_{3,i}, a_{4,i}) \in (PR^1)^4$ for $i = 1, \ldots, n$, $\Phi(\gamma) = (a_{1,0}, a_{2,0}, a_{3,0}, a_{4,0})$ and $\tilde{w}(q_1(\sigma_j)) = [c_j, d_j]^t \in PR^1$. Our goal is to show $a_{j,0} = a_{j,n}$ for i = 1, 2, 3, 4. By the definition that $q_1(\sigma_i)$ separates $t_1(\sigma_i), t_2(\sigma_i)$ from $t_3(\sigma_i), t_4(\sigma_i)$ and that \tilde{z} solves HTE, we have the cross-ratio equation

$$[a_{1,i}, a_{2,i}; a_{3,i}, a_{4,i}] = [c_i, d_i]^t, \quad i = 0, 1, \dots, n$$
(14)

 $c_0 = c_n, d_0 = d_n$ and

$$\prod_{i=1}^{n} c_i = \prod_{i=1}^{n} d_i. \tag{15}$$

Now, by the construction $a_{1,i}=a_{1,i-1}$ and $a_{2,i}=a_{2,i-1}$ and $a_{3,i}=a_{4,i-1}$ for $i=1,\ldots,n,$ $a_{1,n}=a_{1,0},a_{2,n}=a_{2,0}$ and $a_{3,0}=a_{4,n-1}$.

Choose $A \in GL(2, R)$ so that A sends $(a_{1,0}, a_{2,0})$ to $([1, 0]^t, [0, 1]^t)$. Then by $a_{1,i} = a_{1,i-1}$ and $a_{2,i} = a_{2,i-1}$, we see that A sends $(a_{1,i}, a_{2,i})$ to $([1, 0]^t, [0, 1]^t)$ for all i. For simplicity, if $\Phi(\delta) = (x_1, x_2, x_3, x_4)$, then we use $A\Phi(\delta)$ to denote (Ax_1, Ax_2, Ax_3, Ax_4) . Replacing Φ by $A\Phi$ will not effect the cross-ratio equation (14) and $\Phi(\gamma) = \Phi(\gamma \epsilon_1 \cdots \epsilon_n)$ holds if and only if $A\Phi(\gamma) = A\Phi(\gamma \epsilon_1 \cdots \epsilon_n)$. Therefore, we may assume, without loss of generality, that $a_{1,i} = [1, 0]^t$ and $a_{2,i} = [0, 1]^t$. In this case, we have

$$\Phi(\gamma \epsilon_1 \cdots \epsilon_i) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} x_i \\ y_i \end{bmatrix}, \begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} \end{pmatrix} \quad \text{and} \quad \begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}.$$

The cross-ratio equation (14) becomes

$$-y_{i+1}x_i = c_i, \quad \text{and} \quad -y_i x_{i+1} = d_i.$$

Then identity (15) implies $\prod_{i=1}^{n} x_i y_{i+1} = \prod_{i=1}^{n} y_i x_{i+1}$. Therefore, $y_{n+1} x_1 = y_1 x_{n+1}$, that is, $[x_{n+1}, y_{n+1}]^t = [x_1, y_1]^t \in PR^1$. Together with $[x_n, y_n]^t = [x_0, y_0]^t$, we have $\Phi(\gamma \epsilon_1 \cdots \epsilon_n) = \Phi(\gamma)$.

Case 2. The general case of different labelling of the normal triangles in σ_i follows from the case 1. Indeed, let Φ be the function associated to the general labelling and Φ_0 be the function associated to the special labelling in case 1. For each σ_i ($\sigma_0 = \sigma_n$), let τ_i be the permutation of $\{1, 2, 3, 4\}$ sending (x_1, x_2, x_3, x_4) to $(x_{\tau_i(1)}, x_{\tau_i(2)}, x_{\tau_i(3)}, x_{\tau_i(4)})$ which rearranges the labelling

of quads in σ_i so that, for $i = 0, 1, \ldots, n$,

$$\Phi(\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_i) = \tau_i \Phi_0(\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_i).$$

Now

$$\Phi(\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_n) = \tau_n \Phi_0(\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_n) = \tau_n \Phi_0(\gamma) = \tau_0 \Phi_0(\gamma) = \Phi(\gamma),$$

where we have used case 1 in the second equality and $\tau_n = \tau_0$ in the third equality.

4.4. Proof of Theorem 4.3

By Corollary 4.6, we have the induced map $\hat{\Phi}: \tilde{\mathcal{T}}^{(3)} \to (PR^1)^4$. Write

$$\hat{\Phi}(\sigma) = (\phi_1(\sigma), \phi_2(\sigma), \phi_3(\sigma), \phi_4(\sigma)).$$

Define the map

$$\phi: \tilde{\Delta} \longrightarrow PR^1$$

by $\phi(t_i(\sigma)) = \phi_i(\sigma)$. We claim that ϕ is a pseudo-developing map.

