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Preface
This book covers two main areas of mathematical finance—areas that
culminate in work worthy of the Noble prize in economics. One is
portfolio risk management, culminating in the Capital Asset Pricing
Model and the other is asset pricing theory, culminating in the Black-
Scholes option pricing formula. Our discussion of portfolio risk
management takes but a single chapter. The rest of the book is devoted to
the study of asset pricing models.

The intended audience of the book is upper division undergraduate or
beginning graduate students in mathematics, finance or economics.
Accordingly, no measure theory is used in this book.

I realize that the book may be read by people with rather diverse
backgrounds. On the one hand, students of mathematics may be well
prepared in the ways of mathematical thinking but not so well prepared
when it comes to matters related to finance (portfolios, stock options,
forward contacts and so on). On the other hand, students of finance and
economics may be well versed in financial topics but not as
mathematically minded as students of mathematics.

Since the subject of this book is the  of finance, I have notmathematics
watered down the mathematics in any way (appropriate to the level of the
book, of course). That is, I have endeavored to be mathematically
rigorous . On the other hand, the reader is notat the appropriate level
assumed to have any background in finance, so I have included the
necessary background in this area (stock options and forward contracts).

I have also made an effort to make the book as mathematically self-
contained as possible. Aside from a certain comfort level with
mathematical thinking, a freshman/sophomore course in linear algebra is
more than enough. In particular, the reader should be comfortable with
matrix algebra, the notion of a vector space and the kernel and range of a
linear transformation. The method of Lagrange multipliers is used in a
couple of proofs related to risk management, but these proofs can be
skimmed or omitted if desired.

Of course, probability theory is ever present in the area of mathematical
finance. In this respect, the book is self-contained. Several chapters on
probability theory are placed at appropriate places throughout the book.
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The idea is to provide the necessary theory on a “need to know” basis. In
this way, readers who choose not to cover the continuous pricing theory,
for example, need not deal with matters related to continuous probability.

The book is organized as follows. The first chapter is devoted to the
elements of discrete probability. The discussion includes such topics as
random variables, independence, expectation, covariance and best linear
predictors. If readers have had a course in elementary probability theory
then this chapter will serve mostly as a review.

Chapter 2 is devoted to the subject of portfolio theory and risk
management. The main goal is to describe the famous Capital Asset
Pricing Model (CAPM). The chapter stands independent of the
remainder of the book and can be omitted if desired.

The remainder of the book is devoted to asset pricing models. Chapter 3
gives the necessary background on stock options. In Chapter 4, we
briefly illustrate the technique of asset pricing through the assumption of
no arbitrage by pricing plain-vanilla forward contracts and discussing
some simple issues related to option pricing, such as the put-call option
parity formula, which relates the price of a put and a call on the same
underlying asset with the same strike price and expiration time.

Chapter 5 continues the discussion of discrete probability, covering
conditional probability along with more advanced topics such as
partitions of the sample space and knowledge of random variables,
conditional expectation (with respect to a partition of the sample space)
stochastic processes and martingales. This material is covered at the
discrete level and always with a mind to the fact that it is probably being
seen by the student for the first time.

With the background on probability from Chapter 5, the reader is ready
to tackle discrete-time models in Chapter 6. Chapter 7 describes the Cox-
Ross-Rubinstein model. The chapter is short, but introduces the
important topics of drift, volatility and random walks.

Chapter 8 introduces the very basics of continuous probability. We need
the notions of convergence in distribution and the Central Limit Theorem
so that we can take the limit of the Cox-Ross-Rubinstein model as the
length of the time periods goes to . We perform this limiting process in!
Chapter 9 to get the famous Black-Scholes Option Pricing Formula.
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Finally, in Chapter 10 we discuss optimal stopping times and American
options. This chapter is perhaps a bit more mathematically challenging
than the previous chapters.

A Word On Definitions
Unlike many areas of mathematics, the subject of this book, namely, the
mathematics of finance, does not have an extensive literature at the
undergraduate level. Put more simply, there are very few undergraduate
textbooks on the mathematics of finance.

Accordingly, there has not been a lot of precedent with respect to setting
down the basic theory at the undergraduate level, where pedagogy and
use of intuition is (or should be) at a premium. One area in which this
seems to manifest itself is the lack of terminology to cover certain
situations.

Accordingly, on rare occasions I have felt it necessary to invent new
terminology to cover a specific concept. Let me assure the reader that I
have not done this lightly. It is not my desire to invent terminology for
any other reason than as an aid to pedagogy.

