Problem 4. By changing to polar coordinates,

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2 + y^2)} dx dy = \int_{0}^{2\pi} \int_{0}^{+\infty} e^{-r^2} r dr d\theta$$

The inner integral can be solved by substituting $u = r^2$, du = -2rdr. Thus

$$\int_{0}^{+\infty} e^{-r^{2}} r dr = -\frac{1}{2} \int_{0}^{+\infty} e^{-u} du = -\frac{1}{2} \left[e^{-u} \right]_{0}^{+\infty} = \frac{1}{2}$$

Integrating the result in the variable θ , we get

$$\int_{0}^{2\pi} \frac{1}{2} d\theta = \frac{1}{2} \cdot 2\pi = \pi$$

Problem 5. We need to interchange the order of integration twice. Let's start with the double integral

$$\int_0^y \int_0^z f(t) dt dz$$

note that here y is fixed. First draw a picture of the domain of integration D in the tz-plane: z ranges from z = 0 and z = y, and t ranges from t = 0 and t = z.

As a vertically simple region, $D = \{0 \le t \le y, t \le z \le y\}$ and the iterated integral can be rewritten as

$$\int_0^y \int_t^y f(t)dzdt = \int_0^y (y-t)f(t)dt$$

Hence,

$$\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) dt dz dy = \int_{0}^{x} \int_{0}^{y} (y-t) f(t) dt dy$$

and changing again the order of integration,

$$\int_{0}^{x} \int_{0}^{y} (y-t)f(t)dtdy = \int_{0}^{x} \int_{t}^{x} (y-t)f(t)dydt$$
$$= \int_{0}^{x} \left[\frac{(y-t)^{2}}{2}\right]_{y=t}^{y=x} f(t)dt$$
$$= \int_{0}^{x} \frac{(x-t)^{2}}{2} f(t)dt$$

Problem 7. Change the coordinates to spherical. $x^2 + y^2 + z^2 \leq 1$ becomes $\rho^2 \leq 1$, so $0 \leq \rho \leq 1$. The equation $z \leq 0$ becomes $\rho \cos(\phi) \leq 0$, and dividing by ρ , $\cos(\phi) \leq 0$. This implies $\frac{\pi}{2} \leq \phi \leq \pi$. The equations $x \leq 0$ and $y \leq 0$ together imply $\pi \leq \theta \leq \frac{3}{2}\pi$. Thus the integral becomes

$$\int_{\frac{\pi}{2}}^{\pi} \int_{\pi}^{\frac{3\pi}{2}} \int_{0}^{1} \rho \sin \theta \sin \phi \rho^{2} \sin \phi \, dr d\theta d\phi = \int_{\frac{\pi}{2}}^{\pi} \int_{\pi}^{\frac{3\pi}{2}} \int_{0}^{1} \rho^{3} \sin \theta \sin^{2} \phi \, dr d\theta d\phi$$
$$= \int_{\frac{\pi}{2}}^{\pi} \sin^{2} \phi d\phi \cdot \int_{\pi}^{\frac{3\pi}{2}} \sin \theta d\theta \cdot \int_{0}^{1} \rho^{3} d\rho = \frac{\pi}{4} \cdot (-1) \cdot \frac{1}{4} = -\frac{\pi}{16}$$