Problem 4. By changing to polar coordinates,

“+o0 “+o0 5 R 27 +oo R
/ / e~ @) dady :/ / e~ " rdrdf
—o0 —00 0 0

The inner integral can be solved by substituting u = 72, du = —2rdr. Thus
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Integrating the result in the variable 6, we get
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Problem 5. We need to interchange the order of integration twice. Let’s start

with the double integral
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note that here y is fixed. First draw a picture of the domain of integration D in
the tz-plane: z ranges from z = 0 and z = y, and ¢ ranges from t = 0 and ¢t = z.
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As a vertically simple region, D = {0 < ¢t <y, t < z < y} and the iterated
integral can be rewritten as
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Hence,



and changing again the order of integration,
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Problem 7. Change the coordinates to spherical. z? + y? + 22 < 1 becomes
p2§1,s00§p§1.

The equation z < 0 becomes pcos(¢) < 0, and dividing by p, cos(¢) < 0. This
implies § < ¢ < . The equations z < 0 and y < 0 together imply 7 < 0 < %w.
Thus the integral becomes
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