In any case, the reader will encounter a few definitions that I have
labeled as . This label is intended to convey the fact that thenonstandard
definition is not likely to be found in other books nor can it be used
without qualification in discussions of the subject matter outside the
purview of this book.
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Introduction

Portfolio Risk Management
Risk is an inevitable side effect of the effort to make more money than
the next guy. To be sure, money makes money and this process can be
carried out without any significant measure of risk: all an investor needs
to do is buy United States Treasury bonds, generally considered to be
risk-free investments. The price paid for such an investment is generally
a boring rate of return.

The real problem is that if everyone makes the same rate of return, then
this return serves only to maintain the status quo. Put another way, if you
want to buy a Rolls Royce or a yacht or even a Rolex watch, then you
need to make more money than the next guy, and this requires taking
risk.

The first problem is to decide how to quantify the level of risk of an
asset. This turns out to be simple. However, like the rest of life, simple
answers often turn out to be incomplete. In particular, not only is it
important to measure an asset's risk, but it is essential to measure the risk
that results from the asset's interaction with the other assets in a
portfolio entire. After all, in the end it is the performance of an investor's 
portfolio that separates one investor from another.

Of course, the future return of an asset is generally unknown in the
present. In probabilistic terms, an asset's return is a . Sorandom variable
too is the return on an entire portfolio of assets. However, it is not hard to
see that by combining assets in a careful manner, it is possible to
engineer the overall risk of the portfolio, possibly even to a point that is
below the level of risk of each individual asset. This risk-lowering
process of asset selection is called .diversification

Speaking more mathematically, it is generally accepted that a good
measure of an asset's risk is the  (or standard deviation) of thevariance
return. As the reader probably knows, the variance (or standard
deviation) is a measure of the spread of possible values of a random
variable. The greater the variance, the greater is the probability that the
risk will deviate significantly from the average. By the same token, the
covariance of an asset's return with respect to the returns of the other
assets in the portfolio provides a good measure of risk-interaction.
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Thus, in portfolio management theory, one examines the expected value
of an asset's return as well as its variance and covariance with other
assets. Only through these statistics can one determine whether adding a
particular asset to a portfolio is justified based on a risk-return analysis.
As we will see, a remarkably simple procedure is provided by the Capital
Asset Pricing Model (or CAPM).

The CAPM leads to the notion of a , which is a portfoliomarket portfolio
of risky assets that has . In theory, such a portfolioperfect diversification
must contain a positive amount of every available asset in the universe.
This is because all investors will want to invest exclusively in this
portfolio (along with the risk-free asset) and so any asset that is not in the
market portfolio will wither from neglect and die.

From a practical standpoint, the market portfolio is nothing but hot air.
On the other hand, studies indicate that it is possible to approximate a
market portfolio by investing in a few dozen or so well-chosen assets.
Fortunately, this also partially mitigates the problem of withering assets,
because an asset that doesn't make it into one investor's “market
portfolio” may very well make it into another's portfolio.

Once a market portfolio (or approximation thereof) has been identified,
there remains only one consideration for the rational investor (at least in
theory) and that is how much to invest in the risky portfolio and how
much to invest instead in a risk-free asset. This is a question not for
mathematics but for personal introspection and this is where our story
will end.

Option Pricing Models
A  or  is a legal contract thatfinancial security financial instrument
conveys ownership (such as in the case of a stock), credit (such as in the
case of a bond) or rights to ownership (such as in the case of a stock
option).

Some financial securities have the property that their value depends upon
the value of another security. In this case, the former security is called a
derivative underlying of the latter security, which is then called the 
security for the derivative. The most well know examples of derivatives
are ordinary stock options (puts and calls). In this case, the underlying
security is a stock.
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However, derivatives have become so popular that they now exist based
on more exotic underlying financial entities, some that would not
normally be considered financial securities, such as interest rates and
currency exchange rates. Perhaps this is why it has become common to
refer to the underlying entity simply as the .underlying

It is also possible to base derivatives on other derivatives. For example,
one can trade options on futures contracts. Thus, a given financial entity
can be a derivative under some circumstances and an underlying under
other circumstances.

Indeed, the business of investors is to make money and this can only be
done (arbitrage opportunities aside) by taking risk, that is, by gambling.
Just as the Las Vegas casinos are always on the lookout for a new game
of chance with which to increase their profits, the investment community
is always on the lookout for a new financial game of chance. These
games often take the form of exotic derivatives.