Indeed, if $t = t_i(\sigma)$ and $t' = t_j(\sigma')$ are two normal triangles sharing a common arc in their boundary, that is, $t \sim t'$, let f be the common codimension-1 face of σ and σ' which contains the $t \cap t'$. By definition, we have $\hat{\Phi}(\sigma) = (\phi_1(\sigma), \phi_2(\sigma), \phi_3(\sigma), \phi_4(\sigma))$ and $\Phi(\hat{\sigma}') = (\phi_1(\sigma'), \phi_2(\sigma'), \phi_3(\sigma'), \phi_4(\sigma'))$. Using identity (11), we conclude that $\phi(t) = \phi_i(\sigma) = \phi_j(\sigma') = \phi(t')$. This establishes condition (a) for pseudo-developing maps. The condition (b) for pseudo-developing maps follows from (13) and the functional equations for solutions to HTE for \tilde{w} and Corollary 3.3(d).

The uniqueness of the pseudo-developing map follows from the definition. Indeed, if ϕ_1 and ϕ_2 are two pseudo-developing maps associated to a solution x to Thurston's equation, then, by Proposition 3.6(b), there exists $A \in GL(2, R)$ so that, for all i = 1, 2, 3, 4,

$$\phi_1(t_i(\sigma_*)) = A\phi_2(t_i(\sigma_*)).$$

By condition (a) of the definition of pseudo-developing maps, we see

$$\phi_1(t_i(\sigma)) = A\phi_2(t_i(\sigma))$$

holds for the three normal triangles $t_{j_k}(\sigma)$ in each tetrahedron σ which has a codimension-1 face in common with σ_* and $t_{j_k}(\sigma) \sim t_{i_k}(\sigma_*)$. Now, by the cross-ratio equation (8) and Proposition 3.6(b), we conclude that

$$\phi_1(t_i(\sigma)) = A\phi_2(t_i(\sigma))$$

for i = 1, 2, 3, 4.

Inductively and using the fact that M is connected, we see $\phi_1 = A\phi_2$.

4.5. The holonomy representation

Suppose that x is a solution to Thurston's equation on (M, T) in a ring R and $\phi : \tilde{\Delta} \to PR^1$ is an associated pseudo-developing map. Then there exists a homomorphism $\rho : \pi_1(M^*) \to PGL(2, R)$ so that, for all $\gamma \in \pi_1(M^*)$, considered as a deck transformation group for the universal cover $\pi_* : \tilde{M}^* \to M^*$,

$$\phi(\gamma) = \rho(\gamma)\phi. \tag{16}$$

We call ρ a holonomy representation of x. It is unique up to conjugation in PGL(2, R). Here is the construction of ρ . Fix an element $\gamma \in \pi_1(M^*)$. By the construction, $\pi_1(M^*)$ acts on \tilde{M}^* , \tilde{T}^* , $\tilde{\Delta}$ and $\tilde{\Box}$ so that $\pi_*(\gamma) = \pi_*$ for $\gamma \in \pi_1(M^*)$. This implies

$$[\phi(t_1), \phi(t_2); \phi(t_3), \phi(t_4)] = [\phi(\gamma t_1), \phi(\gamma t_2); \phi(\gamma t_3), \phi(\gamma t_4)]$$

for all normal triangles t_1, \ldots, t_4 in each tetrahedron σ in $\tilde{T}^{(3)}$ and

$$\psi(t(\sigma)) = \phi(\gamma(t(\sigma)))$$

is a pseudo-developing map associated to x. By the uniqueness of the pseudo-developing map, there exists an element $\rho(\gamma) \in \mathrm{PGL}(2,R)$ so that

$$\psi(t(\sigma)) = \rho(\gamma)\phi(t(\sigma)),$$

that is,

$$\phi(\gamma t(\sigma)) = \rho(\gamma)\phi(t(\sigma)).$$

Given $\gamma_1, \gamma_2 \in \pi_1(M^*)$, by definition, $\rho(\gamma_1\gamma_2)\phi = \phi(\gamma_1\gamma_2) = \rho(\gamma_1)\phi(\gamma_2) = \rho(\gamma_1)\rho(\gamma_2)\phi$ and the uniqueness part of Proposition 3.6, we see that $\rho(\gamma_1\gamma_2) = \rho(\gamma_1)\rho(\gamma_2)$, that is, ρ is a group homomorphism from $\pi_1(M^*)$ to PGL(2, R).

Note that the representation ρ is trivial if and only if $\phi(\gamma t) = \phi(t)$ for all $t \in \tilde{\Delta}$ and $\gamma \in \pi_1(M^*)$. In this case, the pseudo-developing map ϕ is defined on $\Delta \to PR^1$ so that $[\phi(t_1), \phi(t_2); \phi(t_3), \phi(t_4)] = [z(q'), -z(q'')]^t$. This was the construction in Example 3.1. In particular, the holonomy representations associated to solutions in Example 3.1 are trivial.

