Variational Principles on Triangulated Surfaces

Lecture 3. A Brief Introduction to Hyperbolic Geometry

§3.1. The Hyperboloid Model of Hyperbolic Geometry

Recall that the unit sphei®® = { x € E*V|(z,x) = 1} is defined by the standard
inner product (,) in the Euclidean spaB&+!. The hyperbolic n-dimensional space is
defined in the similar way using tHdinkowski Space E™! which isR"*! with inner
product<, > where

<X)Y >= Z-Tiyi — Tn1Yn+1
i=1
with X = (z1,...,2p41),Y = (y1,..-,Yn+1). By definition, the n-dimensional (hyper-
boloid model) of thehyperbolic SpaceH" is {z € E™! | < z,2 >= —1, 2,41 > 0};
thede Sitter SpaceS? is defined to bgx € E™! | < z,z >= 1}; and thelight Cone is
defined to bez € E™! | < z,2 >= 0}.

Example 1. If n =2, andX = (z,y,2), then< X, X >= 22 + 3> — 22, The hy-
perbolic planéd? and the de-Sitter space are shown in figure 3.1.

Figure 3.1

Lemma 3.1.The restriction of the bilinear form, > to the tangent spadg,H" is positive
defined.

Proof. Since< p,p >= —1, the tangent space pt7,H? = {z € R"™!| < z,p >= 0}.
Now suppose otherwise that there exists 7,,H?, such thak z,z >< 0. By the choice
of x andp, we have

n
D)< 2,2 >< 0,1,y a7 <al,y,
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Therefore,
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This is impossiblé.]

By this lemma, the restrictior:, > | produces a Riemannian metidoon H"™. This Rie-
mannian metriel is calledthe hyperbolic metrion H".

Definition 3.1. Let O(m, 1) be the subgroup d&L(m + 1,R) preserving<, > in E™!.
Let O, (m, 1) be subgroup of)(m, 1) preservingd™. LetQ(m) be the orthogonal group
of R™ preserving the standard inner product.

Lemma 3.2. The groupQ, (n, 1) acts onH™ preserving the Riemannian metrdg > |.
Furthermore, thé (n, 1)-action is transitive ofil".

Proof. By the definition of O (n, 1), we see that it acts isometrically @fi*. To see
part (b), lete,,+1 = (0,...,0,1) € H", ande; = (0, ...,0, 1,0, ...,0) be the standard basis
for R"*1. For anyp € H", letpt = {x € R*""' | < z,p >= 0} = T,H". Then
ex , = R" x 0 C R"*!. By lemma 3.1, there are orthogonal basis..., v,, in p* with
respect to<, > |1 so that< v;,v; >= d;; =< e;,e; > fori, j < n. Define a linear map
¢ R — R by d(v;) = €5, i = 1,2,...,n andp(p) = e,41, theng € O (n, 1).
By the construction(p) = e,,+1, thus (b) follows. O

The Isotropy group 004 (n,1) ate, 1 is

{0€0.(n.1) | glens) = enn} =Om) @ Id={| ) | JlA€Om)}.

SinceOQ(n) acts transitively on the set of all 2-dimensional subspacéd&*oflt fol-
lows thatIsotropy(Q4(n,1),e,41) acts transitively on 2-dimensional linear subspaces
of Tt . H"™. Together with lemma 3.2, this shows that the hyperbolic spéced) has a

constant sectional curvature.

Definition 3.2. (Totally Geodesic Submanifolds)
If (M,0) is Riemannian manifold and C M is a k-dimensional smooth submanifold, we
say S is totally geodesic irfM, g) if for all geodesicsy tangent taS at one point;y C S.

Example 2.1-dim totally geodesic submanifolds are the geodesics.
Example 3. Affine planesC R™ are totally geodesic ift™.

Lemma 3.3. If @ is an isometry of (M,g) and = {z | ®(x) = «}, thenS is totally
geodesic.

Proof. Say~y as above is a geodesic tangenftat pointp, then® o~(¢) is another through

p and tangent te atp. Since geodesic through a point with given tangent vector is unique,
it follows that®(y(t)) = ~(¢) for all t. Theny C S.
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By considering the isometr¥'(z1, z2, 3, ..., tn+1) = (z1, T2, —T3, ..., —Tpn+1) and
its fixed points, we find one geodedit N (R? x 0) in H". Using lemma 3.2, we have,

Corollary 3.4. All geodesics inH™ are of the formH" N (2 — dim linear spaces).
All totally geodesic submanifolds iH™ are of the fornH"™ N (linear subspaces).

Lemma 3.5.(a) If u,v € H", their hyperbolic distancé satisfiescosh(d) = — < u,v >.
(b) If u,v € S7(de Sitter Space), then the dihedral angleetweenu’ = {x € H* | <
r,u >= 0} andv satisfiescos§ = — < u,v >.

