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THE SELF-INTERSECTIONS OF A SMOOTH »n-MANIFOLD IN
2n-SPACE*

By HassLEr WHITNEY
(Received August 19, 1943)

1. Introduction

Let f be a regular mapping (see the definitions below) of the simple closed
curve M' into the plane E*>. The resulting curve C = f(M) may cut itself a
number of times; if this number is finite, and the “positive” and ‘“‘negative”
self-intersections are distinguished, the algebraic number I, of them is invariant
under “regular deformations,” which keep the mapping always regular.! We
may determine I, by considering the space T of ordered pairs of points of M Y
mapping it into E* in a manner determined by f (see below), and counting the
coverings of the origin. The object of this paper is to study the situation in n
dimensions, for regular mappings of a manifold " into E**. The main theorem
(whi;:h is trivial for n = 1 and well known for n = 2) is that M " may be imbedded
in E7".

An outline of the paper follows. Take E* < E*". It is shown how E" may
be distorted near the origin, giving a mapping f(E™) C E* such that there is
just one self-intersection; specific equations (2.2) for f are given. By introducing
such self-intersections into the mapping f of a manifold M" into E*", we may
. alter I, as we please. Asin the case n = 1, we express I, in terms of a mapping
F of T into V*" = all vectors in E**, provided that n is even and M is orientable.
In any other case, I, is only determined mod 2; we must identify (p, q) with (g, p)
in T (p, g e M), forming a space T*, and let F* map it into V*, formed from V
by identifying each vector with its negative. The determination of the “di-
vided degree” needed is accomplished through a study of “locally desivable”
mappings F* of spaces into V*; these are obtainable, locally, as the projection
into V* of mappings into V. We carry this theory somewhat further (in §§5, 6)
than is needed in the present paper; the notions are capable of great generaliza-
tion.

After the proof of the invariance of I, under regular deformations comes the
key theorem (Theorem 4) in the proof of the imbedding theorem; it says essen-
tially that the number of self-intersections may be reduced by two, if the number
present is greater than | I, | (oris = 2, if I, is taken mod 2). It is a curious fact
that this theorem is proved only in the case n = 3. The proof of the imbedding
theorem is now immediate if M is closed, and is easily carried out if M is open.
In an appendix, we prove that the complex projective plane (a manifold of di-

* Presented to the American Mathematical Society, Sept. 9, 1942. The numbers in
brackets refer to the bibliography at the end of the following paper.

1 See [2]. Itisshown further there that if I;, = I, , then there is a regular deformation
of fointo fi . It would be interesting to know if there is such a theorem in n dimensions.
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SELF-INTERSECTIONS OF A MANIFOLD 221

mension 4) may be imbedded in E’; since’ its characteristic is odd, it cannot be
imbedded in E°.

We give a brief description of T and F. The set of all pairs (p, u), pe M, ua
unit vector tangent to M at p, is the ‘“tangent space” S of M. The space T
consists of &, and all pairs (p, q), p # ¢ (p, ¢ € M), if ¢ — p in the direction of a
unit vector u at p, we let (p, ¢) — (p, u). Thus T is bounded by &. F maps
(p, @) into a multiple of f(g) — f(p), so chosen that & is mapped into vectors = 0.

NorationNs. A mapping of a manifold M" is smooth if it is of class C' (has
continuous first partial derivatives). It is regular if the Jacobian matrix is
everywhere of rank n, or, n independent vectors at any point are carried into n
il}dependent vectors, or, each non-zero vector is carried into a non-zero vector.
1t is an émbedding if it is proper (see §24 of the following paper; we may omit this
if M is closed) and regular, and is one-one; it is an ¢mmersion if it is proper and
regular. Let I denote the unit interval 0 < z < 1. We use a8 for boundary
in both the point set and combinatorial sense. If f maps chains in the complex
K into chains in K’, its dual f’ is defined by

f'(z: a';a';) = E a',-aj;a;, where f(o;) = E a;;a; .
i i

Scalar products are defined by (D aic?) (3 _Bi07) = D aB:i. A subscript 2
commonly denotes reducing mod 2.

1. COMBINATORIAL STUDY OF SELF-INTERSECTIONS

2. A particular self-intersection

We shall define a regular mapping f of class C” of the interior Q" of the unit
sphere in E”™ into E*" such that there is just one self-intersection, and so that f
equals the identity, with all derivatives, on the boundary of Q".

DEFINITIONS. Let f be a regular mapping of M" into E**. Then for each
p ¢ M, there is a plane T,(p) in E*" tangent to f(M) at f(p), of dimension n.
Suppose f(p1) = f(p;). We say this point is a regular self-intersection if T;(p1)
and T';(p;) have only f(p,) in common. Thenif uy, -+, u,andv,, -+, v, are
sets of independent vectors in M at p; and at p, respectively, f carries these into
a set of independent vectors in E*" (for definitions, see (4.1) and (4.2)). Con-
versely, with two such sets of vectors, the self-intersection is regular. If f has
only regular self-intersections, and there are no triple points f(p) = f(g) = f(r),
we say f is completely regular. See also the end of §4.

For n = 1, a curve with one loop, like the written letter ¢, gives the required
self-intersection. Such a mapping of z-space into (y, z)-spadce may be expressed
in the form
2z 1
(21) y—x“'m, z—m,_,.

2 H. Seifert, Algebraische Approzimationen von Mannigfaltigkeiten, Math. Zeitschﬁft,
vol. 41 (1936), pp. 1-17, Satz 2; compare E. Stiefel, Richtungsfelder und Fernparallelismus

in n-dimensionalen Mannigfaltigkeiten, Comp. Math. Helvetici, vol. 8 (1936), Anhang II;
also [3].




222 HASSLER WHITNEY

For £ = & 10 say, these are approximately ¥ = z, z = 0; hence we may flatten
out f(M) near x = =+ 10, to obtain exactly these equations there. For general n,
the example will again be of a mapping near the identity for large values of the
z’s, and we shall not trouble to mention the final alterations necessary. (The
detailed proof may be given with the help of Lemma 11 of the following paper.)

Consider E* as given by moving an E® parallel to itself in the y.-direction.
Take E* C E* C E*, and take the above f(M') € E*. As E® moves, say with
increasing y2 , let the two parts of f(M') near the self-intersection be pulled apart,
into opposite sides of E* in E°. As y, continues to increase, the curve may be
flattened out into the line parallel to the yi-axis. If we let ¥, decrease from 0,
we pull the two parts of f(M') away in the opposite directions, etc. This clearly
defines a self-intersection of the required type. The case n = 2in (2.2) is easily
seen to define this mapping.

For general n, the equations are®

u=(1+az0) - (1 +25);

2 .
2.2) y1=x1—-§, Yi = % (t=2---,n),

1 2% .
Yntr = =, Ynti = — @

I =2, .-+, n).

The matrix of partial derivatives, for example for n = 3, is, transposed,

| 20— =) =251 m(l — zi) w(l — 71)
u(l + z7) w(l +2z) u(@ + 2D u(@ + z)
42,7, L o0 _—2m =d- z3) =212

u(l + z3) u(l +23) w(l + 23) u(l + zj)
4z, 73 1 —2z;3 —2z12223 m(l — L?)
u(l + z3) u(l +23) u(l + 23) u(l + z3)

To show that f is regular, we must find, for each p = (2., - - -, .), a determi-
nant of order n which is # 0. It is clearly sufficient to find an element = 0 in
the first row. Suppose the element 8y,,1/0z1 (= 0ys/dz1) is 0. Then z, = 0,
and hence dy,/0z, = 1 — 2/u. If thisis 0, then u = 2; hence not all the z; are 0,
and (since z; = 0) some dyn+:/0z1 is #= 0.

Next we find the self-intersections. Suppose

f(zl, ot vzn) =f(x;v et ’x,!l)r (171, e 7210) # (x;v e 7x,n)-
Sincey: =y 6 =2,---,n),7; = zifori > 1. Since yns1 = Yn1, ¥ = u;
it follows that z;* = z}; hence 21 = — 21 # 0. Since Yy = Ynss G > 1), 2 =

3 The equations are seen to be closely related to those defining the singularity (3.3) of
the following paper. It would be possible to define the required self-intersections and
singularities in turn, mapping E! into E?, E? into E3, E? into E*, E? into E¥, etc., using each
time the preceding mapping.
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0 (¢ > 1). Since yi =,

P B R T 1
u u

and z; = & 1. Thus the only self-intersection is
f(lio) e 70) =f(—1}0} e )O)'

To show that this is a regular intersection, we note that the matrix || ay./
9z ;|| transposed, at (&= 1,0, -- -, 0), is (for instance for n = 3)

i1 0 0 F3} 0 0
010 0 +3 0
0 01 0 0 +3

The elements of the i* row are the components of the vector 8f/dz; at (=*1,
0, --- 0). The two matrices with the two sets of signs give a 2n-rowed square
matrix whose determinant we must prove % 0. If we subtract the i** row from
the (n + 7)* row and expand in terms of the first n columns, we obtain a deter-
minant with diagonal terins equal to 1 or —1, and zeros below the diagonal;
hence it is =0.