In this book, we shall concentrate on simple derivatives, primarily
ordinary stock options. We will be interested in both the purchase and
sale of such securities. When a purchase is made the buyer is said to take
a  in the security. When a sale is made the seller is said tolong position
take the  in the security. The two positions are said to beshort position
opposite positions of one another.

The central theme of this portion of the book is to find ways to determine
the initial value (or price) of a derivative as a function of the price of its
underlying asset. This is the .derivative pricing problem

The only time at which the derivative pricing problem is relatively easy
to solve is at the time of  of the derivative. For example, if aexpiration
certain derivative gives you the right to buy a stock at $100 per share at
this very moment (the time of expiration) then this option is worthless if
the current market price of the stock is below $100. On the other hand, if
the current market price of the stock is $110 then the current value of the
derivative is $10. More generally, if the current stock price is  then theW
option is worth  assuming, as we do, that there are nomaxÖW  "!!ß !×
external costs or fees involved.

At any time before expiration, the connection between the current value
of a derivative and the current value of its underlying asset is complex
and this is why the theory of derivative pricing is also complex. At the
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current state of knowledge, the only way to deal with the full complexity
of this relationship is to assume it away.

Assumptions
Financial markets are complex. As with most complex systems, creating
a mathematical model of the system requires making some simplifying
assumptions.

In the course of our analysis, we will make several such simplifying
assumptions. For example, we will assume a aperfect market, that is, 
market in which

ì  there are no commissions or transaction costs,
ì  the lending rate is equal to the borrowing rate,
ì  there are no restrictions on short sales.

Of course, there is no such thing as a perfect market in the real world, but
this assumption will make the analysis considerably simpler and will also
let us concentrate on certain key issues that appear less clearly under less
restrictive conditions.

Arbitrage
As we will see, the key principle behind asset pricing is the notion that
the market tries to avoid arbitrage. More specifically, if an arbitrage
opportunity exists, then prices will be adjusted to eliminate that
opportunity.

As a simple example, suppose that gold is selling for $380.10 per ounce
in New York and $380.20 in London. Then investors could buy gold in
New York and sell it in London, making a profit of 10 cents per ounce
(assuming that transaction costs do not absorb the profit). However, the
purchasing of gold in New York will drive the New York price higher
and the selling of gold in London will drive the London price lower.
Result: no more arbitrage.

As a consequence of this tendency to an arbitrage-free market
equilibrium, it only makes sense to price securities under the assumption
that there is no arbitrage.

Surprisingly, the term arbitrage suffers from a bit of a dichotomy. In a
general, nontechnical sense, the term is often used to signify a condition
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under which an investor is guaranteed to make a profit regardless of
circumstances.

The more commonly adopted technical use of the term is a bit different.
An  is an investment opportunity that isarbitrage opportunity
guaranteed not to result in a loss and may (with positive probability)
result in a gain. Note that the gain is not guaranteed, only the lack of loss
is guaranteed. Also, we must be very careful how we measure the gain.
For instance, if $100 today grows to $100.01 in a year, is this true gain?
Put another way, would you make this investment? Probably not,
because there are undoubtedly risk-free alternatives, such as depositing
the money in a Federally insured bank account that will produce a better
gain.

The No-Arbitrage Principle

The no-arbitrage principle for pricing is actually quite simple. Imagine
two portfolios of assets (stocks, bonds, derivatives, etc.). Let us refer to
these portfolios as Portfolio A and Portfolio B. Let us also consider two
time periods: the initial time  and a time  in the future.> œ ! > œ X

Accordingly, each portfolio has an initial value (value at time ) and a!
final value (value at time ) or . Let us denote the initial value ofX payoff
the two portfolios by  and  and the final values by  andi i iE EßXFß!,0
iFßX . The values of Portfolio A are shown in Figure 1. A similar figure
holds for Portfolio B.

time 0 time T

VA,0

Possible
Values of

VA,T

VA,T(ω1)

VA,T(ω2)

VA,T(ωn)

Figure 1– The values of Portfolio A

As can be seen in the figure, Portfolio A has an initial value that is either
known or capable of being determined. On the other hand, the final value
of portfolio A is unknown at time . In fact, we assume that this> œ !
value depends on the state of the economy at time , which can be oneX
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of  possible states . Thus, the final value  is actually a8 ßá ß= = i" 8 EßX

function of these states.

Similarly, we assume that the initial value of Portfolio B is known or
capable of being determined and that the final value is a function of the
possible states of the economy.