4.6. A proof of Theorem 4.1

Suppose otherwise that there exists an edge $e \in \mathcal{T}^*$ whose lift in \tilde{M}^* is an edge e^* in $\tilde{\mathcal{T}}$ joining the same boundary component of \tilde{M}^* . Take a tetrahedron σ containing e^* as an edge and let t_1, t_2, t_3, t_4 be all normal triangles in σ so that t_1, t_2 are adjacent to e^* . By definition, the pseudodeveloping map $\phi: \tilde{\Delta} \to PR^1$ satisfies the condition that $\{\phi(t_1), \ldots, \phi(t_4)\}$ is admissible. In particular, $\phi(t_1) \neq \phi(t_2)$. On the other hand, since e^* ends at the same connected component of $\partial \tilde{M}^*$ which is a union of normal triangles related by sharing common normal arcs, there exists a sequence of normal triangles $s_1 = t_1, s_2, \ldots, s_n = t_2$ in $\tilde{\Delta}$ so that $s_i \sim s_{i+1}$. In particular, $\phi(s_i) = \phi(s_{i+1})$. This implies that $\phi(t_1) = \phi(t_2)$, contradicting the assumption that $\phi(t_1) \neq \phi(t_2)$.

To prove the second part of Theorem 4.1 that M is a closed connected 3-manifold, we first note that $\pi_1(M^*)$ is isomorphic to $\pi_1(M)$ under the homomorphism induced by inclusion. We will identify these two groups and identify \tilde{M}^* as a $\pi_1(M)$ -invariant subset of the universal cover \tilde{M} of M. If e is an edge in T ending at the same vertex v in T, let $\gamma \in \pi_1(M, v)$ be the deck transformation element corresponding to the loop e. We claim that $\rho(\gamma) \neq id$ in PGL(2, R). Indeed, suppose that e^* is the lifting of e. Then by the statement just proved, e^* has two distinct vertices u_1 and u_2 in \tilde{M} and $\phi(u_1) \neq \phi(u_2)$. By definition $\gamma(u_1) = u_2$. It follows that $\phi(u_2) = \phi(\gamma u_1) = \rho(\gamma)\phi(u_1)$. Since $\phi(u_1) \neq \phi(u_2)$, we obtain $\rho(\gamma) \neq id$. This ends the proof.

5. A variational principle for solving homogeneous Thurston's equation over the real numbers

We show that solutions of the HTE are related to the critical points of a Boltzmann entropy function of the form $\sum_{i=1}^{n} x_i \ln |x_i|$.

5.1. \mathbb{Z}_2 taut angle structures

Let us begin with the observation that if $z: \square \to \mathbb{R}$ is a solution to Thurston's equation, then the sign function $s: \square \to \{+1, -1\}$ of z given by s(q) = sign(z(q)) satisfies the following conditions:

- (a) for each $q \in \square$, exactly one of s(q), s(q'), s(q'') is -1, and
- (b) for each edge $e \in E$, $\prod_{q \sim e} s(q) = 1$.

One defines a \mathbb{Z}_2 taut angle structure on (M, \mathcal{T}) to be a function $s : \square(\mathcal{T}) \to \{+1, -1\}$ satisfying (a) and (b). Therefore, the existence of a \mathbb{Z}_2 taut angle structure is a necessary condition for solving Thurston's equation over the real numbers. Fortunately, we have the following lemma.

LEMMA 5.1 (Baseilhac–Benedetti [1]). For any triangulated closed pseudo 3-manifold (M, \mathcal{T}) , there exists a \mathbb{Z}_2 taut angle structure.

Indeed, Baseilhac-Benedetti proved a stronger result that each (M, \mathcal{T}) has a \mathbb{Z}_2 taut structure which assigns each codimension-1 face of \mathcal{T} a normal vector so that, in each tetrahedron, there are exactly two normal vectors pointing inward. This later result can be seen by taking the 4-valent dual graph of the triangulation \mathcal{T} and orienting the edges of the dual graph so that exactly two edges point towards each vertex. Now from \mathbb{Z}_2 taut structure, one constructs the associated \mathbb{Z}_2 taut angle structure by assigning -1 to those quads q facing the edges that are adjacent to two codimension-1 faces with both outward (or both inwards) normal vectors. In fact, a stronger result has been proved by Henry Segerman and us. Namely, given any embedded normal surface S in (M, \mathcal{T}) , there exists a \mathbb{Z}_2 taut angle structure s for which the surface S is vertical, that is, all quads that appeared in S are assigned 1 in s.

5.2. The Boltzmann entropy

The Boltzmann entropy function $Bol: \mathbb{R}^{\square} \to \mathbb{R}$ is defined to be

$$Bol(x) = \sum_{q \in \square} x(q) \ln(|x(q)|),$$

where $0 \ln 0 = 0$. To set up a variational framework, let us fix a \mathbb{Z}_2 taut angle structure s. Define $\alpha_s : \square \to \mathbb{R}$ by $\alpha_s(q) = 1$ if s(q) = 1 and $\alpha_s(q) = -2$ if s(q) = -1. Define two non-empty closed convex sets C and W_s as follows:

$$C = \{ x \in \mathbb{R}^{\square} \mid x(q)s(q) \ge 0, x(q) + x(q') + x(q'') = 0, \text{ for all } q \in \square \},$$
(17)

and

$$W_s = \left\{ x \in C \middle| \sum_{q \sim e} x(q) = \sum_{q \sim e} \alpha_s(q), e \in E \right\}.$$

By the construction, α_s is in the relative interior $\operatorname{int}(W_s)$ of W_s . Let G be the restriction of the Boltzmann function Bol to C and F be the restriction of Bol to W_s . Evidently $F = G|_{W_s}$.