Finally, in the boundary of the region z7 < 100n for example, the equations
are practically

yi=ziG=1---,n), y=00>n);
hence we may flatten out the mapping on the boundary.

3. The spaces T and T*

Consider M" as lying in E***' (see [1], Theorem 1). The points of & are the
pairs (p, v), p ¢« M, v a unit vector tangent to M at p. The points of T — & are
the pairs (p, ¢), ¢ # p. We define neighborhoods in ¥ — & in the obvious
fashion. To define neighborhoods in T at points of &, we first define a subsidiary
space T’ as follows. Choose a positive continuous function n(p) (which may be
made constant if M is compact) such that for each p ¢ M and sphere S(p) of
radius #(p) in the tangent plane T'(p) to M at p, S(p) plus interior projects (along
the planes perpendicular to T(p)) onto M in a one-one way. Let =, be this
projection. The points of ' are the triples (p, v, \), p ¢ M, v is a unit vector
tangent to M at p, and 0 < X < n(p). The definition of neighborhoods in I’
is clear. We map T’ onto a portion of by setting

®(p,v,0) = (p,v) ¢S,
Q(py 01 X) = (p? "'y(P + x”)) CI - @ (A > O)'

Neighborhoods in ' map into neighborhoods in .

If M is a manifold of class €, T is a manifold with boundary, of class C"™".
Clearly the choice of the imbedding of M" in E***' does not affect the definition
of T, but only the particular neighborhoods chosen.
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The space &* is formed from & by identifying “opposite points” (p, v) and
(p, — v). The space T* is formed-from T by the above identification, and also
the identification (p, ¢) = (g, p)-

Lemma 1. T is orientable if and only if M is.

Let C be a closed curve in T — & running through (p, ¢). Let uy, --- , ua
and v, , - - - , v, be independent sets of vectors in M at p and at g respectively.
Then keeping ¢ fixed and letting p move in the direction of u; defines a vector
4; in T; similarly #; is defined, with p fixed. Now the ordered set

(3.1) (aly"‘aanyﬁlr'”;'-)n)

defines an orientation of T near (p, q¢). As we follow around C, the points p
and ¢ move along closed paths C, and C: in M.

Suppose first that M is orientable. Then we may carry the vectors of each
set around so that they come back to the same vectors, showing that T — & is
orientable. Now take any closed path in £. Clearly any points on © may be
pushed away from & (replace A = 0 by A > 0in-T’). Applying the above proof
shows that T is orientable. ‘

If M is non-orientable, let C; be a closed curve in M reversing the orientation.
Then n > 1, so that we may choose a point g not on C,. As p runs around C,,
(p, ¢) runs arouhd a curve C in ¥, which clearly reverses the orientation in T.

LemMa 2. If n is even and M is orientable, T* is orientable; otherwise, T* s
non-orientable.

As before, we need only consider T* — &*.

If M is not orientable, the proof above shows that T* is not. Now take M
orientable.

Suppose n > 1is odd. Let ¢" be a cell in M, represented with coordinates
Zy, -+, Zn. Let e; be the unit vector parallel to the z-axis in E"; this maps
into a vector u;(p) at p for each p e s. Let C be a simple closed curve in ¢, and
let p and ¢ be distinct points of C. Then (u(p), - -, wi(g), - - -) defines an
orientation of T* at (p,q). Now move p and g along the two arcs of C into ¢
and p respectively; these vectors are earried into wi(g), - - -, wi(p), - - - respec-
tively. Thus a permutation of the vectors is defined, formed by n® transposi-
tions; n’ is odd. Since (¢, p) = (p, ¢), we have defined a closed curve in T* re-
versing the orientation. Note that if n is even, then C preserves the orientation.
If n = 1, essentially the same proof applies, with C = M.

Suppose finally that M is orientable and =n is even. Let C* be any closed
curve in T*¥ — &*. Take (p, ¢) = (g, p) in C*. As we run around C*, the
points p, ¢ separately may be followed in M, and thus (p, ¢) may be followed in
Z. If (p, ¢) comes back into (p, ¢) in T, the proof in the last lemma shows that
the orientation is unchanged. If (p, g) comes back into (g, p) in I, let C be a
simple closed curve in M containing p and ¢, and as in the proof just above, carry
p and ¢ into ¢ and p respectively in ¢", forming a curve D* in T*. We just saw

4 This follows also at once ffom the fact that T — @ is part of the cartesian product
M X M. We shall need later the vectors defined here.
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that C* followed by D* does not reverse the orientation, and we noted above
that D* does not either; hence C* does not.

DeriniTION. If T or T* is orientable and M is oriented, the corresponding
orientation of T or T* is defined by the vectors (3.1).

4. The mappings of T and T* corresponding to a mapping f of M into an E™
Take M C E™* again. Then a vector u tangent to M at p may be defined
as follows by a parametrized curve P(\) starting from p:
(4.1) w=1lmEN =P
A—0 X

If vf is the mapping of vectors induced by f, than
42) Vi, p) = lim EX) = J(@)
A—0 X
Note that Vf is a generalization of the gradient of a real-valued function.

Let | u | denote the length of u; | g — p| is the distance from p to ¢ in E**',
Define

_f@) — f(p)
(4.3) F(p, q) Tq—pl ’ P#q
(44) F(p,w) = Vf(u,p) if |u| =1;

then, taking P(\) as before, if | u | = 1in (4.1),

: . J(P(N) — f(p) _ . f(P(N\) — f(p)
lim F(p, P = lim = lim 222\ T J\P)
xl-on: (p, POV) o |PQ) — p] xl-?:)l A
= Vf(u, p) = F(p, ).
Thus it is clear that F is a continuous mapping of T into the space V™ of vectors
in E™.
Clearly F defines a mapping F* of T* into V™*.
Lemma 3. If f is regular, then F maps no point of & into O, and maps a point
(p, @) of T — Sinto O if and only if f(p) = f(q).
This is obvious.

Suppose f(p) = f(¢g), p # ¢, and u s a vector in M at p. Then if @ in T is
defined as in §3,

A—0 A
— 1 L[ f@ = f(PA) _ fl@ — f(p) |.
1‘i‘h[ lg = POV la—»pl T
clearly
_ ___1 )
(45) VF (@, (7, @) = == Vi, D).



226 HASSLER WHITNEY
Similarly

1
4.6 VF -'- ’ ’ = V(v ) .
(4.6) @, (p, 9) lq—"ﬂ f(vi, @)

LemMma 4. Let f be a completely regular mapping of M" into E*. Then if
f(p) = f(q) (p # q), F is regular in a neighborhood of (p, ), and maps it over O in
V®™ with the degree 1.

Since f is completely regular, the vectors

(4'7) Vf(uly p)y ,Vf(u,., p)) Vf(vl,Q)y e 7Vf(vnaQ)

are independent; hence so are the VF (i, (p, q)) and VF(#:, (p, g)). The last
part of the lemma is a consequence of this.

We consider briefly manifolds with boundary. If f is regular in M and on
the boundary aM of M (with the obvious definitions, assuming for example
that aM is a manifold), and f(p) = f(g), p # ¢, implies that neither p nor g is
in oM, we call f completely regular. If this is so, F maps no part of T coming
from points on or near aM into O; we need not be explicit as to the definitions of
T and © for such points. Similarly for F*.

6. Mappings into a vector space with opposite vectors identified

Let V = V™ be the space of vectors in E™. Let w be the mapping w(v) =
— v of Vinto itself. Form V* = V™ from V by identifying » with — v for all
v; let #(v) = x(— v) be the corresponding point of V*. Let O be the zero vector
of V, and set 0* = =(0).

Anarcin V — O fromv O to — v maps under = into a closed curve, defining
the single element v not the identity of the fundamental group of V* — O*.

Let T be an (m — 1)-plane in V through O; set x(T) = T*. For any subdivi-
sion K* of V* — O* with no vertex in T*, let W*' be the cocycle mod 2 containing
those 1-cells cutting T*; let W*' be its cohomology class (which is invariantly
determined).

DEFINITION. Let f* map the space R into V*. If there is a mapping f of
R into V such that f* = xf, we say f* is derivable from a mapping into V, or is
derivable simply.

The following lemmas are easily proved.

LeEMMA 5. f* is derivable if and only if it is derivable over each component of
A UARE R

LemMA 6. A mapping f* of a connected complex K into V* — O* is derivable
if and only if any of the following equivalent conditions are satisfied:

() Each closed curve in K maps into a curve in V* — O* defining the identity
element of the fundamental group.

(8) Each closed curve in K maps into a curve culting T* an even number of times
(¢f this number 1s finite).

(y) Each 1-cycle of K maps into a bounding 1-cycle of V* — O*.

) fYW* = 0.
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DEFINITION. A mapping f* of a space R into V* is locally derivable (in terms
of the f; below) if there exist open sets U,, Uz, - - - , covering R and mappings
fi of U into V such that:

(a) For each 7, f* = «f;in U:;.