Now, consider what happens if Portfolios A and B have exactly the same
payoffs , that isregardless of the state of the economy

i = i =EßX 3 FßX 3Ð Ñ œ Ð Ñ

for . The no-arbitrage principle then implies that the initial3 œ "ßá ß 8
values must be equal, that is

Z œEß! Fß!i

For suppose that . Then under the assumption of a perfectZ Eß! Fß!i
market, an investor can purchase the cheaper Portfolio B and sell the
more expensive Portfolio A, pocketing the difference. At time , X no
matter what state the economy is in, the investor receives the common
final value of the portfolios and must pay out the same amount. Thus, he
loses nothing at the end and can keep the initial profit. This is arbitrage.

Thus, we see that the no-arbitrage principle can be used to price a
portfolio, that is, to determine an initial value of a portfolio. To price
Portfolio A, for example, all we need to do is find another portfolio, say
Portfolio B that has the same payoff function as Portfolio A and has a
known initial value. It follows that the initial value of Portfolio A must
be equal to the initial value of Portfolio B.

The no-arbitrage principle can be used in other ways to determine prices.
For example, if the initial values of the two portfolios are equal, then it
cannot be that one portfolio  yields a higher payoff than the other.always

We will see many examples of the use of the no-arbitrage principle
throughout the book.
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Chapter 1

Probability I: An Introduction to Discrete
Probability
Asset pricing involves the prediction of future events and as such relies
very heavily on the mathematical theory of probability. In this chapter,
we begin a discussion of basic probability. This discussion will continue
in later chapters, as the need for more information arises in connection
with subsequent topics to be covered in the book.

Probability seems to have had its origins in an effort to predict the
outcome of games of chance and is generally considered to have begun
as a formal theory in a series of letters between the two famous
mathematicians Blaise Pascal and Pierre de Fermat in the summer of
1654.

Overview
In the study of probability, the typical scenario is that of an ,experiment
such as rolling a pair of dice, administering a drug to a patient or
predicting the future price of a stock. The key is that the experiment must
have a well-defined set of . This set is referred to as thepossible outcomes
sample space of the experiment.

Subsets of the sample space, that is, subsets of outcomes, are referred to
as . When an outcome occurs that is in a particular event, we sayevents
that the event has occurred. Thus, for example, we have the event of
getting a sum of  on the dice, the event that a patient's temperature(
drops to  after receiving a drug or the event that a stock price rises*)Þ'
by %."!

Next, a method must be determined to measure the , orprobability
likelihood that various events will occur as a result of conducting the
experiment. More specifically, the probability of an event is a real
number between  and  that measures the likelihood that the outcome! "
will lie in the event. A probability of  indicates that the event cannot!
occur (is impossible) and a probability of  indicates that the event is"
certain to occur.
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The method that is used to determine these probabilities is not really part
of the subject of probability . Two approaches are common. One isper se
simply to assume the probabilities. For instance, consider the experiment
of tossing a single coin. Assuming that the coin is fair is equivalent to
assuming that the probability of heads and tails are both . Another"Î#
approach is statistical in nature, using empirical data to assign
probabilities. For example, if the coin is flipped  times and results"!!!!
in  heads, we may decide to set the probability of heads equal to&!!$
&!!$Î"!!!!.

The flavor of probability theory depends quite markedly on the nature of
the sample space. The basic concepts of probability theory require far
less mathematical machinery when dealing with  sample spaces, forfinite
in this case probabilities can be assigned to  in theindividual outcomes
sample space, as we did with the coin-tossing example just discussed. As
we will soon see, all that is required is that the probabilities be numbers
between  and  (inclusive) that add up to . Then the probability of an! " "
event is simply the sum of the probabilities of the outcomes that lie in
that event. The term  is used to refer to the theoryfinite probability theory
of probability on finite sample spaces.

As an example, suppose that based on market research, we decide that a
certain stock, currently selling at $  per share, will be selling at either"!!
$ , $  or $  dollars by the end of the day. Thus, we have an** "!! "!"
experiment whose sample space consists of the possible stock prices

H œ Ö**ß "!!ß "!"×

Further, after research into the price history of the stock, we may decide
to assign empirical probabilities as follows

  Ð**Ñ œ !Þ#&ß Ð"!!Ñ œ !Þ&ß Ð"!"Ñ œ !Þ#&

In this case, the event that the price does not fall is , whoseÖ"!!ß "!"×
probability is . Ð"!!Ñ  Ð"!"Ñ œ !Þ(&

