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Abstract
We characterize hyperbolic metrics on compact triangulated surfaces with bound-
ary using a variational principle. As a consequence, a new parameterization of the
Teichmüller space of a compact surface with boundary is produced. In the new para-
meterization, the Teichmüller space becomes an explicit open convex polytope. Our
results can be considered as a generalization of the simplicial coordinate of Penner
[P1], [P2] for hyperbolic metrics with cusp ends to the case of surfaces with geodesic
boundary. It is conjectured that the Weil-Petersson symplectic form can be expressed
explicitly in terms of the new coordinate.

1. Introduction

1.1
The purpose of this article is to produce a new parameterization of the Teichmüller
space of a compact surface with nonempty boundary so that the lengths of the boundary
components are fixed. In this new parameterization, the Teichmüller space becomes
an explicit open convex polytope. Our result is motivated by the articles [L], [R], and
[Lu1] for hyperbolic, Euclidean, and spherical cone metrics on closed triangulated
surfaces. In these approaches, constant curvature metrics are identified with the crit-
ical points of some natural energy functions. The energy functions used in [L] and
[Lu1] can be constructed by the cosine laws for hyperbolic and spherical triangles.
The cosine law for right-angled hyperbolic hexagons produces the energy for the
current work. All these energies are related to the dilogarithm function. Our work can
be considered as the counterpart to, and a generalization of, Penner’s work on the
decorated Teichmüller space of cusped surfaces (see [P2], [P1]). Indeed, the recent
work of Mondello [Mo] shows that by taking a sequence of hyperbolic metrics with
geodesic boundary converging to a cusped metric, under appropriate normalization, the
limit of the coordinate introduced in this article is the simplicial coordinate introduced
by Penner [P2]. Furthermore, the statements of results in our article are very similar to
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the theorems of Penner on simplicial coordinates. Our results establish a link between
the works of Leibon [L], Rivin [R], and others to the work of Penner [P1], [P2].

As a convention in this article, all surfaces are assumed to be compact and
connected with nonempty boundary and to have negative Euler characteristic unless
stated otherwise. A hyperbolic metric on the compact surface is assumed to have
totally geodesic boundary.

1.2
We begin with a brief review of the Teichmüller spaces. Suppose that S is a compact
surface of nonempty boundary and has negative Euler characteristic. It is well known
that there are hyperbolic metrics with totally geodesic boundary on the surface S. Two
such hyperbolic metrics are isotopic if there is an isometry isotopic to the identity
between them. The space of all isotopy classes of hyperbolic metrics on S, denoted
by T (S), is called the Teichmüller space of the surface S. We are interested in the
subspace of T (S) with prescribed boundary lengths. To be precise, let the boundary
components of S be b1, . . . , br . Assign the ith boundary component bi a positive
number li , and let l = (l1, . . . , lr ). Then the bordered Teichmüller space T(S, l) is
the subset of T (S) consisting of those isotopy classes of metrics such that the length
of bi in the metrics is li . The space T (S, l) has been used recently in calculation of
the Weil-Petersson volume of the moduli spaces of curves in [M]. Using a 3-holed
sphere decomposition of the surface S and the associated Fenchel-Nielsen coordinate,
it is known (see [IT] or [Bu]) that T (S, l) is diffeomorphic to (R × R>0)N for some
integer N .

One can decompose the surface S into a union of hexagons instead of 3-holed
spheres. These decompositions are called ideal triangulations of the surface. They are
also called trivalent ribbon graphs in the dual setting. The main result of the article
(Theorem 1.2) gives a natural parameterization of the bordered Teichmüller space
T (S, l) using an ideal triangulation.

1.3
We now set up the framework by recalling ideal triangulations and right-angled hy-
perbolic hexagons. A colored hexagon is a hexagon such that three of its nonpairwise
adjacent edges are designated as x-edges, while the other three edges are the y-edges.
Let X be a finite disjoint union of colored hexagons. Identify all y-edges in X in pairs
by homeomorphisms. The quotient space S is a compact surface (possibly disconnec-
ted) with an ideal triangulation T . The edges and 2-cells of the triangulation T are the
images of y-edges and hexagons in X under the quotient map. The quotient of each
x-edge is called an x-arc in T . We use C(S, T ), E = E(S, T ), and F = F (S, T )
to denote the sets of all x-arcs, all edges, and all 2-cells in T , respectively. It is easy
to see that every compact surface with negative Euler characteristic and nonempty
boundary admits an ideal triangulation.
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Figure 1.1

Suppose that H is a colored right-angled hyperbolic hexagon with three y-edges
e1, e2, e3 and three x-edges f1, f2, f3 such that fi is the opposite edge of ei . We call
fi the edge facing ei and fj an edge adjacent to ei for j �= i. It is well known that
the hexagon H is determined up to isometry-preserving coloring by the three lengths
l(e1), l(e2), l(e3) of the y-edges. Furthermore, these three lengths l(e1), l(e2), l(e3) can
take any assigned positive numbers (see [Bu]). We define the radius invariant of the
edge ei to be the number (1/2)(l(fj ) + l(fk) − l(fi)), where {i, j, k} = {1, 2, 3} and
l(fi) is the length of fi . This definition is motivated by the circle-packing construction.
The counterpart of a hexagon is the triangle of edge lengths l(f1), l(f2), l(f3), along
with inner angles e1, e2, e3, such that ei is facing fi . In this case, the invariants
(1/2)(l(fj ) + l(fk) − l(fi)) are the radii of three pairwise tangent circles whose
centers are the vertices of the triangle (see Figure 1.1(b)). The radius invariants play
the pivotal role in this article and serve as a coordinate for the bordered Teichmüller
space T (S, l).