(b) For each s andj, eitherf; = fj Ol‘f.~ = wfj in U; n Uj .

Remarks. If {U;} and {f:} are replaced by {U:} and {f;}, the definition is
considered as equivalent if (b) holds for the old and new sets together. (See
Example 3 below.) Say a set A C R is r-thin if any singular r-cell in R may be
moved away from A by an arbitrarily slight deformation. If f¥7' (0*) is 1-thin,
and each non-void U; N U, is connected, then clearly (b) is a consequence of
(a), and any sets of f; are equivalent. Any mapping of a space into V* — O*
is clearly locally derivable.

Exampres. The first four illustrate the meaning of local derivability; the
fifth illustrates its use in this paper. S and S* are defined in §6.

(1) Let fi be the identity mapping of @Q* = S* plus interior into itself. Let
f: map each radius from O* into itself, shrinking it by the factor ¢; then fo(p) =
O* (all p). Then f, is locally derivable, while (as proved in Example 9) f, is
not if ¢ > 0.

(2) Take f, as before, and let f, map all points of any radius within a distance
1 — t of O* into O*, extending f, in an obvious manner over @*; again fo(p) = O*.
Then f7 is not locally derivable, while frisif t < 1. However, if a slight change
is made for ¢t > 0, forming gf, such that each g}'"’ (0*) is 1-thin in @*, then no
gt (¢t > 0) is locally derivakle; for the corollary to Lemma 7 below would be con-
tradicted. Hence, by a Remark above, we cannot make (a) hold.

(3) Let Ry, R, - - - be a sequence of disjoint spheres plus interiors in some E’,
approaching a point po. Let f map all of E” but these interiors into O, and map
the interiors into V. — O; set f* = «xf. Then if po e U;, there are an infinite
number of choices for f; , making f* locally derivable in distinct ways.

(4) Let Cy, C,, - - - be a sequence of simple closed curves in E", with disjoint
neighborhoods U3, Us, ---. Map U; into V* so that f*(C;) defines v and so
that if f*(p) = O* (p ¢ E* — D_Ux), then f* is continuous. If the C; converge
smoothly to a simple closed curve C, then f* is locally derivable (but see a re-
mark in Example 2); if the C; converge to a line segment, it is easily seen that
f* is not locally derivable, even though we can make (a) hold.

(5) Let @ be the unit circle S' plus interior in E*, and let g be the identity
mapping of Q* into E>. (We could equally well map @ into E™, 2 < r < m.)
If we identify opposite points of S’, Q* becomes a projective plane P*; xg becomes
a mapping f* of P*into V*. f*is locally derivable but not derivable. A diameter
of @ becomes a “projective line”’ L of P*; set f*(L) = L*. Subdivide P* so that
L lies on no vertex a;, and set U; = St(a;) (St = star). If f;in U, is chosen
so that f* = =f) there, then there is a unique choice for each f; such that if a.a,
is a simplex in P* not cutting L, then f; = f;in St(aa;). Now the W' of (5.1)
below contains just those a:a; cutting L; W' = 0. If we omit a small concentric
disc from @*,and hence from P? a Mébius strip M* illustrating Lemma 6 is formed,
with f"W*' being the cohomology class of the part of the above W' lying in M>.
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(6) Take @, S', asin (5). Map S into a curve in V* — O* so as to define
~; map radii of Q* into segments from 0*. Then f* is not locally derivable; in
the notations of Lemma 8 below,

5f*,W"Q2 = f‘,Wl'an = Wl.f*Sl = 12.

If f* is any mapping of @, into V* — O* with an inner point p going into O*,
then a slight alteration of f* may be made which will give a mapping g* for which
a neighborhood of p is mapped as above; then g* is not locally derivable.

DErFINITION. Let f* be a locally derivable mapping of the complex K into
V*such that f*~' (O*)is O-thin, i.e. nowhere dense in K. Then the cohomology
class W' of f* is defined as follows. Take the U; and f; as before. Let K, be a
subdivision of K so fine® that each star Sti(a;) of a vertex a; of K, is in some U, .
Set

1 N o 03 lffx. = fx,' in Stl(a.-a,),
5.1) Wi(aia)) = {13 if f, = wf"i in St(a.a;).

Then W' is the cohomology class of W' = 3 W'(a.a,)aa;.

Lemma 7. W'is well defined, and is a cocycle (coefficients mod 2). Altering
the f; alters it by a coboundary. Its class W' s independent of the choice of K, the
U. and the f; , provided that the new f; are equivalent to the old. If f*' (0*) is
1-thin, then f* is derivable if and only if W' = 0.

REMARKS. Any such W' is called a characteristic cocycle of f*. By standard
theory, that W' is independent of K is a consequence of the following statement:
If K, and K, are such that each St:(az;) lies in some St,(a1,;), so that a simplicial
mapping ¢(az;) = a,; of K into K is defined, and W1 is a characteristic cocyle*
of Ky, then Wi = ¢’ Wi (»' = dual of ¢) is a characteristic cocycle of K:; by
definition, Wi(axae,) = Wi(d(aaz)) = Wilan.an,).

First, since f**(0*) is nowhere dense in K, , the definition of W' is obviously
unique. Next, suppose a definite fi is changed to wfx . Thenif 7, ---, i, are
the ¢ such that A;, = k, W'(a:a;) is changed if and only if just one of 1, j lies
among the 1, ; thus, if § denotes coboundary,

new W' = old W' + 83 _(a;,): .

Now for any sets {U;}, {U:} and equivalent {f:}, {f:}, choose K so that St.(a;) C
Uy, N U,;. Let f; and fi; denote fi, and f,, respectively, considered in Uy, N
U,'.,. (if this is not void); all the f are equivalent. Clearly the f,, and the f;,
also the f,:,. and f;;, define the same W'. The proof above shows that changing
the fi; to the f;; alters W' by a coboundary.

Now suppose K, and K. are as described above. In using (5.1) to define W3,
since Sta(az:) C Sti(ar,), we may take for the fi defined about a,; the same as the
i defined about a,,,; then clearly Wi(anaz;) = W{(a,,,al,,.).

¢ From the corollary below it is clear that the f; may be defined in the stars in K, so that
no subdivision is necessary in reality.
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Suppose f* = xf. Since f*"'(0*) is 1-thin, the given set {f;} is equivalent to
the single mapping f; hence W' may be defined using f. Since W' = 0, W' = 0.

Suppose finally that W' = 0. For a given subdivision K, and sets {U.},
{f:}, we have W' = 8X° for some X° = > aa; (@i = 0; or 1,). If Sti(a;) <
Uy, set fi = Hn; in Sti(a:). For each ¢ with a; = 12, alter f: to wfﬁ; then (see a
proof above) the new W' = 0. Now for any p in K, say p e St(a;); set f(p) =
fi(p). This makes f continuous in K, and f* = «f.

ExampLE (7). Let f map a circle C into V so that just. one point p, goes into
0, and set f* = xf. Let U, and U, cover C, p not being in U.. Then f; and fo
may be chosen so that W' is not «~ 0, though f* is derivable. Note that f**
(0*) = po, which is not 1-thin in C.

CoroLLARY. Any locally derivable mapping f* of a cell (in fact, of a complex
with vanishing 1-cohomology group mod 2) is derivable, if f* '(0*) is 1-thin in K.

A direct proof for a cell may be given simply if we build it up asin (b) of Lemma
12.

We shall give a lemma which shows immediately whether or not a mapping
is locally derivable or derivable, provided that f*'(0*) is 1-thin. Since it in-
volves notions® not yet generally known, and the lemma is not needed here, we
shall be rather brief.

A geometric 7-G-cochain X = X" in a point set R is a pair X D X’ (nucleus and
nuclear boundary) of closed sets, (r — 1)-thin and r-thin respectively, and a
group of homomorphisms X-A" of those integral singular chains A" for which
ANZX =34 N X = 0into G, with the properties X-4 = 0if A N X = 0,
X-aB*" = 0if BN X = 0. If G and H are paired to J, set X-Y hio} =
E(X -0%)-h; . The coboundary 6X of X is the pair of sets X’, 0, with the defini-
tion (8X)-A"* = X-94"*". To any cochain X" in a complex corresponds in a
fairly obvious fashion a geometric cochain with nucleus and nuclear boundary
formed from duals of r- and (r 4 1)-cells.

Since T™* and O* are 0-thin and 1-thin in V* respectively, they give a geometric
cochain W' of V*, such that W'-¢' counts the number of times mod 2 that ¢
crosses T*. This is the geometric analogue of the W' first defined. ¥ f* is as
in the lemma below, then

Wie-A' = W.f*41

defines a geometric cocycle Wj. = f*W'in K. Note that 8f* W' = f*sW".

LemMa 8. Let f* be any mapping of a complex K into V* such that f**(T*)
and f*7'(0*) are O-thin and 1-thin respectively. Then f* is locally derivable if and
only if 8f*W' = 0, and 18 derivable if and only if f*W' — 0. ‘

Remark. Using ordinary cocyles, we may replace the condition 5f*W' = 0
by the following: For any arbitrarily fine subdivision K, of K there is an arbi-
trarily small deformation of f* into f; such that, fi'W" is defined and is a cocycle.