Proof. We will prove part (a) only. Part (b) follows by the same argument. Using
O4(n + 1,1), we may assume = e,y1,v € (0,...,0,7,y) € R"1 x R? Thus,

we may assume that n=1. In this case= (0,1),v = (sinhd,coshd). Let~(t) =
(sinht,cosht), ¢ € [0,d] be the geodesic. We havg(t) = (cosht,sinht), and <
y'(t),4/(t) >= cosh®t — sinh®t = 1. Thus~(t) is arc-length parameterized. It follows
that

d
d(u,v) = /0 V<A (), (t) >dt = d.

This showscosh(d) = — < u,v > due to< u,v >= — cosh(d). O

As a consequence, we see th#l", <, > |) is a complete Riemannian manifold since
each geodesic can be extended to infinity.

Exercises.
(1) Show that the medias of a hyperbolic triangle intersect in one point.
(2) Can you find a regular dodecahedron(or icosahedrddp

§3.2. The Klein Model of H"
Consider the open unit di§@™ c R” x 1 ¢ E**11, Define a bijective map : H* — D",

by sending a point to Az € D™ whereX € R~ 4. The mapr is a radius projection sending
geodesics to line segments, totally geodesic submanifolds to affine subspaces.

Y

Figure 3.2

As a consequence, in the Klein modt of H"”, all geodesics are Euclidean line segments
inside the open unit disk.

§3.3. The Upper Half Space Model off™

Let us begin with the 2-dimensional case. The upper half plaié is {z € C | Im(z) >
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0}, wherez = z + iy. Define a Riemannian metric on it lajs = dg”zy*;dy = zjdiﬁlzz. The
area form of the metric |§¢, and the length of a curveis L(y Ilg(it(t‘))dt We

can list all orientation preservmg isometries of the metric as foIIows First, from the defi-
nition, we see easily that(z) = Az wherex € R > 0 andg(z) = z + a wherea € R are

isometries. Next we claim that(z) = —1 preserves the Riemannian metric. Indeed, let
w = h(z) and
4dwdw 4d(L)d(: dzdz dzdz
h*(dS):* wi'v — 1(2) 1(z) :74z2z2 Zz _ 2'772
(w —w)? (-2 ) (z-32)

It is well known from complex analysis that each Mobius transformafign) =

az+b [ a b
cz+d’l
It follows thatSL(2, R) acts as isometries difi*. We leave it as an exercise to the reader to
verify that all orientation preserving isometriesIfit are Mobius transformations. (Hint:
shows thatS L(2,R) acts transitively on the unit tangent vectors.)

| € SL(2,R) of the upper half plane is a compositionsfofy andh above.

Our next task is to find all geodesics in the upper half plane model. Since we know a
lot of isometries, it suffices to find one geodesic and then use isometries to find others.
Here is a simple calculation.

Example 4. The positive y-axis is a geodesiclfr.

Let y(¢) be a path fromia to ib, t € [0,1], in H> whereb > a > 0. Write y(t) =
(x(t),y(t)), y(t) > 0. Theny'(t) = (m'(t),y’( )) and its Iength is

L V)ZZt/JVLﬂ(02_+Z/U»2dtj>

é

t

Note that equalities hold if and only if(t ) = 0 andy’(t) > 0. That is the same
as~(t) is monotonic lying in the positive y-axis. This shows that the positive y-axis is a
geodesic and the distance is

b
2(ta,ib) = In —.
dyz=(ia, ib) n-

Definition 3.3. The cross ration of four complex numbers, ¢, d is defined to béa, b, ¢, d) =
a—c . b—c
a—d * b—d’

Using the cross ratio, we obtain,
dyz (ia,ib) = In(ia, ib, 00, 0).
Since Mobius transformations preserve cross ratio and the set of all circles and line, it
follows that the hyperbolic distance between two points € H? is
di2 (2, w) = In(z,w, W, 2), z,w € H

wherez, w € R andz, w, w, z are in a circle perpendicular ®. See figure below.

. . . b
By using the isometrics — “Zid, we obtain,

Corollary 3.6. All geodesics inH? are (portions of) vertical lines or circles perpendic-
ular to the x-axis.
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Figure 3.3

All of the above computations can be carried out without too much changes to any di-
mension. The outcome is the upper half space model &f"of Here are the definitions.

Let the upper half space R™ beH" = {z = (z1,...,xn—1,t) € R™ | ¢ > 0}. Define a
Riemannian metric on it by

ds® = (dz? + ... + da?_| + dt?)/t* = (dgs)*/t?