There is a natural one-to-one correspondence between an ideally triangulated
compact surface with boundary and a triangulated closed surface. Namely, for a
triangulated closed surface (S ′, T ′), let S be the compact surface obtained from S ′

by removing a small open regular neighborhood of the union of all vertices. Then
the triangulation T ′ induces an ideal triangulation T of the surface S. Under this
correspondence, vertices of T ′ correspond to boundary components of S and edges of
T ′ correspond to edges of T . The 2-cells (hexagons) of T correspond to triangles in
T ′. The x-arcs in T correspond to angles (or corners) in T ′. The radius invariant of
an edge in T introduced below is also the counterpart of the edge invariant introduced
by Leibon [L] for hyperbolic metrics on triangulated closed surfaces. Here, Leibon’s
invariant φ assigns an edge the sum of the four angles adjacent to the edge subtracting
the sum of the two angles facing the edge; that is,

φ(e) = a + a′ + b + b′ − c − c′,
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where a, b, a′, b′ are angles adjacent to e and c, c′ are the angles facing e (see
Figure 1.1(c)). On the other hand, the radius coordinate is also the analogy to Penner’s
simplicial coordinate (see [P2]).

1.4
Fix an ideal triangulation T of a compact surface S. Each hyperbolic metric d on S

produces a length function ld : E → R>0 which assigns each edge e in T the length
of the shortest geodesic arc homotopic to e relative to the boundary ∂S. It is known
that two hyperbolic metrics d, d ′ on S are isotopic if and only if ld = ld ′ . Furthermore,
any function l : E → R>0 can be realized as ld for some hyperbolic metric d with
totally geodesic boundary by gluing (see [U]). We call ld the length coordinate of the
metric d . Thus, the length coordinate parameterizes the Teichmüller space T (S) by
ER>0 . However, the image of the bordered Teichmüller space T (S, l) inside ER>0 is
complicated.

The radius coordinate of a hyperbolic metric d on an ideally triangulated surface
(S, T ) is defined as follows. The triangulation T is isotopic to a geometric ideal
triangulation T ∗ in d-metric such that each edge in T ∗ is a geodesic segment orthogonal
to the boundary ∂S. In particular, these edge e∗’s decompose the surface S into a union
of right-angled hyperbolic hexagons. Each edge e∗ in T ∗ is adjacent to one or two
hyperbolic hexagons (the 2-cells in T ∗). We define the radius invariant of the edge e,
denoted by z(e), to be the sum of the radius invariants of the corresponding edge e∗

in hyperbolic hexagons adjacent to it; that is,

z(e) = a + a′ + b + b′ − c − c′

2
,

where a, a′, b, b′ are the lengths of the x-arcs adjacent to e∗ and c, c′ are the lengths of
x-arcs facing e∗ (see Figure 1.1(d)). The radius coordinate of the metric is the function
z : E → R. Our main results are the following theorems.

THEOREM 1.1
Suppose that (S, T ) is a compact ideal triangulated surface. Then each hyperbolic
metric with totally geodesic boundary on the surface S is determined up to isotopy by
its radius coordinate.

To state the result for bordered Teichmüller space, we have to introduce the notion
of edge cycle in the ideal triangulation T . By definition, an edge cycle is an edge
loop in the dual cellular decomposition of the ideal triangulation. To be more precise,
an edge cycle is a collection of ordered edges e1, . . . , ek and 2-cells f1, . . . , fk in T

such that for each index i, counted modulo k, ei and ei+1 are adjacent to the 2-cell fi

in T . For simplicity, we use {e1, . . . , ek} to denote an edge cycle by suppressing the
2-cells. A fundamental edge cycle is an edge cycle such that each edge in T appears
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at most twice in the cycle. Each boundary component of the surface S corresponds
to a fundamental edge cycle by counting edges adjacent to the boundary component
cyclically. We call these boundary edge cycles.

THEOREM 1.2
Suppose that (S, T ) is a compact ideally triangulated surface with r boundary com-
ponents and l = (l1, . . . , lr ) ∈ Rr

>0. Let E be the set of all edges in the triangulation
T . Then the radius coordinate is a real analytic diffeomorphism from the bordered
Teichmüller space T (S, (l1, . . . , lr )) to the convex polytope {z : E → R | so that (1.1)
and (1.2) hold} Here, for each fundamental edge cycle e1, . . . , ek ,

k∑
i=1

z(ei) > 0, (1.1)

and for the boundary edge cycle e1, . . . , ek corresponding to the j th boundary com-
ponent,

k∑
i=1

z(ei) = lj . (1.2)

This theorem is the analogy of [P2, Theorem 5.4]. It seems highly likely that the
Weil-Petersson symplectic form on the bordered Teichmüller space T (S, l) can be
expressed explicitly in terms of the radius coordinate (see [Mo] and [B]).

One interesting consequence of Theorem 1.2 concerns the cell decompositions of
the Teichmüller space, first observed in [Mo].