Probability theory for countably infinite sample spaces is also relatively
approachable, at least at the beginning. Again, probabilities can be
assigned to the individual outcomes in the sample space. However, the
issue of convergence of an infinite sum now comes into play. The term
discrete probability is used to refer to the probability of finite or
countably infinite sample spaces. Whole books have been written on the
subject of discrete probability alone.
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As an example of a discrete (but nonfinite) sample space, consider the
experiment of tossing a coin until the  heads appears. The outcome isfirst
the toss number of this first heads. At the outset, we cannot confine the
set of outcomes to any finite sample space, because there is no way to tell
in advance how many tosses will be necessary before a heads appears. So
the sample space must be the set

H œ Ö"ß #ß $ßá×

of all positive integers. Indeed, one must argue (or assume) that a heads
must eventually appear, for if not then even this set does not represent all
possible outcomes.

It is possible to show that if the coin is , that is, if the likelihood offair
heads is the same as that of tails, then the probability that the so-called
waiting time to the first heads is  is given by5

Ð 5Ñ œ
"

#
first heads at toss 

5

Since the infinite sum

"
5 "

5

"

#

converges to , we have a legitimate probability measure."

To get some idea of why these probabilities make sense, it should be
rather obvious that the probability that the first heads occurs at toss
5 œ " œ is . The only way that the first heads can occur at toss" "

# #"

5 œ # is if the first toss results in tails and the second in heads. But there
are a total of four equally likely possibilities for the first two tosses

ÐLßLÑß ÐLß X Ñß ÐX ßLÑß ÐX ß X Ñ

so it is reasonable to set the probability of waiting till the second toss for
the first heads to . This reasoning can be extended to larger values" "

% #œ #

of .5

We do not want to leave the reader with the impression that discrete
probability is somehow “easier” than nondiscrete probability, where the
sample space is uncountable. This is decidedly not the case. However, it
is true that a basic understanding of discrete probability requires much
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less mathematical background. For example, discrete probability does
not, in general, require the notion of integrability and finite probability
does not, in general, require the notion of limit.

For the nondiscrete case, things take a dramatic turn towards more
sophisticated mathematics. For example, imagine the stock in a company
that is headed for (or has already declared) bankruptcy. It is only a matter
of time before the stock price is essentially  (say). Let us call it the ! time
to failure of the stock. The waiting time for this event could, at least in
theory, be any positive real number (assume the stock trades 24 hours per
day) so the sample space is the set  of all positive real numbers, whichH
is uncountable.

Unlike the case of a discrete sample space, we cannot simply assign a
probability to each of the uncountably many times to failure because it is
a fact of mathematics that the sum of  many positiveuncountably
numbers is never finite, let alone equal to . So rather than attempt to"
determine probabilities for individual outcomes (failure times), we must
limit ourselves to assigning probabilities directly to events. However, not
all subsets of the sample space can qualify as events. This issue gets
rather involved and we will not it here.

The most direct and elegant way to assign probabilities to events is to use
a . Figure 1 shows how this might be done.function

5 6
0.1 Days to

Failure

Figure 1–A probability density function

This figure shows the graph of a function that specifies the probability of
failure for any . In particular, it is the time interval area under the curve
that specifies the probability. For example, the probability that failure
will occur sometime between the -th and -th day is the area under the& '
curve between the vertical lines  and , which is . ThisB œ & B œ ' !Þ"
function is referred to as a . Probabilityprobability density function
density functions, such as the well-known  that studentsbell shaped curve
often want professors to use in determining their grades, are often, but
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not always, used to specify probabilities in the nondiscrete case. Indeed,
some probability measures cannot be specified using a probability
density function.

In any case, the point we wish to make at this time is that even the
specification of probabilities requires much more mathematical
machinery in the nondiscrete case than in the discrete case.

We will need only  probability for our study of  pricingfinite discrete-time
models. We will discuss some aspects of the general theory (including
the nondiscrete case) much later in the book, as a prelude to our
discussion of the Black-Scholes option pricing formula.

So let us proceed to set down the basic principles of the subject of finite
probability. Since this is not, after all, a textbook on probability, we will
tend to be brief, covering what we need for our immediate purposes. In a
subsequent chapter, we will expand our discussion of discrete probability
to cover what is necessary to make sense of the general discrete-time
pricing model.

Probability Spaces
We may as well begin with the main definition.