THEOREM 5.2. For any closed triangulated pseudo 3-manifold (M, \mathcal{T}) ,

- (a) G is convex in C;
- (b) if $x_0 \in int(W_s)$ is a critical point (that is, minimal point) of F on W_s , then x_0 is a solution to the HTE so that $x_0(q) \neq 0$ for all q;
- (c) if $x_0 \in \partial W_s$ is a minimal point of F on W_s , then there exists a function $l: E \to \mathbb{R}$ so that, for all tetrahedra σ which contain q, q', q'' with s(q) = -1,

$$\exp\left(\sum_{e \sim q} l(e)\right) \geqslant \exp\left(\sum_{e \sim q'} l(e)\right) + \exp\left(\sum_{e \sim q''} l(e)\right),\tag{18}$$

that is, in the length l, each tetrahedron becomes a decorated ideal tetrahedron in the anti-de Sitter space.

Proof. To see the convexity of G, we write G(x) as $\sum_{\sigma \in \mathcal{T}^{(3)}} \sum_{q \subset \sigma} x(q) \ln(|x(q)|)$, that is, G(x) is the sum of function of the form $\phi(x_1, x_2, x_3) = \sum_{i=1}^3 x_i \ln(|x_i|)$ defined on $\Delta = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0, x_1, x_2 \geqslant 0\}$. Thus it suffices to show that ϕ is convex in Δ . This is the same as showing $g(x_1, x_2) = x_1 \ln x_1 + x_2 \ln x_2 - (x_1 + x_2) \ln(x_1 + x_2)$ is convex in $\{(x_1, x_2) \mid x_1, x_2 \geqslant 0\}$. Since the Hessian matrix of g is $(1/x_1x_2(x_1 + x - 2)^2) \begin{bmatrix} x_2^2 & x_1x_2 \\ x_1x_2 & x_1^2 \end{bmatrix}$, which is semi-positive definite, the result follows.

To see (b), since $x_0 \in int(W_s)$, by definition $x_0(q) \neq 0$ for all q. To check that x_0 solves the HTE, we use the critical point equation. Recall that the tangent space of W_s at x_0 can be identified with $TAS = \{v \in \mathbb{R}^{\square} \mid \forall \sigma \in \mathcal{T}^{(3)}, \sum_{q \subset \sigma} v(q) = 0, \forall e \in E(\mathcal{T}), \sum_{q \sim e} v(q) = 0\}$. Therefore, for all $v \in TAS$, $(d/dt)|_{t=0}F(p+tv) = 0$. Now, for each edge $e \in E$, define the vector $v_e : \square \to \mathbb{R}$ by $v_e = \sum_{q \sim e} (q')^* - (q'')^*$, where $q^* : \square \to \mathbb{R}$ is the map so that $q^*(q) = 1$ and $q^*(p) = 0$ for $p \neq q$. It is well known that $v_e \in TAS$; see, for instance, [11]. Thus, for each edge $e \in E(\mathcal{T})$,

$$0 = \frac{d}{dt}\Big|_{t=0} F(x_0 + tv_e) = \sum_{q \sim e} (\ln(|x_0(q')| - \ln(|x_0(q'')|)).$$

Therefore

$$\prod_{q \sim e} \left| \frac{x_0(q')}{x_0(q'')} \right| = 1. \tag{19}$$

On the other hand, by the assumption that $x_0(q)s(q) > 0$ for all q and that s is \mathbb{Z}_2 taut angle structure, we see that

$$\operatorname{sign}\left(\prod_{q \sim e} \frac{-x_0(q')}{x_0(q'')}\right) = \operatorname{sign}\left(\prod_{q \sim e} \frac{-s(q')}{s(q'')}\right) = \operatorname{sign}\left(\prod_{q \sim e} s(q)\right) = 1.$$

Combining with (19), we see that $\prod_{q \sim e} x_0(q') = \prod_{q \sim e} (-x_0(q''))$. This shows that x_0 is a solution to the HTE.

To see the last part (c), we need to use the following important theorem from convex optimization. See, for instance, [2].

THEOREM 5.3. Suppose $C \subset \mathbb{R}^n$ is convex, $f: C \to \mathbb{R}$ is a convex function and $h: \mathbb{R}^n \to \mathbb{R}^m$ is an affine map so that there exists a point $\alpha \in \text{int}(C)$ with $h(\alpha) = 0$. If $x_0 \in D = \{x \in C \mid h(x) = 0\}$ is a minimal point of $f|_D$, then there exists $\mu \in \mathbb{R}^m$ so that

$$f(x) + (\mu, h(x)) \geqslant f(x_0)$$

for all $x \in C$, where (u, v) is the standard inner product of u, v in \mathbb{R}^m .