Recall that the arc complex of a compact surface S is the following simplicial
complex, denoted by A(S). The vertices of A(S) are isotopy classes [a] of proper arcs
a in S which are homotopically nontrivial relative to the boundary of S. A simplex
in A(S) is a collection of distinct vertices [a1], . . . , [ak] such that ai ∩ aj = ∅ for all
i �= j . For instance, the isotopy class of an ideal triangulation corresponds to a simplex
of maximal dimension in A(S). The nonfillable subcomplex A∞(S) of A(S) consists
of those simplexes ([a1], . . . , [ak]) with ai ∩ aj = ∅ such that one component of
S−⋃k

i=1 ai is not simply connected. The simplexes in A(S)−A∞(S) are called fillable.
Let (|A(S)| − |A∞(S)|) × R>0 be the geometric realization space whose points are of
the form x = ∑k

i=1 ci[ai], where ci > 0, so that ([a1], . . . , [ak]) is a fillable simplex.
Now, take a point x = ∑k

i=1 ci[ai] in (|A(S)| − |A∞(S)|) × R>0. Let ([a1], . . . , [an])
be an ideal triangulation containing the fillable simplex ([a1], . . . , [ak]). Assign each
edge [ai] the positive number zi = ci if i ≤ k and zero otherwise. Then this assignment
z satisfies condition (1.1) in the ideal triangulation ([a1], . . . , [an]). By Theorem 1.2,
there exists a hyperbolic metric on S whose radius coordinate is z. As a consequence,
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each point in (|A(S)| − A∞(S)|) × R>0 is the radius coordinate of some hyperbolic
metric in an ideal triangulation.

On the other hand, by [EP], [Ko], and [U], each hyperbolic metric on S produces
a unique point in (|A(S)| − |A∞(S)|) × R>0.

To be more precise, we have the following.

THEOREM 1.3 (see [EP], [U])
Suppose that S is a compact surface with boundary together with a hyperbolic metric.
Then there is an ideal triangulation such that the radius coordinate of the metric in
the ideal triangulation is nonnegative. Furthermore, the set of all edges in the ideal
triangulation with positive radius coordinate forms a fillable simplex in A(S), and the
simplex is unique.

Define a continuous map

� : T (S) → |A(S) − A∞(S)| × R>0

by sending a metric to the point
∑

i zi[ai], where [a1], . . . , [an] is a preferred ideal
triangulation associated to the metric produced by Ushijima’s theorem (see [U]) and zi

is the radius coordinate. Combining Theorems 1.2 and 1.3, one obtains the following
result.

COROLLARY 1.4 ([Mo, Theorem 2.14])
For any compact surface with boundary and of negative Euler characteristic, the map

� : T (S) → |A(S) − A∞(S)| × R>0

is a homeomorphism equivariant under the action of the mapping class group. In
particular, the map � produces a natural cellular decomposition of the moduli space
of surfaces with boundary.

1.5
The strategy of proving Theorems 1.1 and 1.2 is the following. By a length structure
on the ideal triangulated surface (S, T ) we mean a map x : C(S, T ) → R>0 assigning
each x-arc a positive number. Length structure is the counterpart of angle structure on
closed triangulated surfaces first introduced by Colin de Verdière [C1] and later by
Rivin [R]. The radius invariant of a length structure x is the function Dx : E → R,
assigning each edge e the value (1/2)

( ∑
w∈I x(w) − ∑

w′∈II x(w′)
)
, where I is the

set of all x-arcs adjacent to e and II is the set of all x-arcs facing e. Note that each
hyperbolic metric d on (S, T ) induces a length structure by measuring the lengths of
x-arcs in the hyperbolic ideal triangulation T ∗ isotopic to T . The radius coordinate of
the metric d is the radius invariant of its length structure.
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For each length structure x, we define an energy V (x) by using the cosine law for
hyperbolic hexagons. The energy is a strictly concave function of x. Given a function
z : E → R, the set of all length structures with z as radius invariant is a bounded
convex set (which may be empty) L(S, T , z). We prove that the maximum point of
the strictly concave function V | : L(S, T , z) → R is exactly the length structure
derived from a hyperbolic metric on the surface S. Since a strictly concave function
on a convex set has at most one critical point, this establishes Theorem 1.1. To prove
Theorem 1.2, we show that if the edge invariant z : E → R satisfies conditions (1.1)
and (1.2), then L(S, T , z) �= φ and the maximum point of V | : L(S, T , z) → R
always exists. The necessity of conditions (1.1) and (1.2) can be verified easily.

We note that there are now different proofs of Theorems 1.1 and 1.2 in [Lu3]. The
new proof of Theorem 1.1 uses the Legendre transform of the energy function used
in this article. Theorem 1.2 can be deduced from Theorem 1.1 by analyzing the map
sending the length coordinate to the radius coordinate. It is motivated by Thurston’s
original proof of the circle-packing theorem in [T] and the proof in [MR].