Suppose f* is locally derivable, using {U:} and {f}. Take any singular
chain A’ with 34* N f*7'(0*) = 0, so that 6W}-A is defined. Using a fine

¢ See H. Whitney, Geomelric methods in combinatorial topology, not yet published.
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subdivision of A, we may write A = Y a0}, each o7 in some U, ; since f**
(0*) is 1-thin, we may deform A slightly so that Y a:(dW. o) is defined; it
equlals 8Wj.-A. Using f,,, it is clear that 6W}.-o; = W'-af*s7 = 0, ; hence
5W/o = 0.

Suppose §W}. = 0. Each point P € K is in a connected neighborhood U such
that any 1-cycle in U bounds. Choose p; € U so that f*(p,) = O*; choose f(po)
so that nf(pe) = f*(po). For any p’ e U with f*(p’) = O*, choose an arc C in U
from p, to p’ with f*(C) € V* — O* (which is possible, since f*~* (0*) is 1-thin);
f(p’) is uniquely definable so that f(p’’) exists and is continuous in C, and f* =
nf there. We must show that going around a closed curve A’ in U and through
Do (f*(A") © V* — 0*) brings f(po) back to its original value. Say A' = 3B
Then W}.-A' = éW/.-B* = 0, from which the statement clearly follows.
Thus we prove (a); since f** (0*) is 1-thin, (b) follows also for suitable {U il

Suppose f* is derivable; say f* = xf. Then W;. = f'#W' = f'0 = 0, since
the cohomology groups of V vanish.

Suppose finally W}. = W°. Then for any closed curve A" in K with f*(4') C
V* — 0% Wi-A' = W'-8A' = 0; it follows by Lemma 5 and Lemma 6 (8)
that f is definable throughout K.

LemMA 9. Let f; be a locally derivable mapping of the complez K into V*, with
J*7! (0*) nowhere dense in K. Then there is an arbitrarily slight deformation f;
of f3 (0 < t < 1) such that F*(t, p) = f.(p) is locally derivable, with mappings F;
equivalent in 0 X K to the given fo ; there, and such that fi (K*"™) C V* — 0*.
If A is a closed subset of K with f*(A) C V* — 0*, we may make /i = f: inA.

REmaArRk. As a consequence, it is easily seen (using the various derived
of X) that f{ *(0*) may be made (2n — 1)-thin in K.

We may suppose fy,; is defined in St(a;); we shall define F; in I X St(a;).
Let St'(a;) be the barycentric star of a;, containing all points.on cells of
the first derived of K which have a; as a vertex. Then St'(a;) < St(a;) and
Y 8t'(a;) = K. Takeafixedi. We may definef,;in St(a:) for 0 < ¢ S ¢, s0 that

Fu K™ N 8¢(a:)) © V* — 0%,
foi®) = fos®) (P €38t(as) U (St(ai) N A)),

with f,,:(p) arbitrarily close to fo.i(p). For each j such that a;a;is a 1-cell of K,
set

Jui®) = fu.i) or of .i(P) (P e St(aia))),

according as which holds for ¢ = 0, and set f:,;(p) = fo.;(p) elsewhere. This
clearly defines F*(t, p) for pe Kand 0 < ¢ S . Do this for each a; in turn,
using successive subintervals of (0, 1). (K may be infinite, if it is “locally
finite.””) If the successive alterations are small enough, we will have automati-
cally F*(t, p) C V* — 0* (p e K N 8t'(as)) for previous i. Thus all of F*
is defined.
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6. Locally derivable mappings into V*"*

DerFINITIONS. Let S = 8™ be the unit sphere in V*", and set $* = §*"7'* =
#S. Then S* is a projective space, which is orientable, since 2n — 1 is odd.
We may suppose the spaces oriented so that, combinatorially, 7V = 2V* and
xS = 28*; thus = has the degree 2. Let I and P* be the projections of V — O
and V* — O* along rays from O and O* onto S and S* respectively.

Let L* be a ray from O* in V*. Given any subdivision K* of V* — O* with
(K*™ ™ < V* — L* we may define a cocycle W = W** ' in K* as follows.
For any ¢ = ¢" %, W*" ' (¢) = KI(s, L*). This is the algebraic number of
times that P*s covers L* (1 S* in S* or, that L* cuts through ¢.

Since L* — O*is (2n — 2)-thin in V* — O*, we can consider W as a geometric
cocycle in V* — O* Since O* is not (2n — 1)-thin in V* for n = 2, (in fact,
not 2-thin; compare Example (6) and the corollary to Lemma 7), we cannot
properly consider it as a cochain in V*, whose coboundary has the nucleus O*.
In fact, 8W* may be considered in a general or in a restricted way:

(A) If a singular chain A*" C V* has 04*" C V* — O*, we may set 8V -A*" =
W-9A™. Forexample, if A*> = S* plus interior, then 34 = S* and 6/ -4 = 1.

(B) If we define W -A*" only for singular chains A which may be expressed
as A = ) aioi", with 862" C V* — O*, then we have alwayssW-A = W-94 =0
(mod 2); see the next lemma.

DeriniTions. For any singular cycle A*™' < V* — O* the degree d(A)
of A Vis WA If f* maps a cycle A’ ! into V* — O* the degree
dp(A) of f* in A about O* is d(f*A). This is clearly invariant under deforma-
tions; furthermore, combinatorially,

(6.1) PH*A = aS*,  a = d.(A).

For any singular chain A*" with 84%" C V* — 0*, the degrec d(A*") of A*" aver
O0* is W™ .04°" (= s8W-A); define ds.(A*") similarly. These are obvious
generalizations of the degree about O or over O in V.

LemmA 10. Supposen = 2. If f* maps a complex K into V* so that f*K** ™' C
V* — 0%, then 8f* W' = 0 (mod 2), so that

(6.2) Wit = LYW exists.

The strict meaning of W3 is given by its action on any 2n-G-chain A" =
> gio?", which is as follows:

(6.3) Wit X gt = X gi(Wit-ai™),
(6.4) Wit.o = YW e = J(W™ " f*a0).

Since 2n — 1 > 1, 9o is simply connected; hence there is a mapping f of do
into V — O such that f* = xf. Say Pféec = aS. Then
P*f*30 = P*rfdc = wPfds = 2aS*;
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hence
f*W™ g = W froe = W' P**3e = 2a,

from which the lemma follows.

REMARrks. By Lemma 9 and the remark following it, a slight deformation of
a locally derivable f* will give an fi such that fT’W*" " and W}E‘ are geometric
cochains.

It is not true that 8A™ = 0 implies Wir-A = LMW 14) =
1(W*.f*3A) = 0; see Example (8) below. The second expression has in
general no meaning, say if the coefficients are integers mod 2. But it holds for
integral A, as is apparent from (6.4).

DErFINITION. Given a locally derivable mapping f* of K into V* and a
2n-G-chain A in K such that f*0A C V* — O* make a slight deformation
of f* into fi such that fi(K**™") € V* — 0* as in Lemma 9, keeping 94* in
V* — O*; let the divided degree of A under f be

(6.5) dn(4) = WiF-A  (which is an element of G).

Note that this defines dy+(4) for locally derivable singular chains A with
9A C V* — O*. 1t need not vanish for cycles (see Example (8) below).

LemMA 11. The above degree is independent of the choice of fi , vanishes for
chains mapped into V* — O*, and s tnvariant under deformations fi such that
F*(t, p) = f: (p) 1s locally derivable in I X K and f; (3A) C V* — O*. Itvanishes
for all boundaries 3B "', in fact, for all “cycles of the first kind,” expressible as
- gAY (9: © G, AT integral cycles).

We prove the last part first. Supposing LK™ ™ © V* — 0% we have

Wit 2 gdT = 2 g(WiF-AT) = 2 g3(W™ - f*041™)] = 0;
also, if A*" = aB™ ", say B*"*' = 3 gioi"*!, then A*" = 3 g:90i" " is a cycle

of the first kind, so that Wif-A™ = 0.
To prove the rest, it is sufficient to show that if

ffad U 5k UK c v* — 0%
and F*(t, p) = f{(p) is locally derivable, then
Wir-A = Wi-A.

By a slight deformation of F*, keeping F*(0, p) and F*(1, p) fixed, we may
suppose that F* maps (I X K)** " into V* — O*, and is locally derivable (see
Lemma 9); suppose this is done. The chain A determines chains 0 X 4,1 X 4,
I X Ain I X K (if we use the usual subdivision of I X K). Using the fact just
proved, we have W3:-[8(I X A)] = O; hence, since 8 X A) = 1 X A —
0X A —1IXaAdand F*(I X 9A)C V* — 0%, Wit-(1 X A) = W3:-(0 X A),
which give the result.