Take C to be given by (17), f = G and $h : \mathbb{R}^{\square} \to \mathbb{R}^{E}$ to be $h(x)(e) = \sum_{q \sim e} (x(q) - \alpha_{s}(q))$ in the above theorem. By the choice of $\alpha_{s} \in int(W_{s})$, we have $h(\alpha_{s}) = 0$. Therefore, there exists a function $l : E \to \mathbb{R}$ so that, for all $x \in C$,

$$G(x) - \sum_{e \in F} l(e)h(x)(e) \geqslant G(x_0).$$

This is the same as

$$\sum_{q\in \square} x(q) \ln(|x(q)|) - \sum_{e\in E} l(e) \sum_{q\sim e} (x(q) - \alpha_s(q)) \geqslant \sum_q x_0(q) \ln(|x_0(q)|).$$

We can rewrite it as

$$\sum_{\sigma \in \mathcal{T}^{(3)}} \sum_{q \in \sigma} [x(q) \ln(|x(q)|) - x(q) \sum_{e \sim q} l(e)] \geqslant G(x_0) + (l, k_0)$$
(20)

for some constant $k_0 \in \mathbb{R}^m$. Since (20) holds for all $x \in C$ which is a product of spaces Δ , this shows, for all $\sigma \in \mathcal{T}^{(3)}$ and for all x with $\sum_{q \subset \sigma} x(q) = 0$ and $x(q)s(q) \ge 0$,

$$\sum_{q \in \sigma} x(q) \ln(|x(q)|) - \sum_{q \in \sigma} \sum_{e \sim q} l(e) x(q) \ge G(x_0) + (l, k_0).$$
 (21)

Due to the homogeneity that, for any $\lambda > 0$,

$$\sum_{q \in \sigma} (\lambda x(q)) \ln(|\lambda x(q)|) - \sum_{q \in \sigma} \sum_{e \sim q} l(e) \lambda x(q) = \lambda \left[\sum_{q \in \sigma} x(q) \ln(|x(q)|) - \sum_{q \in \sigma} \sum_{e \sim q} l(e) x(q) \right],$$

we see (21) implies

$$\sum_{q \in \sigma} x(q) \ln(|x(q)|) - \sum_{q \in \sigma} \sum_{e \sim q} l(e) x(q) \geqslant 0, \tag{22}$$

for all x with $x(q)s(q)\geqslant 0$ and $\sum_{q\subset\sigma}x(q)=0.$

Now we use the standard Legendre–Fenchel duality for the function $\phi(x_1, x_2, x_3)$ defined on Δ , that is, the following lemma (see [10, Lemma 2.7]).

LEMMA 5.4. If $s \ln(s) + t \ln(t) - (s+t) \ln(s+t) \ge as + bt + c(-s-t)$ for all $s, t \ge 0$, then $e^c \ge e^a + e^b$.

Applying this lemma to (22) with
$$s = x(q'), t = x(q'') \ge 0$$
, we obtain the result (18).

Finally, we remark that the entropy function $f(t) = t \ln |t| : \mathbb{R} \to \mathbb{R}$ satisfies a pentagon relation (23) below. It suggests that one may produce a topological invariant of 3-manifolds using triangulations and the Boltzmann entropy Bol. The quantum version of the pentagon relation has been discovered recently by Kashaev, Vartanov and us in [9], which leads to a construction of a topological quantum field theory.

LEMMA 5.5. Suppose $a_1, a_2, a_3, b_1, b_2, b_3$ are real numbers so that $\sum_{i=1}^{3} (a_i + b_i) = 0$, $\prod_{i=1}^{3} |a_i| = \prod_{i=1}^{3} |b_i|$ and all but one of $a_1, a_2, a_3, b_1, b_2, b_3$ are positive. Then, for $f(t) = t \ln |t|$,

$$\sum_{i,j=1}^{3} f(a_i + b_j) = \sum_{i=1}^{3} (f(a_i) + f(b_i)).$$
(23)

The proof is a direct calculation and will be omitted. It also follows from the limiting case of the pentagon relation for the Lobachevsky function $-\int_0^t \ln|2\sin(u)| du$.

6. A universal construction

Recall that (M, \mathcal{T}) is a compact oriented triangulated pseudo 3-manifold. The boundary ∂M of M is triangulated by the subcomplex $\partial \mathcal{T} = \{s \cap \partial M \mid s \in \mathcal{T}\}$. An edge in \mathcal{T} is called *interior* if it is not in $\partial \mathcal{T}$. The goal of this section is to introduce the *Thurston ring* $\mathcal{R}(\mathcal{T})$ and its homogeneous version $\mathcal{R}_h(\mathcal{T})$.

We will deal with quotients of the polynomial ring $\mathbf{Z}[\square]$ with $q \in \square$ as variables. As a convention, we will use $p \in \mathbf{Z}[\square]$ to denote its image in the quotient ring $\mathbf{Z}[\square]/\mathcal{I}$.

The 'ground' ring in the construction is the following. Let σ be an oriented tetrahedron so that $q \to q' \to q''$ are the three quads in it. Then the Thurston ring $\mathcal{R}(\sigma)$ is the quotient of the polynomial ring $\mathbf{Z}[q, q', q'']$ modulo the ideal generated by q'(1-q)-1, q''(1-q')-1, and q(1-q'')-1. Note that this implies in $\mathcal{R}(\sigma)$, q'=1/(1-q) and q''=(q-1)/q and, furthermore, $\mathcal{R}(\sigma) \cong \mathbf{Z}[x, 1/x, 1/(1-x)]$, where x is an independent variable. Similarly, we

defined $\mathcal{R}_h(\sigma)$ to be the quotient ring $\mathbf{Z}[q,q',q'']/(q+q'+q'')$, where (q+q'+q'') is the ideal generated by q+q'+q''. Note that $\mathcal{R}_h(\sigma)(\sigma) \cong \mathbf{Z}[x,y]$ the polynomial ring in two independent variables.