1.6
The techniques used in this article are related to and motivated by the seminal work
of Colin de Verdière [C1] on variational principle on triangulated surfaces. Important
works on the subject have been done by Rivin [R], Brägger [Br], Leibon [L], and
others for circle packing, as well as for singular Euclidean and singular hyperbolic
structures on surfaces. In [R], Rivin used the Lagrangian multipliers’ method in the
variational approach to find flat metrics. Our work follows the strategy developed
in [L] and also the framework in [R] on Lagrangian multipliers. In these works, the
energy functions are all related to the 3-dimensional volume. (The energy functional
used by Colin de Verdière was discovered by using the Schläfli formula for tetrahedra;
see [C2].) In [Lu3], we observe that all these energy functions can be constructed
using the cosine law and Legendre transform. Furthermore, the cosine law produces
continuous families of energy functions for variational framework on triangulated
surfaces. As a consequence, Theorems 1.1 and 1.2 are special cases in a continuous
family of rigidity theorems. Whether this is related to the quantum phenomena (e.g.,
quantum Teichmüller theory) is not clear to us. Another rich source of energy functions
for variational principles on triangulated surfaces has been discovered recently by
Bobenko and Springborn [BS] using discrete integrable systems. Also of note is the
recent work of Ren Guo [G].

Parameterization of the Teichmüller space using metric ribbon graph has recently
been used extensively (see, e.g., the solution of the Witten conjecture in [Kon] and
the stability of the homology of the mapping class group in [H]). In the metric ribbon
graph approach, the key lies in the singular flat metrics arising from Jenkins-Strebel
differentials. The approach in this article can be considered as a counterpart to metric
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ribbon graph theory, but one using hyperbolic metrics instead of flat metrics. In the
case of cusped ends, this has been achieved in the work of Penner [P1], [P2].

There are many works on constructing coordinates for Teichmüller spaces. Be-
sides the works [P1], [P2], and [U] mentioned above, Bonahon [B] constructed a very
nice parameterization of the Teichmüller space of a compact surface with boundary
using the Bonahon-Thurston shearing cocycles. Recently, Kashaev [K] introduced a
coordinate for the space T (S, l) × H 1(S, R). Other related works are the papers of
Schlenker [S] and Springborn [Sp]. The exact relationship between the result in this
article and in the works of Bonahon, Kashaev, and Schlenker is not clear to us, but
it deserves further study. A fascinating question, suggested by a referee, is whether
there is a geometric interpretation of the energy function used in this article in terms
of a hyperbolic volume of some hyperideal simplices (see [S] for more details).

1.7
The rest of this article is organized as follows. In Section 2, we recall the cosine law
and establish some of the basic properties. The energy of a right-angled hyperbolic
hexagon is introduced and is shown to be a strictly concave function. In Section 3, we
prove Theorems 1.1 and 1.2.

2. The cosine law of a hyperbolic right-angled hexagon
We establish some of the basic properties of the cosine law for hyperbolic right-
angled hexagons in this section. In particular, the capacity of a right-angled hyper-
bolic hexagon is defined. Some of the basic properties of the capacity function are
established. We do not know the geometric meaning of the capacity.

For simplicity, we assume that the indices i, j, k are pairwise distinct in this
section.

2.1
Given a colored hyperbolic right-angle hexagon with y-edge lengths y1, y2, y3, let
x1, x2, x3 be the lengths of x-edges, so that the xi th edge is opposite to the yi th edge.
The cosine law relating the lengths’ xi’s with yj ’s states that

cosh(yi) = cosh xi + cosh xj cosh xk

sinh xj sinh xk

, (2.1)

where {i, j, k} = {1, 2, 3}.
The partial derivatives of yi as a function of x = (x1, x2, x3) are given by the

following lemma.

LEMMA 2.1
Let {i, j, k} = {1, 2, 3}. We have the following:
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(a) (sine law) sinh(xi)/sinh(yi) is independent of the index i; in particular, Aijk =
A123, where Aijk = sinh(yi) sinh xj sinh xk;

(b) ∂yi

∂xi
= sinh(xi)/Aijk = A sinh(yi), where A > 0 is independent of indices;

(c) ∂yi

∂xj
= − ∂yi

∂xi
cosh yk .

Proof
The proof is a simple exercise in calculus (see, e.g., [Lu2]).

Introduce a new variable ti = (xj + xk − xi)/2 for {i, j, k} = {1, 2, 3}. Then
xi = tj + tk . The space of all colored hyperbolic right-angled hexagons parameterized
by the new coordinate t = (t1, t2, t3) becomes H3 = {(t1, t2, t3) ∈ R3 | ti + tj > 0}.
We consider yi = yi(t) as a smooth function defined on H3. �

COROLLARY 2.2
The length function yi = yi(t) on H3 satisfies the following:
(a) the differential 1-form w = ∑3

i=1 ln cosh(yi/2) dti is closed in the open set
H3;

(b) the function θ(t) = ∫ t

(0,0,0) w is strictly concave on H3.

Remark. The differential 1-form w in Corollary 2.2(a) has logarithmic singularity at
the point (0, 0, 0). Thus, the integral in Corollary 2.2(b) is well defined. This can also
be seen in Proposition 2.3.