MoRE ExAMPLES. (8) (Compare Examples (1) and (5).) Let Q" be S**
plus interior R**, and form P*" by identifying opposite points of S**™*. Thus
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P = 8* plus R*". Set ] = identity in Q*", and J* = =f; this gives a mapping
f* of P> into V*. Now P’" is a projective space, of even dimension 2n, and
hence is non-orientable; it has a fundamental 2n-cycle A*" mod 2. If we sub-
divide it so that O is interior to a 2n-cell o3" of Q*", it is clear that

Wik A = B(W " xdoi™)) = 1.

Of course A" is not a cycle of the first kind. In the case n = 1, this type of
mapping illustrates Theorem 1; see the discussion there for n = 1.

We may deform f* by contractmg f*(K) to O*, and then pulling along a
single ray away from O*. This shows that the assumption in Lemma 11 that
F* is locally derivable cannot be omitted.

(9) Let f* be the identity mapping of S* into itself. We may consider S*
as an integral cycle; W>"™'.8* = 1. Of course S* bounds its interior (com-
binatorially); but by Lemma 11, there exists no complex K containing S* in
which S* bounds, such that there is a locally derivable mapping of K into V*
which equals the identity in S*.

7. The intersection number of a mapping

DerFiniTIONs. Let f be a completely regular mapping of M™ (with or without
boundary) into E*"; we suppose E*" oriénted. Suppose first that M is orientable
and n iseven. Choose an orientation of M. Suppose f(p) = f(g);letwr, - -+, u,
and vy, - -, v, be sets of vectors in M as in §3, each set determining the positive
orientation of M. Then we say this self-intersection is of positive or negative
type according as the vectors (4.7) determine the positive or negative orienta-
tion of E*. Also, by (4.5) and (4.6) (see the end of §3), the type is positive
or negative according as the degree in Lemma 4 is 1 or —1. Note that this is
independent of the orientation chosen for M. The intersection number I, of f
is the algebraic number of self-intersections in this case, and the number of
self-intersections mod 2 if M is non-orientable or n is odd. In the case n = 1,
it is possible to determine I, in a certain sense as an integer; see the discussion
following Theorem 1.

Define F and F* as in §4. Clearly F* is locally derivable. Considering
T* as a singular chain, with integers or integers mod 2 as coefficients according
as it is orientable or not, define the degree d»(T) and divided degree dr(T*)
asin §6. Let D denote the distant intersection of M (see [3], §18).

THEOREM 1. Let f be a completely regular mapping of M into E*" (M may
have a boundary). Let the number of self-inlersections be finite. Then

(a) If M is ortentable and n is even,

(7.1) I; = dpe(T*) = 3dr(T) = ¥(D-M™) (an integer).
(b) If M is non-orientable or n is odd,
(7.2) I; = dn(T¥) (an integer mod 2).
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(¢) If M is orientable and n is odd,
7.3) dr(X) =D-M" = 0.

The theorem shows that F* has more interest than F in this connection. We
discuss the case n = 1 further later.

Suppose first that M is orientable and n is even. Take a self-intersection
f®) = f(g), p # q. The points of T near (p, g) are mapped by F over O with
the degree 1 or —1, according as the intersection is of positive or negative type.
The same is true for the points of T near (g, p). Thus each positive [negative]
self-intersection contributes 2 [—2] to dx, and I, = 1d,, which is part of (7.1).
That I, = 1(D-M) follows easily from the definition of D.

Next we prove (¢c). Take (p, q) again, and define the vectors u; and v; as
before. Neighborhoods of (p, q) and (g, p) are oriented by @, ---, #» and
#, -, i, respectively; since n is odd, they are mapped over O in V*" with
opposite degrees; hence they contribute 0 to dr. Thus dp = 0. Similarly
D-M =0.

Now consider F* in T*, T* orientable; clearly F* is locally derivable. The
only points mapped into O* by F* are points (p, q) = (g, p), f(») = f(@), P # ¢.
Let U be a neighborhood of (p, ¢) in T; it corresponds to a neighborhood U*
in T*, say under the mapping . Then F* = xF¢ 'in U*. Leto* = *"bea
cell in U* about (p, q), oriented like $*. If ¢ = ¢ 'o*, then as noted above, F
maps ¢ over O with the degree 1 or —1, according as the self-intersection is
positive or negative. Since = is of degree 2, #F maps ¢ over O* with the degree
2 or —2 ie.

W . xFac = W™ '.F*3s* = 2 or —2.
Hence, by (6.4),
Wit-o* = LW '.F*3¢*) = 1 or —1;

using (6.5), we see that ¢* contributes 1 or —1 to dee. Thus I, = dpe (M
orientable and n even), proving the rest of (7.1).

Finally we prove (b). In this case, T* is non-orientable, so that it is con-
sidered as a chain mod 2 in forming d,+(T*). As before, W3i-o* = 1 or —1,
so that (using (6.3)) W3:-(lae*) = 1;; clearly (7.2) follows.

THE cASE n = 1. Though T* is non-orientable, we shall use integer coeffi-
cients. For M we may take the unit circle in the plane E’, described by an
angle 6 (0 < 0 < 2x). T*is a Mobius strip with boundary curve &*. Any
point of T* — S* is a pair (0, ¢'); we may take § < §’. We may let (6, 6) denote
the points of &*. If we express T* as the image of the triangle (z,%),0 S =z <
y = 1, the vertical and horizontal sides will each map into the set &’ of points
(0, 6). Let T7 be an integral chain covering T*; then, combinatorially, ozt =
S* + 2&, so that by (6.3) and (6.4), with W' = W**™ as in §6, using (7.1)
to define I, as an integer,

I; = Wi T = y(W'-F*ZY) = (W' -F*S*) + W'-F*&'.
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W'.A'is the degree of A' about O* in V**; clearly 3(W'-F*&*) is the number
of times F&* (or more properly, VF*, v ¢ ©) winds about O in V? i.. is the
“rotation number” of f in M. Now if the point 8 = 0 is chosen so that f(0)
is on a line L of support to f(M) in E* (i.e. f(M) lies on one side of L), it is easy
to see that F&' makes half a turn about O, so that F*&’ makes one turn about
0* and W'-F*&’ = 4 1. Hence I, always differs by unity from the rotation
number of f(M), again illustrating the warning in §B.

THEOREM 2. Let M™ be compact (closed, or compact and with boundary). Then
the intersection number I, vs invariant under regular deformations; if M has a
boundary, we assume that during the deformation, the boundary vs not carried
across M:

(7.4) F.(aM) N f(M — aM) =0 (all 2).

This means I, = I,,, fo and f being completely regular; other f; need only be
regular.

REMARrks. If we omit (7.4), it would be simple to give a formula expressing
the change in I, in terms of the crossings of 3M through M. Thus if M'is a
closed arc, mapped into the written letter ¢, I, = =1; if we pull it out into a
line segment, I; = 0, and @M" has crossed M' once.

If M is not compact (and no further conditions are assumed), the theorem
fails. For example, let M" be the open segment 0 < A < 4. For0 <t <1,
let f. be the mapping given by (z, y) = f:(\):

T =), y =1t/ 0<A<2),

and let the rest of M" be carried counter-clockwise around onto the line y = 1,
and back across the y-axis alongy = 1. Then I;, = —1if ¢t > 0, but I;, = 0.

Of course I, is not invariant under deformations not assumed regular.

Suppose first that M is a manifold (without boundary). Since each F?
maps &* = 8T* into V* — O* and is continuous, drey = dsy, by Lemma 11.
By the last theorem, I,, = I, .

Now suppose M has a boundary. Then dT* consists of points of ©* and points
(p, @), pedM or gedM. The hypothesis shows again that F, leaves 3T* in
V* — O* and again I,, = I, .

II. THE IMBEDDING THEOREM

8. Discussion of the theorem

We first give theorems on the possibility of altering I, and of deforming f
(keeping I, fixed) so as to reduce the number of self-intersections. The im-
bedding theorem follows from these.

TaEOREM 3. Given any compact M (with or without boundary), there is a proper
completely regular mapping f of M™ into E*" with any desired I .

Let fo be a completely regular mapping of M" into E** (see [1], Theorem 3;
it is not hard to extend this theorem to the case that M has a boundary, for
example if 8} is a manifold). Now take a small piece of A, flatten it, cut it
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out, and replace it by a piece with a single self-intersection, defined in §2, or by
this piece altered by a reflection in E*". Then I,, is changed by 1 or —1 at
will. Thus I, may be increased or decreased by 1, and hence may be brought
to any desired value.

THEOREM 4. Let n be =3, and let fo be a proper regular mapping of a closed
M" into E**, with at most a finite number of self-intersections. Then there is a
regular deformation f, of f into a proper completely regular mapping f1, such
that the number of self-intersections under f, is increased by 2. If the number is
> |I,], or is >0 if n is odd or M 1is non-orientable, we may decrease the number
by 2. If M has a boundary, we may keep dM fixed, and keep M from cutting
through oM.

ProBLEM. Does the theorem hold for n = 2?