Recall that the tensor product $R_1 \otimes R_2$ of two rings R_1 and R_2 is the tensor product of R_1 and R_2 considered as **Z** algebras.

DEFINITION 6.1. Suppose that (M, \mathcal{T}) is a compact oriented pseudo 3-manifold. The Thurston ring $\mathcal{R}(\mathcal{T})$ of \mathcal{T} is the quotient of the tensor product $\otimes_{\sigma \in \mathcal{T}^{(3)}} \mathcal{R}(\sigma)$ modulo the ideal generated by elements of the form $W_e - 1$, where $W_e = \prod_{q \sim e} q$ for all interior edges e. The homogeneous Thurston ring $\mathcal{R}_h(\mathcal{T})$ is the quotient of $\otimes_{\sigma \in \mathcal{T}^{(3)}} \mathcal{R}_h(\sigma)$ modulo the ideal generated by elements of the form $U_e = \prod_{q \sim e} q' - \prod_{q \sim e} (-q'')$, $q \to q' \to q''$, for all interior edges e. The element $W_e = \prod_{q \sim e} q$ is called the holonomy of the edge e.

By the construction, given a commutative ring R with identity, Thurston's equation on T is solvable in R if and only if there exists a non-trivial ring homomorphism from $\mathcal{R}(T)$ to R. Therefore, Theorem 1.1 can be stated as follows.

THEOREM 6.2. Suppose that (M, \mathcal{T}) is a triangulated closed connected 3-manifold so that one edge in \mathcal{T} is a loop. If $\mathcal{R}(\mathcal{T}) \neq \{0\}$, then $\pi_1(M) \neq \{1\}$.

Note that $\mathcal{R}(\mathcal{T})$ is also the quotient $\mathbf{Z}[\Box]/\mathcal{I}$, where \mathcal{I} is the ideal generated by q'(1-q)-1 for $q \to q'$ and $W_e - 1$ for interior edges e, and $\mathcal{R}_h(\mathcal{T})$ is the quotient of $\mathbf{Z}[\Box]/\mathcal{I}_h$, where \mathcal{I}_h is the ideal generated by q + q' + q'' for $q \to q' \to q''$ and U_e for interior edges e. We remark that if there is $q \in \Box$ so that q = 0 in $\mathcal{R}(\mathcal{T})$, then $\mathcal{R}(\mathcal{T}) = \{0\}$. Indeed, in this case the identity element 1 = 1 - q(1 - q'') is in the ideal \mathcal{I} , therefore $\mathcal{R}(\mathcal{T}) = \{0\}$. In particular, if \mathcal{T} contains an interior edge of degree 1 (that is, adjacent to only one tetrahedron), then $\mathcal{R}(\mathcal{T}) = \{0\}$.

The relationship between $\mathcal{R}(\mathcal{T})$ and $\mathcal{R}_h(\mathcal{T})$ is summarized in the following proposition. To state it, recall that if S is a multiplicatively closed subset of a ring R, then the localization ring R_S of R at S is the quotient $R \times S / \sim$, where $(r_1, s_1) \sim (r_2, s_2)$ if there exists $s \in S$ so that $s(r_1s_2 - r_2s_1) = 0$. If $0 \in S$, then $R_S = \{0\}$.

PROPOSITION 6.3. Let $S = \{q_1 \cdots q_m \mid q_i \in \square\}$ be the multiplicatively closed subset of all monomials in \square in $\mathcal{R}_h(\mathcal{T})$. Then there exist a natural injective ring homomorphism $F : \mathcal{R}(\mathcal{T}) \to \mathcal{R}_h(\mathcal{T})_S$ and a surjective ring homomorphism $G : \mathcal{R}_h(\mathcal{T})_S \to \mathcal{R}(\mathcal{T})$ so that GF = id. In particular, $\mathcal{R}(\mathcal{T}) = \{0\}$ if and only if $\mathcal{R}_h(\mathcal{T})_S = \{0\}$.