Note that this Riemannian metric is obtained from the Euclidean métrdy multiplying
by a positive function. Thus the notion of angles in both metrics are the same. This is
termedconformalin Riemannian geometry and the upper half space model is conformal
to the Euclidean geometry. The group of isometries of the Riemannian rdetcan be
found as follows. The following maps can be seen from the definition that they preserve
the Riemannian metric:

(1) f(x) = Az where) is a positive real number,

(2)g(z,t) = (Az,t) wherez = (21, ...,7,_1) ER*" 1t € Rygand A € O(n — 1),

) h(z,t) = (2 +a,t), a € R* 1L,

The inversion/ about the unit sphere is an isometrylt where
W 1(2) = &F = o

Lemma 3.7. The inversion] preserves the Riemannian metde in H” and in partic-
ular preserve angles ™.

The verification of lemma 3.7 is a generalization of the calculation that we performed
above for n=2. We omit the details.

Among the properties of the inversion, the most interesting one is that the invérsion
preserves the set of all (codimension-1) spheres and planes. Here is a proof. The equation
of a codimension-1 sphere or a planérfi is given by

Arx-z+Ba-x2+C =0
where A, B,C € R, a € R", and(z - a) is the standard Euclidean inner product. Now
replacer by ﬁ The above equation becomes, after a simple substitution,
A+ Ba-z+Czx-xz=0.
It is an equation of a sphere or plane again.

Remark 1. It can be shown that all isometriesf* are compositions of (1),(2),(3) and (4).

Remark 2. A Mobius Transformatiorof R™ is defined to be a composition of the in-
version] with Az + b, A € O(n), b € R™. Note that a Mdbius transformation is a self
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bijective map ofR™ U {co}.

Remark 3. The inversionF' about a sphere of radiuscentered at is the bijective map of
R™ U {oc} sendingz to rﬁ + c. SinceF and! are conjugate under a linear transfor-

mation of the formAx + b whereA € (O)(n), all properties of still hold for F.

Remark 4. A theorem of Liouville says ifn > 3 and{2 C R™ is open and connected,
then for any angle preserving smooth embedding2 — R™, there exists a Mobius trans-
formation F of R™ so thatF'|, = f. It shows the drastic difference between dimension-2
and dimension at least 3. For in dimension-2, any injective holomorphic map is a smooth
angle preserving embedding.

By exactly the same argument, we can now find all geodesics in the upper half space
modelH". First using the same argument as in example 4, we prove that the paésitive
axis0 x R+ is a geodesic ilR"~! x R~(. Then using isometries and the basic property

of Mdbius transformations, we conclude that all geodesidd'irare either vertical lines

or semi-circles perpendicular ®"~* x 0. All totally geodesic submanifolds iH" are
hemi-spheres, planes perpendiculaRto ! x 0.

S

In the 3-dimensional upper half space modellB, a totally geodesic plane H? cor-
responds to a circle in the complex plane. Thus a convex hyperbolic polytdfié is
given by a circle pattern i€. This is the starting point of Thurston’s work relating circle
packing with the 3-dimensional hyperbolic geometry in 1978.

§3.4. The Poincare Disc ModeB™ of H?

Let> ={z e R"| || z —(0,...,0,—1) |= V2} be the sphere of radiug2 centered
atec = (0,..,0,—1). The spheré_ intersects both the unit sphet®” = {z| ||z|| = 1}
and the horizontal plan&”~! x 0 at an angler/4. An easily calculation shows that the
inversionl; about),

Li(z) = Va8 e

|z —cf|?
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sends the upper half spa® bijectively ontoB™ = {z| ||z|| < 1}. Define a Riemannian
metric onB™ by pulling back(Z; )*(ds). One can show that

4zn:dx?
i=1 '
(1=
i=1

Itis highly recommended that the reader to carry out the calculation for. In this case,

one can use the Mobius transformatie@ij to replacel;. The pair(B", (I;')*(ds)) is

called the Poincare disk model of the hyperbolic space. By using the basic properties of the
Mobius transformation, we see that all geodesid®’irare circular arcs and line segments
perpendicular to the unit sphed®™. All totally geodesic submanifolds are (portions of)
spheres and planes perpendiculadB™.

(I7)"(ds) =

The advantage of using the Poincaré model is due to its symmetry. For instance, it is
obvious from the expression of the Riemannian metric that a hyperbolic ball centered at
the origin has to be a Euclidean ball. Using Mobius transformations, one then concludes
that all hyperbolic balls are Euclidean balls (even though they may have different centers
and radii).

Finally, we should say a word about the equivalences of all these different models. That the
upper half space model and the Poincare models are isometric due to the construction. So
are the Klein model and the hyperboloid model. The isometry from the hyperboloid model
and the upper half space model can be established using Cartan’s theorem in Riemannian
geometry. Cartan’s theorem says that any two simply connected, complete Riemannian
metrics of constant curvature -1 are isometric. Evidently, both models are simply con-
nected and complete (due to the infinite extendability of the geodesics). Finally, due to
the knowledge of the isometry groups, we see that both have constant sectional curvature.
It remains to verify that the constant curvature is -1. This can be done by calculating the
curvature fom = 2 at single point. We leave it to the reader to verify this.