For the moment we shall prove merely that the number of self-intersections
may be increased by 2. The rest of the proof will occupy §§9 through 12.

First, f may be made completely regular, as in [1]. Suppose this is done.
Take a small nearly flat portion ¢" of f(M). Take p e¢", and pull p out away
from ¢", around and towards another point ¢ of ¢", pulling a small portion of
o" along with it so we always have a regular mapping. We may make the
moving part of M avoid any other points of M or aM. Say ¢" was approxi-
mately in the (z1, - -+, Za)-plane in E*™, and say q is the origin O, and we are
pulling p around in the (1, Za;1)-plane, and down along the z.,;-axis. We
may tip the moving portion of ¢" near p to be parallel to the (z1, Tns2, * - » L2a)-
axis, as we move p. Now pull p through O. Then if the mapping fi is obtained,
the new self-intersections under f; are clearly on the z-axis T. The part of
fi(¢") near p intersects T’ at points on each side of O. These latter points are
new self-intersections, as required.

The rest of the proof of Theorem 4 runs as follows. We need merely show
that two self-intersections of opposite types (or any two, if M is non-orientable
or n is odd) can be gotten rid of by a regular deformation. Say

i) = fp) = ¢ f@) = f@) = ¢,

these being of opposite types. Let C; and C; be non-intersecting curves in M,
C; joining p; and p: , neither passing through any other point where f has a self-
intersection. Then B; = f(C;) joins q to ¢’, and B = B, U B, is a simple closed
curve in f(M). We let B bound a smooth 2-cell o, which touches M only at
B, and show that the part of M near C; may be deformed along near o so that it
passes beyond B;, thus removing the two self-intersections. Until §12 we
assume that M is orientable and n is even.

THEOREM 5. Any smooth n-manifold may be imbedded in E™.

Remark. This theorem may be generalized to the case of manifolds with
boundary, but we shall not discuss in what generality. For example, if oM
is a manifold, the extension is not difficult. For the proof, see the proof of Case
1V of Theorem 6 in the following paper.



SELF-INTERSECTIONS OF A MANIFOLD 237

For n = 1, the theorem is trivial. For n = 2, we imbed the sphere, projective
plane, or Klein bottle, in E*, and add the necessary number of handles to obtain
the given manifold. (An imbedding of the projective plane is easily found
from [3] p. 108.)

Now we suppose that n = 3. First, by [1], Theorem 3, there is a proper
completely regular mapping fo of M" into E**. Suppose M is closed. Then,
by Theorem 3, we alter f, to f; so that I;, = 0, and by Theorem 4, we may get
rid of all of the intersections, giving the required imbedding.

Suppose now that M is open. We may suppose that M is connected. Let
(pi, )¢ = 1,2, --+) be the points with fo(p;) = fo(g:). For each 7, let Cibe a
smooth curve in M from p; to infinity, and let U; be a neighborhood of C;, so
that U; touches no other U; or ¢;. Let

(@, 7, 8)(PeSe0=<r<1,0=<s<1)

represent the points of U; (supposing n = 2), with.r = 0 and 26 = s < 1 rep-
resenting C; ; the points withr = 1 or 8 = 0 give the boundary of U;. Deform
U, into itself by setting

d’l(p’ T, 3) = [P’ T, {1 - (1 - 8)(1 - r)t}s];

this leaves the boundary of U; fixed. It may easily be replaced by a smooth de-
formation. Doing this for each ¢ gives a mapping f with f(M) C fo(M) — 3, C;.
Clearly f has no self-intersections, and is still proper.

ProsLEM. Does there exist an imbedding, for M open, with no limit set?

9. A lemma on bundles of vector spaces

A bundle B of vector spaces is defined as follows. Let Vg be a fixed vector space
of dimension n. Let A be a topological space, the base space, and let {F;} be
a covering of A by closed sets (we could use open sets). To each p ¢ A there
corresponds a set of points V"(p); V"(p) N V™(¢) = 0if p = ¢q. For each F;,
and each p e F;, £r,(p, q) (g ¢ Vy) is a one-one mapping of Vg onto V™(p).
Let ¢ = E;i(p, r) mean r = £p,(p, q). For peF; NN F;, we assume
&, & #;(D, 9)) is a linear mapping of V7 onto itself, which varies continuously
with p. Because of this, each V"(p) may be considered as a vector space.
The &¢, are the coordinate systems; the set of all points on all V™ (p) is the total
space. We write 8 = (B; V7', A). If there exists a coordinate system {(p, q),
defined for p in all of A, then B is simple; ¢ expresses the total space as the
topological product of A and V7 .

If we replace Vi by a sphere S; ", and linear mappings by orthogonal map-
pings, we have a sphere bundle (see [3]).

LeEmMma 12. Let (B; V7, K) be a bundle with a complex K for base space. Let
K’ be a (possibly void) subcomplex of K. Let e, -+, en be the unit vectors in
Vo . Let ¢(p, e1), - -+, £(p, ei—1) be defined for p € K, and let {(p, e;) be defined
for p in K', so that these are continuous and independent where defined. Then
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t(p, €;) may be extended continuously over K so as to be independent of the other
t(p, €;) if either of the following two conditions hold:

(a) dim (K) £ m — 1.

(b) K can be built up from K’ by adding cellg, each having a cell, or nothing,
in common with the subcomplex of K’ plus the cells already chosen.

ReEmarks. In (b), it follows that B is simple. If dim (K) = m — 7 + 1,
the existence of ¢{(p, e;) is expressible simply in terms of one of the ‘“character-
istic classes” of B (see [3]).

The proof in Case (b) is due essentially to Wazewski.” In Case (a), we extend
t(p, e;) over cells of K of higher and higher dimensions. That this can be done
at each step is a simple consequence of the dimensions under consideration
(see a similar proof in §10), and is fundamental in the existence of the character-
istic classes (which exist equally well for bundles of spheres or vector spaces).

10. The 2-cell ¢

Choose the C; as deseribed in §8; this is possible, since n = 3. Let M, and
M, be neighborhoods of C; and C,in M. Let p;, (0 S ¢ £ 1) move from p; along
Cito p; as t goes from 0 to 1. We can suppose p;. is an imbedding of the interva,
(0, 1) in M. Then ¢;. = f(p::) is an imbedding.

Let E* have coordinates z, y. Let A, be theinterval 0 S z < 1,y = 0. Lei
A; be the arc of a circle of radius 1 and with center at (1/2, —4/3/2), whict
joins the ends r and 7’ of A, and lies in the half planey 2 0. Let 4 = 4,U 4,
let 7’ be a small neighborhood of A in E*, and let 7 be 7’ plus the interior regior
7"’.  We shall find an imbedding ¢ of 7 in E*" such that

¥ =9q W) =¢, ¥(4) =B G=12)

and such that ¢(r) N f(M) = B, and no tangent plane to ¥(7) at a point ¢
of B lies in a tangent plane to f(M) at ¢*. We do this first with = replacec
by 7.

Let Tt and T be the planes tangent to f(M,) and f(M) at g. Let T” be th
plane tangent to B, and B: at g¢; it cuts 77 and 77 in lines T; and T:. By 1
slight deformation of f, we may suppose that f maps a neighborhood of p; i
M, onto a neighborhood of ¢ in 7, and maps a neighborhood of C; (extended
in M; onto a neighborhood of T'; ( = 1,2). We may map a closed neighborhoo«
V of 7 in 7 linearly onto a closed neighborhood of ¢ in T” so that a closed neigh
borhood of r in A; goes into a closed neighborhood of ¢ in T'; (and hence in B;)
To this end, we suppose the two ends of A, have been straightened. Call thi
mapping ¢, and define ¢ similarly near .

Let r;; run from r to r’ along A;, choosing it so that ¢(r;t) = ¢i. where ¢ i
defined. Let u;, be a smooth vector function defined in A; and with values in 1
such that us and u. point in the forward and backward directions along A
at rand 7 (j 1), and letting u,, and u,, turn in the positive and negative sense
respectively as ¢ runs from 0 to 1. Then u;, is not tangent to A; at r;,. Le

7 W. Wazewski, Compositio Math. vol. 2 (1935), pp. 63-68.
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R;: be a segment of length p and center r,;, in the direction of u;;,. We may
suppose ¥ and ¥’ chosen so that part of their boundaries are formed by segments
R;, extended, and may choose p so that no Ry, touches an Ry, if 1., and r3,,
are outside V U 7.

Set v;; = Vo(u;,, i) at points r;, of V U ¥/, Extend v;, over the rest of B;
so that it is smooth and not tangent to f(M,) at g;. . This may be done as fol-
lows (or we could use Lemma 12, (a)). Extend v;, so as to be smooth over all
of B; except a small piece D;. With a curvilinear coordinate system about D;,
we may suppose D; lies on the y,-axis, and f(M,) lies in the (y1, - - -, y»)-plane
E". Now v;, = v, + vir, vi, and v}, being tangent and orthogonal to E” re-
spectively; vi is 0 at the ends of D;. Extend v;, to be smooth over D;.
Since 2n — n > 1 = dim (D;), we may extend vit over D; so as to be smooth
and 0 there. Now set v, = vy, + vi¢in D; .