Proof. Define a ring homomorphism $F: \mathbf{Z}[\Box] \to \mathcal{R}_h(\mathcal{T})_S$ by F(q) = -q'/q'' where $q \to q' \to q''$. We claim that $F(\mathcal{I}) = \{0\}$ and thus F induces a homomorphism, still denoted by F, from $\mathcal{R}(\mathcal{T})$ to $\mathcal{R}_h(\mathcal{T})_S$. The generators of \mathcal{I} are q'(q-1)-1 and W_e-1 . If $q\to q'\to q''$, then F(q'(1-q)-1)=-(q''/q)(1+q'/q'')-1=-(q+q'+q'')/q=0. For an interior edge e, $F(\prod_{q\sim e}q-1)=(1/\prod_{q\sim e}(-q''))(\prod_{q\sim e}q'-\prod_{q\sim e}(-q''))=0$. To construct the inverse of F, we define $G:\mathbf{Z}[\Box]\to\mathcal{R}(\mathcal{T})$ as follows. For each tetrahedron σ containing $q_1\to q_2\to q_3$ where q_1 is specified, define $G(q_1)=1-q_1, G(q_2)=q_1, G(q_3)=-1$ in $\mathcal{R}(\mathcal{T})$. By the construction, we have G(q)=-q''G(q'), G(q')=-qG(q'') and G(q'')=-q'G(q) for $q\to q'\to q''$ in \Box and $\sum_{q\subset\sigma}G(q)=0$ for each tetrahedron σ . We claim that $G(\mathcal{I}_h)=\{0\}$, that is, G induces a ring homomorphism, still denoted by $G:\mathcal{R}_h(\mathcal{T})\to\mathcal{R}(\mathcal{T})$. Indeed, we have just verified the first equation associated to each $\sigma\in\mathcal{T}$. For the second type of equation, given any interior edge e, due to $G(q')=-qG(q''), G(\prod_{q\sim e}q'-\prod_{q\sim e}(-q''))=\prod_{q\sim e}G(q')-\prod_{q\sim e}(-G(q''))=\prod_{q\sim e}(-G(q''))][\prod_{q\sim e}q-1]=0$. Note that by the construction of $\mathcal{R}(\mathcal{T})$, for $q\in\Box$, then q and 1-q are invertible in $\mathcal{R}(\mathcal{T})$ with inverses 1-q'' and q' where $q\to q'\to q''$. From the above calculation, we see that G induces a homomorphism from $\mathcal{R}_h(\mathcal{T})_S\to\mathcal{R}(\mathcal{T})$. To check GF=id,

it suffices to see that GF(q) = q for $q \in \square$. Let $q \to q' \to q''$, where G(q'') = -1, G(q') = q and G(q) = 1 - q = -qq''. Then GF(q) = G(-q'/q'') = -q/(-1) = q, GF(q') = G(-q''/q) = 1/(1-q) = q' and GF(q'') = G(-q/q') = (q-1)/q = q''.

To see the last statement, if $\mathcal{R}_h(\mathcal{T})_S = \{0\}$, then $\mathcal{R}(\mathcal{T}) = \{0\}$ since F is injective. On the other hand, if $\mathcal{R}(\mathcal{T}) = \{0\}$, then we claim that q = 0 in $\mathcal{R}_h(\mathcal{T})$ for some $q \in \square$. Indeed, if not, then due to $F(q) = -q'/q'' \neq 0$, we see that $q \neq 0$ in $\mathcal{R}(\mathcal{T})$. This contradicts the assumption. Therefore, the multiplicatively closed set S contains 0. Hence $\mathcal{R}_h(\mathcal{T})_S = \{0\}$.

Note that if \mathcal{T}' is obtained from \mathcal{T} by a $2 \to 3$ or $0 \to 2$ move, then there exists a natural ring homomorphism from $\mathcal{R}(\mathcal{T})$ to $\mathcal{R}(\mathcal{T}')$.

7. Example of solving Thurston's equation in finite rings

Suppose that (M, \mathcal{T}) is a closed oriented pseudo 3-manifold and R is a commutative ring with identity and $x : \square \to R$ solves Thurston's equation. If p is a prime number, let F_{p^n} be the finite field of p^n elements.

EXAMPLE 7.1. For $R = F_3$, then $x : \Box \to F_3 - \{0, 1\}$ is the constant map x(q) = 2. Thus, as mentioned in §1.1, Thurston's equation is solvable if and only if each edge has even degree.

EXAMPLE 7.2. For $R = F_5 = \{0, 1, 2, 3, 4\}$, we are looking for $x : \Box \to \{2, 3, 4\}$. Due to $1/(1-2) = 4, 1/(1-4) = 3, 4 = 2^2, 3 = 2^3$ so that $2^4 = 1$, we can write $x(q) = 2^{z(q)}$ where $z \in \{1, 2, 3\}$. Thus Thurston's equation is solvable if and only if, for $q \to q' \to q''$, $(z(q), z(q'), z(q'')) \in \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}$ so that, for each edge $e, \sum_{q \sim e} z(q) = 0 \mod 4$.

EXAMPLE 7.3. For $R = F_{2^2} = \{0, 1, a, b\}$ where $b = a + 1 = a^2$ and $a^3 = 1$, we have 1/(1 - a) = a and 1/(1 - b) = b. By writing solution x of Thurston's equation as $x(q) = a^{z(q)}$ where $z(q) \in \{1, 2\}$, we see that z(q) = z(q') if $q \to q'$. Therefore, Thurston's equation is solvable if and only if there is $z : \mathcal{T}^{(3)} \to \{1, 2\}$ so that, for each edge e, $|\{\sigma \in \mathcal{T}^{(3)} | \sigma > e, z(\sigma) = 1\}| + 2|\{\sigma \in \mathcal{T}^{(3)} | \sigma > e, z(\sigma) = 2\}| = 0 \mod 3$.