Proof of Corollary 2.2
To show part (a), it suffices to prove ∂(ln cosh(yi/2))

∂tj
is symmetric in i �= j . By

Lemma 2.1 and xi = tj + tk , the partial derivative is found to be

∂

∂tj

(
ln cosh

(yi

2

))
= 1

2
tanh

(yi

2

)∂yi

∂tj

= 1

2
tanh

(yi

2

)(∂yi

∂xi

+ ∂yi

∂xk

)

= 1

2
tanh

(yi

2

)∂yi

∂xi

(
1 − cosh(yj )

)

= 1

2
tanh

(yi

2

)
A sinh(yi)

(
1 − cosh(yj )

)

= A

2

sinh(yi/2)

cosh(yi/2)

(
2 sinh

(yi

2

)
cosh

(yi

2

))(
− 2 sinh2

(yj

2

))

= −2A sinh2
(yi

2

)
sinh2

(yj

2

)
, (2.2)

where ∂yi

∂xi
= A sinh(yi) is given by Lemma 2.1(b). The last expression in (2.2) is

symmetric in i, j . This establishes (a).
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To see part (b), due to part (a) and to the simple connectivity of H3, the function
θ(t) is well defined. To check the convexity, we calculate the Hessian of θ(t). The
Hessian matrix is

[
∂2θ

∂tr ∂ts

]
3×3

= [
∂

∂tr
(ln cosh(ys/2))

]
3×3

. The diagonal entries of the
Hessian can be calculated using Lemma 2.1 as follows:

∂

∂ti

(
ln cosh

(yi

2

))
= 1

2
tanh

(yi

2

)∂yi

∂ti

= 1

2
tanh

(yi

2

)( ∂yi

∂xj

+ ∂yi

∂xk

)

= 1

2
tanh

(yi

2

)∂yi

∂xi

(−cosh(yk) − cosh(yj )
)

= 1

2

sinh(yi/2)

cosh(yi/2)
sinh(yi)A

(
−2 sinh2

(yk

2

)
−2 sinh2

(yj

2

)
−2

)

= −2A sinh2
(yi

2

)(
sinh2

(yj

2

)
+ sinh2

(yk

2

)
+ 1

)
. (2.3)

By (2.2), (2.3), and A > 0, the matrix −[
∂2θ

∂tr ∂ts

]
is a diagonally dominated matrix;

that is,

− ∂2θ

∂ti∂ti
>

∣∣∣ ∂2θ

∂ti∂tj

∣∣∣ +
∣∣∣ ∂2θ

∂ti∂tk

∣∣∣.
Since a diagonally dominated matrix is positive definite, it follows that the Hessian
matrix is negative definite and the function θ(t) is strictly concave. �

The next proposition relates θ(t) with the dilogarithm function. Let �1(u) =∫ u

0 ln cosh(s) ds, and let �2(u) = ∫ u

0 ln sinh(s) ds. Both are continuous in R and
are related to the dilogarithm function and the Lobachevsky function.

PROPOSITION 2.3
The function θ(t) is

2θ(t) = �1(t1 + t2 + t3)+
3∑

i=1

�1(ti)−�2(t1 + t2)−�2(t2 + t3)−�2(t3 + t1). (2.4)

Proof
We verify that the derivatives of the functions on both sides of (2.4) are the same. Note
that 2 ∂θ(t)

∂ti
= ln cosh2(yi/2). By the cosine law (2.1) and the identity cosh2(u/2) =
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(cosh u + 1)/2, we have

cosh2
(yi

2

)
= cosh(xi) + cosh(xj ) cosh(xk) + sinh(xj ) sinh(xk)

2 sinh(xj ) sinh(xk)

= cosh(xi) + cosh(xj + xk)

2 sinh(xj ) sinh(xk)

= cosh((x1 + x2 + x3)/2) cosh((xj + xk − xi)/2)

sinh(xj ) sinh(xk)

= cosh(t1 + t2 + t3) cosh(ti)

sinh(ti + tj ) sinh(ti + tk)
.

This shows that

2
∂θ(t)

∂ti
= ln cosh(t1 + t2 + t3) + ln cosh(ti) − ln sinh(ti + tj )

− ln sinh(ti + tk). (2.5)

Evidently, the right-hand side of (2.5) is the partial derivative of the right-hand side
of (2.4) with respect to the variable ti . Since both functions vanish at (0, 0, 0), this
proves the proposition. �

Both functions �1(u) and �2(u) are continuous in R. Thus, the function θ(t) has a
continuous extension, still denoted by θ(t), to the closure of H3 in R3; that is, θ(t)
is well defined on H3 = {(t1, t2, t3) ∈ R3 | ti + tj ≥ 0 for all i �= j}. The next
result studies the behavior of the function θ(t) near the boundary of H3 and near
infinity.

PROPOSITION 2.4
The function θ(t) defined on H3 = {t ∈ R3 | ti + tj ≥ 0} is nonnegative and bounded.
Furthermore, for any point a ∈ ∂H3 and any point p ∈ H3,

lim
s→0

d

ds

(
θ((1 − s)a + sp)

) = ∞. (2.6)

Proof
Let f (s) = 2θ((1−s)a+sp), and let ti = (1−s)ai +spi . In the following calculation,
the indices are counted modulo 3. Then by (2.5),
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df (s)

ds
=

3∑
i=1

2
∂θ

∂ti
(pi − ai)

= ln cosh
( 3∑

i=1

ti

) 3∑
i=1

(pi − ai) +
3∑

i=1

ln cosh(ti)(pi − ai)

−
3∑

i=1

ln
(

sinh(ti + ti+1) sinh(ti + ti−1)
)
(pi − ai)

= −
3∑

i=1

ln sinh(ti + ti+1)(pi + pi+1 − ai − ai+1) + A(s), (2.7)

where A(s) = ln cosh
( ∑3

i=1 ti
) ∑3

i=1(pi − ai)+
∑3

i=1 ln cosh(ti)(pi − ai), so that
lims→0 A(s) exists in R.