Since ¢ is linear so far,

o(rie + aui) = i + aviy (i e VUV, || < p).

We may use this formula to extend ¢ over a closed neighborhood #' of 4.

Let ¢/ be a continuous extension of ¢ over 7. Since 2n = 5, we may® replace
¥’ by an imbedding ¢ such that ¢(r) is arbitrarily close to ¥'(r), and as we ap-
proach points of A, ¢ approaches ¢’ closer and closer, together with first deriva-
tives. It follows that ¢ is an imbedding, and no tangent plane to ¢(7) at a
point ¢(r*) (r* ¢ A) lies in a tangent plane to f(M) at ¢(r*). Further, since
n 4+ 2 < 2n, we may suppose that ¢(r) N f(M) = B. Now ¢ = y(r) is the
required 2-cell.

11. The neighborhood of «

It is here we shall use the fact that the two self-intersections are of opposite
types. Our present purpose is to define smooth vector functions w;(g*), - - - ,
wan(g*), for ¢* e o, so that these are independent, and if ¢* = y(r*),

(a) wi(g*) = W(er, r*), wa(g*) = V(es, 1*),

(b) ws(g*), -+ - , was1(g*) are tangent to f(M,) at ¢* for ¢* ¢ By,

(€) way2(g*), - -+, wea(q*) are tangent to f(Ms) at ¢* for ¢* ¢ B, .

These show how ¢, f(M,) and f(Ma) lie together in E*",

Since ¢ is regular, w;(¢*) and w.(¢*) are independent. Let V" be the space
of vectors in E>". Let ey, - - , €ny1 a0d €nsa, -+ , €20 determine the subspaces
Vi~ and V7! respectively. Consider, at each point ¢* ¢ B, , the vector space
Vi~ (¢*) of vectors tangent to f(M,) but orthogonal to B,. Considering
Vi (¢g**) as disjoint from V™' (¢*) if ¢** » ¢*, we have a bundle of vector spaces
9, with the cell B, as base space; use’®; = (8, ; Vi, By). By Lemma 12,
(b), we may find a coordinate system ¢ in it; choose it so that wi(g*), ws(g*), - : - ,
Wy 41(¢*) determine the positive orientation of f(M) at ¢* ¢ B, , if we set

(11.1) wi(@*) = H(g* e) (@*eBi;i=3,---,n+1).

3 H. Whitney, Trans. Am. Math. Soc. vol. 36 {1934), pp. 63-89, Lemma 6; compare [1],
Theorem 3, or Theorem 2, with the remarks following it.
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Since the only vectors at ¢* ¢ B; which are tangent to both 7 and f(M) are tan-
gent to B, , the w; are independent so far, and all properties hold.

Similarly, taking V3 '(¢*) tangent to f(M) but orthogonal to B at ¢* ¢ B
gives a bundle (B: ; V2™, B,) with a coordinate system {.. Define w;(q*) by
(11.1), with ¢, for ¢* ¢ B, ¢ = n + 2. If wa(g*) points positively along B,
at ¢*, we may suppose wi(q*), Was2(g*), - - - , Wan(g*) determine the positive
orientation of f(M,) at ¢*. The properties still hold. (At ¢ and ¢/, clearly all
the vectors are independent.)

Let (B; Vi, o) be the bundle with each V(¢*) = Vi". (The total space is
Vi" X ¢.) In the subbundle (B; V3", B.) over B, , the vectors wy(g*), wa(q*).

Wat2(g*), -+ -, woa(g*) are independent; wi(g*), - - -, w2.(¢*) are independent
for ¢* = ¢ and for ¢* = ¢’. By Lemma 12, using (a), with K = B;, K’ =
q U ¢/, we may extend wy(g*), - - - , wa(¢*) over B; so that the 2n — 1 vectors

are independent. Now recall that the two self-intersections are of opposite
types (we are supposing that M is orientable and 7 is even). By the choice of
&1 and ¢, this means that

wl(q‘)r w3(q*)r ) wn+l(q‘)’ wé(Q‘), wﬂ+2(q‘)) ) wzn(q*),

define opposite orientations of E** for ¢* = ¢ and for ¢* = ¢’. Now wx(g) and
wy(¢’) may be deformed into wa(gq) and —ws(g’) respectively, keeping them
tangent to ¢ and independent of B, ; they therefore remain independent of the
other vectors listed above. Hence

wi(g*), wa(g*), - -+ , w2a(g*)

define the same orientation of E*" at ¢* = ¢ as at ¢* = ¢'. It follows that
w,41(g*) may be defined over B; so as to remain independent of the other vectors.
(If we deform w,,1(g*) for ¢* near q and ¢’ to become a unit vector orthogonal
to the other vectors, then w,1(¢*) is uniquely determined so as to be continuous
and have this property in the rest of B, .)

By Lemma 12, using (a) again, with K = ¢ and K’ = B, since dim (o) =
2 £ 2n — (n + 1), we may extend ws(¢*), - - - , waia(¢g*) over ¢ so that
wi(g*), - - - , way1(g*) are independent there. Finally, by Lemma 12, using
(b), since ¢ and B; clearly have the property of K and K’, we may extend w,+2(¢*),
-+, wan(g*) over ¢. The w;(¢*) determine a neighborhood of ¢ in E**, as will
be apparent from (12.1).

12. Completion of the proof of Theorem 4

Consider r C E’ as lying in E**. For each point (a1, az, as, - - - , Gza), Set
™ = (@, @, 0---,0), and
(12.1) 'l/(r* + Z; a{e.-) = y(r*) + Z; awi(Y (r*)).

Since wi(g*), - - - , we.(¢*) are independent and smooth, this. is a mapping with
non-vanishing Jacobian; hence, in a neighborhood of the interior of ¢, we may
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invert, and define y'. (The wi(g*) are taken of class C? for this to hold.) If
we set

Ny =y (f(M)), N, = ¢ FML)),

then N, and N, will lie in a neighborhood U of r. If we define a deformation
of N> in U which brings it into a position not intersecting N, , applying ¢ defines
a corresponding deformation of f; there will then be two self-intersections fewer,
as required.

Set T(xly Tty x?n) = (xl ) 0’ T2y o, x?n)- By (a)’ (b) and (C) of §117 and
(12.1), for any r* e A, , the tangent plane to N, and hence to x(N,) at r* lies in
the (z1, x5, - -+, Zo41)-plane, and the tangent plane to =(N,) at r* lies in the
(1, Zns2, - - - , T2n)-plane, it follows that

(12.2) #(N;) N x(N.) is on the z;-axis.

Let u(z:) be a smooth real furction whose graph z; = u(z,) lies just above A, ,
and lies on the z,-axis just outside A.. Take ¢ > 0 so that the points of N,
within e of the (z, , z,)-plane £* form a set interior to N; . Let v(\) be a smooth
real function with

v =1, »0) =1, »Q) =0 for |r]| 2 ¢
For r* = (z1, -, Z2a), set
(12.3) 0.r*) = ™* — (s + - + z)ulmer,

and consider this as applying only to points of N,. This is clearly a regular
deformation. For ¢ = 1, it moves the part of N, lying on A; into a position
with ; < 0. Since x(0,(N:)) = =(N,), (12.2) gives

N: N 6,(N,) is on the z;-axis.

But 6:(N2) does not touch the z;-axis; hence this set is void. Furthermore,
since ¥(7) N f(M) = B, taking ¢ small enough will insure that no new self-
intersections are introduced. This completes the proof in the case that M is
orientable and = is even.

In the other cases, we can get rid of any pair of self-intersections by a regular
deformation. To show this, it is only necessary to show that C; and C, may be
chosen in such a fashion that M, and M, , when each is oriented, intersect in
points of opposite types.

Suppose M is not orientable. Try a pair Cy, C:. If the points are of the
same type, choose a curve C; such that C; U C; reverses the orientation in M ;
then C; and C; will do.

Suppose n is odd, and M is orientable. If C; and C, will not do, choose C;
and C; so that (with the notation of §9) C; joins p; and p; , and C3 joins p, and
p1. We may suppose C; coincides with C; near one end and with C i (g =1)
at the other, and M; = M’ near pi,and M; = M; (j # ©) near p; . Orient the
M;, and the M; accordingly (near pi;). Then the intersection of the
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pair (M1, M 2) is like that of (M., M) at ¢’; hence (compare the proof in Lemma
2) the intersection is of opposite type from that of (M, M,) at ¢’, as required.
The theorem is now proved.

APPENDIX

IMBEDDING THE COMPLEX PROJECTIVE PLANE M*' IN E'

Let M°® be the space of all triples (21, 22, 2.) of complex numbers, not all 0.
If we identify any two triples (z;, 22, 23), A2y, Az2, Az;) (A % O complex), M
is obtained. Let [z1, 2., z,] denote points of M*.