EXAMPLE 7.4. For the field F_7 , write $x(q)=3^{z(q)}$. Then Thurston's equation is solvable if and only if $z:\square\to\{1,2,3,4,5\}$ satisfies that $(z(q),z(q'),z(q''))\in\{(1,1,1),(5,5,5),(2,3,4),(3,4,2),(4,2,3)\}$ when $q\to q'\to q''$ and, for each edge $e,\sum_{q\sim e}z(q)=0$ mod 6.

EXAMPLE 7.5. For the ring $\mathbb{Z}/9\mathbb{Z}$ (not F_{3^2}), since a solution x(q) must satisfy x(q) and x(q)-1 are invertible, we conclude that $x(q) \in \{2,5,8\} = \{2,2^5,2^3\}$. Write $x(q)=2^{z(q)}$. Therefore, Thurston's equation is solvable if and only if there is $z: \square \to \{1,3,5\}$ so that $(z(q),z(q'),z(q'')) \in \{(1,3,5),(3,5,1),(5,1,3)\}$ if $q \to q' \to q''$ and, for each edge e, $\sum_{q \sim e} z(q) = 0 \mod 6$. This implies that the degree of each edge must be even.

EXAMPLE 7.6. For the ring $\mathbb{Z}/15\mathbb{Z}$, the same argument as in Example 6.5 shows that Thurston's equation is solvable if and only if $x: \square \to \{2, 8, 14\}$ satisfies $(x(q), x(q'), x(q'')) \in \{(2, 14, 8), (14, 8, 2), (8, 2, 14)\}$ if $q \to q' \to q''$ and, for each edge e, $\prod_{q \sim e} x(q) = 0 \mod 15$.

Acknowledgements. We thank S. Matveev and C. Petronio for answering questions on triangulations of 3-manifolds, and C. Hodgson, H. Segerman and S. Tillmann for discussions. We especially thank Tillmann and Segerman for their careful reading of the manuscript and for pointing out a gap in the original proof of Theorem 4.1.

References

- S. BASEILHAC and R. BENEDETTI, 'Quantum hyperbolic invariants of 3-manifolds with PSL(2,C)characters', Topology 43 (2004) 1373–1423.
- 2. J. M. Borwein and A. S. Lewis, 'Convex analysis and nonlinear optimization,' *Theory and examples*, 2nd edn, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 3 (Springer, New York, 2006) xii+310 pp.
- Y.-E. Choi, 'Positively oriented ideal triangulations on hyperbolic three-manifolds', Topology 43 (2004) 1345–1371.
- J. DANCIGER, 'A geometric transition from hyperbolic to anti-de Sitter geometry', Geom. Topol. 17 (2013) 3077–3134.
- R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics 243 (Springer, New York, 2008).
- 6. W. HAKEN, 'Theorie der Normalflächen', Acta Math. 105 (1961) 245-375.
- W. Jaco and J. H. Rubinstein, '0-efficient triangulations of 3-manifolds', J. Differential Geom. 65 (2003) 61–168
- 8. R. KASHAEV, I. KOREPANOV and E. MARTYUSHEV, 'A finite-dimensional TQFT for three-manifolds based on group PSL(2,C) and cross-ratios', Preprint, 2008, arXiv:0809.4239.
- 9. R. Kashaev, F. Luo and G. Vartanov, 'A TQFT of Turaev-Viro type on shaped triangulations', Ann. Henri Poincaré, Preprint, 2012, arXiv:1210.8393.
- F. Luo, A note on complete hyperbolic structures on ideal triangulated 3-manifolds, Contemporary Mathematics 560 (American Mathematical Society, Providence, RI, 2011) 19–26.
- 11. F. Luo, 'Volume optimization, normal surface and Thurston equation', J. Differential Geom. 93 (2013) 299–326.
- 12. F. Luo, S. Tillmann and T. Yang, 'Thurston's spinning construction and solutions to the hyperbolic Gluing equations for closed hyperbolic 3-manifolds', *Proc. Amer. Math. Soc.* 141 (2013) 335–350.
- 13. W. D. NEUMANN and D. ZAGIER, 'Volumes of hyperbolic three-manifolds', Topology 24 (1985) 307–332.
- C. Petronio and J. R. Weeks, 'Partially flat ideal triangulations of cusped hyperbolic 3-manifolds', Osaka J. Math. 37 (2000) 453–466.
- 15. H. Segerman and S. Tillmann, 'Pseudo-developing maps for ideal triangulations I: essential edges and generalised hyperbolic gluing equations', *Topology and geometry in dimension three*, Contemporary Mathematics 560 (American Mathematical Society, Providence, RI, 2011) 85–102.
- 16. W. P. THURSTON, Three-dimensional geometry and topology (Princeton University Mathematics Department, 1979–1981), http://library.msri.org/books/gt3m/.
- 17. S. TILLMANN, 'Degenerations of ideal hyperbolic triangulations', Math. Z. 272 (2012) 793-823.
- 18. T. Yang, 'On the hyperbolic Gluing equations and representations of fundamental groups of closed 3-manifolds', Preprint, 2010, arXiv:1004.3338.
- T. Yoshida, 'On ideal points of deformation curves of hyperbolic 3-manifolds with one cusp', Topology 30 (1991) 155–170.

Feng Luo
Department of Mathematics
Rutgers University
Piscataway, NJ 08854
USA

fluo@math.rutgers.edu