Definition A  is a pair  consisting of afinite probability space Ð ß ÑH 
finite nonempty set , called the  and a real-valuedH sample space
function  defined on the set of all subsets of , called a  H probability
measure on . The function  must satisfy the following properties.H 
1) (Range) For all E © H

! Ÿ ÐEÑ Ÿ "

2) (Probability of  )H

 HÐ Ñ œ "

3) (Additivity property) If  and  are  thenE F disjoint

  ÐE  FÑ œ ÐEÑ  ÐFÑ

In this context, subsets of  are called . H events

As mentioned earlier, the sample space is intended to represent the set of
all possible outcomes of an experiment. The probability  of a =Ð Ñ
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particular outcome  is intended to represent the likelihood that the=
outcome of the experiment will be .=

On the other hand, this is all intuition, not mathematics. Formally
speaking, all we care about is that  is a finite nonempty set and  is aH 
probability measure as defined by the properties in the definition.
Property 2) says that the event consisting of the entire sample space is a
certain event, that is, any outcome must lie in the sample space. Property
3) says that if two events have nothing in common, then the likelihood
that  occurs is the sum of the likelihood of each event. Noteeither one
that it is vital that the events be disjoint for this to hold.

Sometimes we will forget ourselves and engage in a common abuse of
terminology by referring to the set  by itself as a probability space. InH
this case, the probability measure  still exists, but we just don't need to
mention it explicitly at that time. The student would be well-advised to
avoid this peccadillo.

Probability Mass Functions

If  is a finite set, then for each  the event  is called anH = H =− Ö ×
elementary event. The simplest way to define a probability measure on
a finite sample space  is just to specify the probability of all elementaryH
events. Equivalently, we assign to each of the elements  a number= H−
: ! Ÿ : Ÿ "= = satisfying  and

"
= H

=

−

: œ "

Then we can define a probability measure  by setting

 =ÐÖ ×Ñ œ :=

and extending this to all events by finite additivity. This is a fancy way
of saying that the probability of any event  is the sum of theI
probabilities of the elementary events contained in .I

The set  is referred to as a  and theÖ: ± − ×= = H probability distribution
function  defined by0À ÄH ‘

0Ð Ñ œ := =

is called a . (Do not confuse the termprobability mass function
probability distribution distribution function with the term , which has a
different meaning that we will define in a later chapter.)
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Note the subtle but important difference between the probability measure
  and the probability mass function , namely,  is defined on all0
subsets elements of  whereas  is defined on all  of .H H0

When a probability distribution is given, the probability of any event
E © H is the  of the probabilities of the outcomes in the event, that issum

ÐEÑ œ :"
=

=

−E

Moreover, if each outcome in the sample space is equally likely, that is,
if each outcome has the same probability, this probability is  and so"k kH
the probability of any event  is simply the size of  divided by the sizeI I
of the sample space , that isH


H

ÐIÑ œ
Ik kk k

EXAMPLE 1 Studies of the price history of a certain stock over the last
several years have shown that, for the month of January, the probability
that the stock will reach a certain maximum value during the month is as
follows











Ð!%Þ**Ñ œ !Þ'&

Ð&*Þ**Ñ œ !Þ#

Ð"!"%Þ**Ñ œ !Þ"

Ð"&"*Þ**Ñ œ !Þ!%

Ð#!#%Þ**Ñ œ !Þ!"

What is the probability that the stock will reach  dollars during the"!
month? What is the probability that the stock will either not reach &
dollars during the month or will reach  dollars?#!
Solution The stock will reach  dollars during the month if and only if"!
the maximum stock price during the month is at least . Hence"!

c

c c c

Ð "!Ñ

œ Ð"!"%Þ**Ñ  Ð"&"*Þ**Ñ  Ð#!#%Þ**Ñ

œ !Þ"  !Þ!%  !Þ!" œ !Þ"&

price reaches 
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Similarly,

c c cÐ & #!Ñ œ Ð!%Þ**Ñ  Ð#!  #%Ñ

œ !Þ'&  !Þ!" œ !Þ''

not reach  or reach 

Probability theory tends to have its own vocabulary, even when it comes
to simple concepts like the disjointness of sets.

Definition When two events  and  are disjoint as sets, we say thatE F
they are . When a collection  of eventsmutually exclusive ÖE ßá ßE ×" 8

satisfies

E  E œ g3 4

for all ,  we say that the collection is .3 4 pairwise mutually exclusive

Some easy consequences of the definition of probability space are given
below.

Theorem 1 Let  be a finite probability space. ThenÐ ß ÑH 
1) (Probability of  empty event)

ÐgÑ œ !