We first give briefly a topological description of M*, then discuss how an
imbedding may be found from the topological point of view, and finally give
equations which are proved to be an imbedding. In terms of the real variables,
the imbedding will be analytic; it of course cannot be so in terms of the complex
variables, since 7 is odd.

Set zx = zx + tyr, and

(1) Na,z,z)=|lai 4|z 4|2 =2 @&+ ).

We remark that, since [z, , 2;, 23] may be normalized to make N = 1, uniquely
except for a factor A with | A\ | = 1, the 5-sphere N = 1 is expressed as the total
space of a bundle of 1-spheres with M* as base space. A similar fact holds for
the (2n + 1)-sphere.

First we divide M* into three subsets; the points with z3 = 0, those with
z3 = 0 but 2, # 0, and those with z; = 2z, = 0. These sets, with normal forms
for their points, are:

Q': all [21, 22, 1],

sz a']-l [zh 11 0])

Q°: all[1, 0, 0];
Since these are cells, the Euler-Poincaré characteristic of M*is 3. S’ is complex
projective 1-space, equivalent to the extended complex plane, and is topologic-
ally a 2-sphere. For any [z1, 2:, 0] in S, set

P*z, 22, 0) = all [z, 22, 2]

Set

2 plzs, 2,20 = |zs|*/(al’+ 2],
(p may be =), and define the subsets of M’ ¢

A_: p <1, A:p=1, Apip> 1.

Set P_[z1, 22, 0] = P*[z1, 2z, 0) N A_, and define P, P, similarly.

Clearly A is a 3-sphere (see below), and A, is a 4-cell bounded by it; each is
in Q*. Since the sets P_(p). U P(p) are disjoint, these form a bundle of closed
2-cells, with S* as base space. The P(p) form a bundle of 1-spheres with S?
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as base space; the total space is the 3-sphere A. We remark that this proves
the 2-dimensional invariant of the bundle to have the value =+1; also, that
mapping each point ¢ of 4 into p € S° such that ¢ € P(p) is exactly Hopf’s essen-
tial mapping of a 3-sphere into a 2-sphere.’

We now discuss the imbedding problem. If we set F*[z1, 2., 1] = (21, 22),
this imbeds @' in 4-space. Of course F* cannot be extended over S*. To make
this possible, let us pull back towards the origin those points with small p; we
may set

®) Fla, 2,1 = 2 (a1, 2)

or equivalently (the last expression allowable even for z; = 0)
2|z 2, -

(4) F’[Zl, 29, 23] = LAZ;-J- (‘:—;, Z—z) = ]—V(lea, 2223).

This mapping fails to be regular at points of A, where the vectors pointing
away from [0, 0, 1] (using (3)) are mapped into the origin.

Let us introduce three new coordinates into the image space, map S’ into the
unit sphere in this space, and extend the mapping over M*. Using stereographic
projection, and one complex and one real coordinate, we find

- 2 2
F" , ’0 =.(2_~ 2122 "zll —lhl)’
(21, 22, O] [z212 4+ |22 27 | 212 4 | 22 |2

or more generally,
17| —_ 1 = 2 2
F'l21, 2, 2] = -N(22122» 2" = |z][).
Combining this with (4), with a slight change, we define our mapping by
1, _ - -
(5) Flai, 2, 5l = & (@5, 25, 2%, |2 P =1z,

using three complex and one real coordinate, N being defined by (1). In terms
of the seven real variables,

1
© F = N(xzxs + Y293, Yo X3 — T2Ys, T1xs + 1Y, T1Ys — Y1 T3,

LT + e, iz — Tiye, T F YI — T3 — ¥3).

From (5) it is clear that Flz;, 2., z;] = F[Az1, A2z, Az3), X complex, i.e. it is in-
dependent of the manner of writing a point in M"*.
We now prove that F is regular. Consider first the F’ of (3). Since the set

* H. Hopf, Uber die Abbildungen der dreidimensionalen Sphére auf die Kugelfiche, Math.
Annalen, vol. 104 (1931), pp. 637-665. The mapping also is that determined in the Remark
following (1).
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of points (21, 2;) with | z;1|® + |2 |* = 7%, which forms a 3-sphere of radius r
if r > 0, is mapped into a concentric sphere, F’ is regular wherever the vector
V., at [21, 2., 1] pointing away from the origin is mapped into a non-zero mul-
tiple of itself. Set

a=zi+yi+a+u, MN=1+Na (real).
Then the image of 3v,,., is the value when A = 1 of

a1 2’ 1
gx[m(m,kyl,---)]——W—f—(m, ")+m(xl’ -)

1
~ ¥ @\’ — N (z1, 1, 22, ¥2).

Taking A = 1, we see that F’ is regular except possibly on a set B;, where
28> — N =0,ie.2a’ =14 o’,a = 1,0relse z; = 0. With [z, 22, 23], We see
that Bs is given by the condition:

(7) Either 2z, =0 or |z|’=|a|*+ 2]’

ie. By = S*U 4.

Define B, , B similarly, and set B = B, N B, N B;. Then replacing F’ by
F (where we need not consider the last variable |z, |* — |z | %), we see that F
is regular except possibly at points of B. Now B contains only the points

(8) D1: = [0, 1, Z], P2: = [Z, 0, 1]’ Ps: = [1; z, 0]) l z l = 1.

For [0, 0, 1] is not in Bj; ; similarly for [0, 1, 0] and (1, 0, 0]. In case at most one
z;=0,say | 21| < |2| = |2z|;thenz 0. Ifz;0,0rifz; =0and |z >
lz,|, then |z |® < |2:|*+ |2|% and [21, 22, 23] is not in By, while if z; = 0
andlzbl = Izil’then[zlyz?"zd = [07 l,z,,/Zz] =P1:,2 = 23/22'

We must prove still that F is regular at the points p;.. To do this, it is
sufficient to show that the 7 X 6 = 42 partial derivatives of the components of F,
considered as mapping M® into E’, form a matrix of rank 4 at each such point.
For this proves that the tangent space to M*® at any such point is mapped into
a space of dimension 4 in E’ by F; but the tangent space to M *is clearly mapped
into the same space in E'. It is of course sufficient to find a submatrix of rank 4.

For points of M° representing points p:,, we choose points with N = 1,
obtained from (8) by multiplying by a real positive factor. Now

P = (0,0,2,0,25,¥), z=25+7ys =3
P = (#1,%1,0,0,25,0), 3 =2i+yi =3
psr = (1,0,22,9:,0,0), zt =3+ 79y: =3
The corresponding values of F are:
at pro: (zs, —xws, O, 0, 0, 0, -z ),
at ps: (0, 0, awx, —yxs, O, 0, i+ ),

at pss: (O, 0, 0, 0, T, —ITiY:, T — x5 — y§).
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Consider first a point p;. . Form F, from F by omitting the third and fourth
of the seven variables. Then since N = 1 and
—2r3xs + 25 = 2x§ya -y =0

at the point under consideration, differentiating (6) gives the following matrix
for aF,/0x:, - -- , 0F,/dy, :

0 0 T2 0 0

0 0 0 = 0

0 0 0 0 2m(x;—1)
Ys X3 0 0 —2y:_-

This is obviously of rank 4. Similarly, at p,., let F, omit the fifth and sixth
variables from F. Then the matrix of 8F,/dx., - - , 8F»/dys is

les 0 0 O 0
IO X3 0 0 0
io 0 0 0 —2m@+2)|°
10 0 yu o 0

again of rank 4. At p., letting F; omit the first and second variables, the
matrix of aFa/axl N aFa/ayx : aFa/axa , aFa/aya is

0 0 0 0 2

0 0 y 22 O

nn 0 0 0 o}
0Oz 0 0 O

again of rank 4. This completes the proof that F is regular.
To show that F is one-one, take any point

q = (wl’w2)w377) = (ul’vl)""v-i; 7) = F(P)

for some p e M*; we shall show that p = [21, 22, z5] is uniquely determined,
i.e. the 2; are determined up to a complex factor.

Suppose first that w; = 0, ¥ = 0. Then one of 2z, 2, is 0, and since
|21]® — | 2| ® = 0, both are 0; hence p is unique.

Suppose next that ws = 0, v 0. If ¥y > 0, then 2 =0, |z | > 0 (since
N > 0). Since 2 = 0, we can normalize p to [1, 0, z;]. Now

2
z 1 z
e A
hence z; = ws/v is determined. Ify < 0, then z, = 0, z, = 0, etc.
Suppose now that w; # 0; then 2z, > 0, zz > 0. In this case we normalize
so that
N =1, 23 =122 > 0.

If first w, # 0, then

2 - 2 2
MW = T2 = 2, W, T2 = ’
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determining ;. Now

so that p is determined.
Suppose finally that w; = 0, w. = 0. Normalize as before. Now z; = 0;

we find, from wy = Ze21, v = |21|2—x§,
2
af =12y,
T2

75 = 3=y £ (v + 4| w )"

Since the square root is > | v |, the minus sign is impossible, and 3 and hence
22 = z, is uniquely determined, as is z; = ws/z.. This completes the proof.
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