To understand lims→0 f (s), we discuss three cases according to the location of
the boundary point a:
(1) only one of ai + ai+1, for i = 1, 2, 3, is zero;
(2) exactly two of three numbers ai + ai+1 are zero;
(3) all ai’s are zero.
Note that lims→0(ti + tj ) = ai + aj .

Case 1. Say that a1 + a2 = 0 and that a2 + a3, a3 + a1 > 0. Then by (2.7) and
lims→0(ti + tj ) > 0 for (i, j ) �= (1, 2),

df (s)

ds
= −ln sinh(t1 + t2)(p1 + p2 − a1 − a2) + A1(s),

where lims→0 A1(s) exists in R. Due to p1 + p2 > 0, a1 + a2 = 0, and
lims→0 ln sinh(t1 + t2) → −∞, it follows that (2.6) holds.

Case 2. Say that a1 + a2 = a2 + a3 = 0, and say that a3 + a1 > 0. Then by (2.7),

df (s)

ds
= −ln sinh(t1 + t2)(p1 + p2 − a1 − a2)

− ln sinh(t2 + t3)(p2 + p3 − a2 − a3) + A2(s),

where lims→0 A2(s) exists in R. Due to pi +pj > ai +aj = 0 and lims→0(ti + tj ) = 0
for (i, j ) = (1, 2), (2, 3), it follows again that (2.6) holds.

Case 3. Let a1 = a2 = a3 = 0. Then we have

df (s)

ds
= −

3∑
i=1

ln sinh(ti + ti+1)(pi + pi+1 − ai − ai+1) + A3(s),
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where lims→0 A3(s) exists in R. Since pi +pj > ai +aj = 0 and lims→0(ti + tj ) = 0
for all i, j , then (2.6) holds again.

To see that the function 2θ(t) is bounded in H3, let us consider, for each u > 0,
the minimum and maximum values m(u) and M(u) of 2θ(t) on the triangle Xu =
{(t1, t2, t3) | t1 + t2 + t3 = u, ti + tj ≥ 0}. Since the function 2θ(t) is strictly
concave in Xu and 2θ(t) is symmetric in t1, t2, t3, its minimum point is achieved at the
vertices of Xu and its unique maximum point is invariant under the permutations of
t1, t2, t3. Thus, M(u) = 2θ(u/3, u/3, u/3) and m(u) = 2θ(u, 0, 0); that is, M(u) =
�1(u) + 3�1(u/3) − 3�2(2u/3) and m(u) = 2�1(u) − 2�2(u). Since m(u) > 0,
then θ(t) ≥ 0. On the other hand, M(u) is known to be bounded in [0, ∞). Thus, θ(t)
is bounded on {t | ti + tj ≥ 0, where i �= j}. �

3. Proofs of Theorems 1.1 and 1.2
Suppose that (S, T ) is an ideally triangulated surface obtained by identifying y-edges
of colored hexagons P̃1, . . . , P̃n in pairs by homeomorphisms φij ’s. Let E = {e1, . . . ,

em}, let F = {P1, . . . , Pn}, and let C(S, T ) = {w1, . . . , w3n} be the sets of all edges,
2-cells, and x-arcs in T , respectively. Here, the quotient of P̃i is Pi . Each 2-cell Pi

contains exactly three x-arcs wi1, wi2, wi3 in ∂S. We say that wi1, wi2, wi3 bound the
2-cell and that wij is an x-arc of Pi . An x-arc w is said to facing (resp., adjacent to)
an edge e if there is a hexagon P̃ and an x-edge w̃ facing (or adjacent to) a y-edge ẽ

in P̃ , so that w and e are the quotients of w̃ and ẽ. If ẽ1, ẽ2, ẽ3 are three y-edges in a
hexagon P̃i , we call their quotient edges e1, e2, e3 the edges of the 2-cell Pi . Note that
it may occur that e1 = e2.

Recall that a length structure on (S, T ) is a function x : C(S, T ) → R>0.
Geometrically, a length structure is the same as a realization of each hexagon P̃i by a
hyperbolic right-angled hexagon (by measuring the lengths of the x-edges). There is
no guarantee that the gluing homeomorphism φij identifies two y-edges of P̃k’s of the
same length. Thus, a length structure does not correspond to a metric on the surface.
Hyperbolic metrics on the surface S are the same as those length structures, so that all
φij ’s identify pairs of edges of the same lengths. These length structures are said to
be induced from hyperbolic metrics. We consider the Teichmüller space T (S) as the
subset of the space of all length structures under this identification. The goal of this
article is to characterize T (S) as the critical point of a natural energy function.

Given a length structure x : C(S, T ) → R>0, we define its t-coordinate t = tx :
C(S, T ) → R by

t(w) = 1

2

(
x(w′) + x(w′′) − x(w)

)
, (3.1)

where w, w′, w′′ are the x-arcs in the 2-cell containing w. The length structure x can
be recovered from its t-coordinate t by x(w) = t(w′) + t(w′′). The radius invariant
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of a length structure x is z = zx : E → R, given by

z(e) = t(w) + t(w′), (3.2)

where w and w′ are the x-arcs facing the edge e. Note that this definition coincides
with the definition of radius invariants introduced in Section 1.4 when x is induced
from a hyperbolic metric.