2) (Monotonicity)

E © F Ê ÐEÑ Ÿ ÐFÑ 

3) (Probability of the complement)

 ÐE Ñ œ "  ÐEÑ-

4) (Finite additivity property) If  is a finite collection ofÖE ßá ßE ×" 8

pairwise mutually exclusive events in  thenH

  ÐE âE Ñ œ ÐE Ñ â ÐE Ñ" 8 " 8

Partitions and the Theorem on Total Probabilities

The following simple concept will play a central role in our discussion of
derivative pricing models.

Definition partition Let  be a nonempty set. Then a  of  is a collectionH H
c Hœ ÖF ßá ßF ×" 8  of  subsets of , called the  of thenonempty blocks
partition, with the following properties
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1) The blocks are pairwise disjoint

F  F œ g3 4

for all .3ß 4
2) The union of the blocks is all of H

F âF œ" 8 H

The following important theorem says we can determine the probability
of an event  if we can determine the probability of that portion of I I
that belongs to each block of a partition. We leave proof to the reader.

Theorem 2 Theorem on Total Probabilities  ( ) Let  be a sample spaceH
and let  be events that form a partition of . Then for anyI ßá ßI" 8 H
event  in ,E H

 ÐEÑ œ ÐE  I Ñ"
5œ"

8

5

Independence
A  coin is one for which the probability of heads is . Indeed, thisfair "Î#
is the definition of the term . Suppose we toss a fair coin fair coin **
times and get heads each time, admittedly an unlikely event but
nevertheless possible. Would you be willing to bet that the -th toss"!!
will result in another heads? Many people would not, reasoning
(incorrectly) that since heads has occurred so many times in a row, an
outcome of tails is way “overdue.”

The fact is, however, that the outcome of each toss of the coin is
independent of the outcomes of the other tosses, and so the probability of
getting a heads on the -th toss is still , despite the previous results."!! "Î#

Perhaps the reason for confusion on this point has to do with the
probability of getting  heads in a row in the first place, which is**
certainly very small. But once that has happened, the extreme
unlikeliness has been “factored out” so-to-speak and we are back to the
likeliness of the outcome of a single toss.

Intuitively speaking, two events are independent if the knowledge that
(or assumption that) one event will happen does not effect the probability
of the other event happening. We will be able to make this statement
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precise when we discuss conditional probability in a later chapter. In any
case, we can state the formal definition of independence now.

Definition The events  and  on the probability space  areI J Ð ß ÑH 
independent if the probability that  events occur is the product ofboth
the probabilities of the events, in symbols

  ÐI  JÑ œ ÐIÑ ÐJ Ñ

For example, suppose that a certain stock can move up in price or down
in price over a day and a certain bond can do likewise. If we  thatassume
the actions of the stock and the bond are independent then

  Ð Ñ œ Ð Ñ Ð Ñstock up  bond down stock up bond downand

We can also define independence of a collection of events.

Definition independent The collection of events  is  if forÖI ßá ßI ×" 8

any subcollection  of these events we haveÖI ßá ßI ×3 3" 5

  ÐI â I Ñ œ ÐI Ñâ ÐI Ñ3 3 3 3" "5 5

Note that to check whether or not  events ,  and  are independent,$ E F G
we must check  conditions$

E F and  are independent
E G and  are independent
F G and  are independent

In general, to check that a collection of  events is independent, we must5
check a total of  conditions. Thus, the number of conditions"Î#  "5

grows very rapidly with the number of events.

Binomial Probabilities
The simplest type of meaningful experiment is one that has only two
outcomes. Such experiments are referred to as ,Bernoulli experiments
or . The two outcomes are often described by the termsBernoulli trials
success failure and , and the probability of success is usually denoted by
: "  :. Hence, the probability of failure is .

For example, tossing a coin is a Bernoulli experiment, where we may
consider heads as success and tails as failure (or vice-versa). As a more
relevant example, we will consider a derivative pricing model in which at
any given time  the price of a certain stock may rise from its previous>5
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value  to  or it may fall from its previous value  to  whereW W? W W.
!  .  "  ? >. Thus, at each time  we have a Bernoulli experiment.5

If a Bernoulli experiment with probability of success  is repeated : 8
times, this is called a  with  . Note that sincebinomial experiment trials8
the  is being repeated, the outcomes of the trialsexact same experiment
are , that is, the outcome of the -th trial does not effect theindependent 5
outcome of the -st trial. The  of the binomialÐ5  "Ñ parameters
experiment are  and .: 8

For example, tossing a coin  times is a binomial experiment. Drawing a8
card  times, with success being the drawing of an ace, is a binomial8
experiment provided that we replace each card before drawing the next
card same. This is necessary since we must repeat the  binomial
experiment each time.