The space of all length structures parameterized by their t-coordinate is
Lt (S, T ) = {t = (t1, . . . , t3n) ∈ R3 | ti + tj > 0 whenever x-arcs wi and wj

are inside a 2-cell in T }. We define the energy V (t) of a length structure t ∈ Lt (S, T )
to be

V (t) =
∑

{wi,wj ,wk} bounds a 2-cell

θ(ti , tj , tk). (3.3)

Geometrically, for a length structure corresponding to a collection of hyperbolic right-
angled hexagons, its energy is the sum of the values of θ -function at its hexagons.

Given a function z : E → R, let Lt (S, T , z) be the set of all length structures (in t-
coordinates), so that its radius invariant is z; that is, Lt (S, T , z) = {t ∈ R3n | ti+tj > 0
when wi, wj are in a 2-cell, and ti + tj = z(e) when x-arcs wi and wj are facing e}.

LEMMA 3.1
If Lt (S, T , z) �= ∅, the energy function V | : Lt (S, T , z) → R is strictly concave, so
that the critical points of V | are exactly the length structures induced from hyperbolic
metrics.

Proof
The concavity follows from the concavity of θ(t). To identify the critical points, we
use the Lagrangian multiplier to V : L(S, T ) → R subject to a set of linear constraints
ti + tj = z(e) when wi, wj are facing e. At a critical point q of V |, there exists a
function h : E → R (the Lagrangian multipliers), so that for all indices i,

∂V

∂ti
(q) = h(e), (3.4)

where the x-arc wi is facing the edge e. Suppose that the x-arc wi lies in the 2-cell
Pr , so that ẽ is the y-edge of P̃r corresponding to e. We realize all hexagons P̃i by
hyperbolic right-angled hexagons with x-edge lengths given by the length structure
q. Then by Corollary 2.2, ∂V

∂ti
= ln cosh(l(ẽ)/2). Together with (3.4), this shows

that the length l(ẽ) of ẽ in the hyperbolic hexagon P̃r depends only on the quotient
edge e in T ; that is, the gluing homeomorphism φij identifies pairs of y-edges of the
same hyperbolic lengths. Thus, the length structure q is induced from a hyperbolic
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metric on the surface. Conversely, suppose that we have a length structure q induced
from a hyperbolic metric. Then by defining the Lagrangian multipliers h(e) to be
ln cosh(l(e)/2), we see that (3.4) holds. Since the constraints are linear functions, it
follows that the point q is a critical point of V |. �

3.1. Proof of Theorem 1.1
The proof of Theorem 1.1 is now simple. Since a strictly concave function on a convex
set has at most one critical point, by Lemma 3.1, we see that Theorem 1.1 holds. �

Remark. Another way to prove Theorem 1.1 uses the Legendre transform of the func-
tion θ (see [Lu3]). By definition, the Legendre transform η(u1, u2, u3) of θ(t1, t2, t3)
is a strictly concave function in variable u = (u1, u2, u3), where ui = ln cosh(yi/2),
so that ∂η

∂ui
= ti . Now, for a hyperbolic metric on the triangulated surface (S, T )

with lengths of edges x = (x1, . . . , xm), let u = (ln cosh(x1/2), . . . , ln cosh(xm/2)).
Define W (u) to be the sum of the values of η at (ui, uj , uk), where the ith, j th, and kth
edges bound a hexagon. Then, by definition, W is a smooth strictly concave function
such that the gradient of W is the radius coordinate z(x) of the metric. It is well known
that for a smooth strictly concave function W defined in an open convex set in RN ,
the gradient �W is injective. This gives a different proof of Theorem 1.1.

3.2. Proof of Theorem 1.2
The proof of Theorem 1.2 breaks into two parts. In the first part, we show that if
Lt (S, T , z) �= ∅, the maximum point of V | exists in Lt (S, T , z). In the second part,
we prove that Lt (S, T , z) �= ∅ if and only if condition (1.1) in Theorem 1.2 holds.

3.3
To prove the first part, by Proposition 2.3 the function V : Lt (S, T ) → R can be
extended continuously to the closure Lt (S, T ) of Lt (S, T ) ⊂ R3n. On the other hand,
the set Lt (S, T , z) is bounded. Indeed, we have the following lemma.

LEMMA 3.2
Suppose that {e1, f1, e2, f2, e3, . . . , ek, fk} forms an edge cycle in T , where edges
ei, ei+1 are adjacent to the hexagon fi for all i and ek+1 = e1. Then

k∑
i=1

z(ei) =
k∑

i=1

x(wni
), (3.5)

where wni
is the x-arc in the hexagon fi adjacent to both ei and ei+1 with indices

counted modulo k. In particular,
∑k

i+1 z(ei) > 0 for all edge cycles. If the length
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structure x is induced from a hyperbolic metric, then

k∑
i=1

z(ei) = lj (3.6)

for the boundary cycle e1, . . . , ek associated to the jth boundary component of
length lj .

Proof
The proof is a simple calculation using the following identity. Namely, the sum of two
t-coordinates ti = (1/2)(xj + xk − xi) and tj = (1/2)(xi + xk − xj ) is xk , where xk

is the edge adjacent to both yi th and yj th edges. Thus, (3.5) follows from the above
identity and the definition of the edge cycles. The identity (3.6) follows from (3.5) and
the definition of the boundary length. �

COROLLARY 3.3
(a) The space Lt (S, T , z) is bounded.
(b) If z : E → R is a radius coordinate associated to a hyperbolic metric, then

(1.1) and (1.2) hold.

Proof
Part (b) follows from (3.5) and (3.6). To see part (a), we consider the x-coordinate of
length structures. Take a length structure x : C(S, T ) → R>0 with radius invariant z.
Each x-arc w is in some boundary component bi of the surface. Thus, by (3.5),

0 ≤ x(w) ≤
∑
w′⊂bi

x(w′) =
k∑

j=1

z(enj
),

where en1, . . . , enk
is the boundary edge cycle associated to bi . This shows that x(w)

is bounded. �

By Corollary 3.3, the energy function V | can be extended continuously to the com-
pact closure Lt (S, T , z). In particular, it has a maximum point p = (p1, . . . , p3n)
(considered as a t-coordinate) in Lt (S, T , z). We claim that the maximum point p is
in Lt (S, T , z).

We prove the claim by contradiction. Suppose otherwise, by definition, that there
are pairs of x-arcs, say, w1 and w2, in a 2-cell, so that p1 + p2 = 0. A 2-cell P in T

is said to be degenerated with respect to p if there are two x-arcs wi, wj in P such
that pi + pj = 0. Let I be the set of all degenerated 2-cells, and let II be the set
of all nondegenerated 2-cells. Take a point q ∈ Lt (S, T , z). For each 2-cell P in the
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triangulation with x-arcs wi, wj , wk , consider the limit

h(P ) = lim
s→0

d

ds

(
θ((1 − s)pi + sqi, (1 − s)pj + sqj , (1 − s)pk + sqk)

)
.

By Proposition 2.3, this limit is finite if P ∈ II ; it is the positive infinite if P ∈ I . By
the assumption that I �= ∅, it follows that

lim
s→0

d

ds

(
V ((1 − s)p + sq)

) =
∑
P∈I

h(P ) +
∑
P∈II

h(P ) = ∞. (3.7)

On the other hand, since p is the maximum point, the function V ((1 − s)p + sq)
has a maximum point at s = 0. Thus, lim sups→0

d

ds

(
V ((1 − s)p + sq)

) ≤ 0. This is
a contradiction of (3.7).

By the claim, p ∈ Lt (S, T , z). By Lemma 3.1, it follows that p is induced by a
hyperbolic metric. To summarize, we have shown that if Lt (S, T , z) �= ∅, then there
exists a hyperbolic metric with radius invariant z.

3.4
The necessity of conditions (1.1) and (1.2) follows from Corollary 3.3(b). To finish
the proof of Theorem 1.2, it remains to show the following.

LEMMA 3.4
Given a function z : E → R such that (1.1) holds, then L(S, T , z) �= ∅.

Proof
Let us consider length structures parameterized by the x-coordinate. Here, x :
C(S, T ) → R, so that xi = x(wi) and x = (x1, . . . , x3n). Let the set of all edges be
E = {e1, . . . , em} and zi = z(ei). By definition, L(S, T , z) = {x ∈ R3n | therefore,
(3.8) and (3.9) hold}, and thus,

∑
i∈I

xi −
∑
i∈J

xj = 2z(e) for each edge e, (3.8)

where {wi | i ∈ I } and {wj | j ∈ J } are the sets of x-arcs adjacent to and facing the
edge e ∈ E, respectively, and

xi > 0 for all i. (3.9)

Consider the set D = {(y1, . . . , ym) ∈ Rm | yi + yj ≥ yk whenever ei, ej , ek form
the edges of a 2-cell} and the linear programming problem min

{∑n

i=1 yizi

∣∣ y ∈ D
}
.

The dual linear programming problem is max{0 | x ∈ L(S, T , z)} by the construction.
By the duality theorem of linear programming (in fact, Farkas’s lemma suffices in this
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case; see, e.g., [BL]), L(S, T , z) �= ∅ if and only if for each nonzero vector y ∈ D,∑n

i=1 yizi > 0.
The set D is a cone in Rm. Furthermore, the inequalities yi + yj ≥ yk and

yk + yi ≥ yj imply that yi ≥ 0. Thus, D = {y = (y1, . . . , ym) ∈ Rm | yi ≥ 0, and
yi + yj ≥ yk whenever ei, ej , ek form the edges of a 2-cell}. This shows that D can
be identified with the space of all measured laminations on the surface S where yi’s
are the geometric intersection coordinates. By the work of Thurston (see, e.g., [Mos]),
it is known that every measured lamination on S considered as a vector in D is a
nonnegative linear combination of those vectors in D associated to essential simple
loops. Furthermore, these essential simple loops can be assumed to intersect each edge
e ∈ E in at most two points. It follows that each one of these simple loops corresponds
to a fundamental edge cycle by counting the edges intersecting it. In particular, each
fundamental cycle c = (eni

, . . . , enk
) in the triangulation T corresponds to base vector

vc = (y1, . . . , yn), where yi = 0 if i �= nj , and where yi = 1 if i = nj . The above
discussion shows that each vector in the cone D is a nonnegative linear combination
of the base vectors vc’s. Condition (1.1) says that

∑n

i=1 yizi is positive at every base
vector vc. It follows that for all y ∈ D − {0}, ∑n

i=1 yizi > 0. �

Thus, Theorem 1.2 is proved. �
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