Because the individual Bernoulli trials in a binomial experiment are
independent, it is easy to compute the probability of any particular
outcome of the binomial experiment, as the following example
illustrates. Indeed, we will study a generalization of the following
example carefully in a later chapter.

EXAMPLE 2 Consider a stock whose price can change at any one of '
times

>  >  â  >! " &

Suppose the stock's initial price at time  is . Moreover, during each> W!

time interval  the stock price goes up by a factor of  or downÒ> ß > Ó ?5 5"

by a factor of , where , independently of the previous. !  .  "  ?
changes in the price. The probability that the stock price goes up is .:
Thus, for each time interval we have a Bernoulli experiment with
probability of success . Moreover, the entire price history is a binomial:
experiment with parameters  and .: 8 œ &

A typical outcome of this binomial experiment can be written as a
sequence of 's and 's of length  and so the sample space is the setY H &

H œ ÖY ßH×&

of all such sequences. For instance, the sequence  says thatYYHYH
during the intervals ,  and  the stock price went upÒ> ß > Ó Ò> ß > Ó Ò> ß > Ó! " " # $ %
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whereas during the intervals  and  the stock price whenÒ> ß > Ó Ò> ß > Ó# $ % &

down.

To compute the probability of this outcome, we use the fact that the
individual trials are independent and so the probability of their
intersection is the product of their probabilities. Thus

ÐYYHYHÑ œ ::Ð"  :Ñ:Ð"  :Ñ œ : Ð"  :Ñ$ #

It is clear that the probability of an element  depends only upon the= H−
number of 's and 's in  and not their order. Thus, if we setY H =

R Ð Ñ œ Y

R Ð Ñ œ H
Y

H

= =

= =

number of 's in 
number of 's in 

then

 =Ð Ñ œ : Ð"  :ÑR Ð Ñ R Ð ÑY H= =

Let us compute the probability of the event of having exactly  up-ticks$
in the stock price. The tedious method is to list all such price histories
thusly

YYYHH YYHYH
YYHHY YHYYH
YHYHY YHHYY
HYYYH HYYHY
HYHYY HHYYY

Since there are  of these histories and each one has probability"!
: Ð"  :Ñ "!: Ð"  :Ñ$ # $ # the probability is .

The smart way to compute this probability is to observe that there areˆ ‰&
$ œ "! $ such histories—one for each way to choose the  spots for the

Y : Ð"  :Ñ's. Since each history has probability , the probability of the$ #

event is ."!: Ð"  :Ñ$ #

It is now easy to generalize this result. The probability of having exactly
5 8  5 up-ticks (and thus  down-ticks) is just

Š ‹8

5
: Ð"  :Ñ5 85

We have established the following useful result.
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Theorem 3 Consider a binomial experiment with parameters  and .: 8
The sample space of this experiment is the set  of allH œ Ö=ß 0×8

sequences of 's and 's of length , where  stands for success and  for= 0 8 = 0
failure. For any  let= H−

R Ð Ñ œ == = =number of 's in 

1) If  then= H−

 =Ð Ñ œ : Ð"  :ÑR Ð Ñ 8R Ð Ñ= == =

2) The probability of getting   successes is given byexactly 5

Ð 5 Ñ œ : Ð"  :Ñ
8

5
exactly  successes  Š ‹ 5 8

EXAMPLE 3 Four cards are drawn, with replacement, from a deck of
cards. What is the probability of getting at least  aces?$
Solution The probability of getting at least  aces is equal to the$
probability of getting exactly  aces plus the probability of getting$
exactly  aces. Since we are dealing with a binomial experiment, with%
probability of success (getting an ace) equal to  we have: œ œ% "

&# "$



 

Ð $ Ñ

œ Ð $ Ñ  Ð % Ñ

œ 
% " "# % " "#

$ "$ "$ % "$ "$

œ
%*

#)&'"
¸ !Þ!!"

getting at least  aces
getting exactly  aces getting exactly  aces

Œ Œ  Œ  Œ Œ  Œ $ " % !

(

which is quite small. 

The probability distribution described in the previous example and
theorem is extremely important.

Definition Let  and let  be a positive integer. Let!  :  " 8
H Hœ Ö!ßá ß 8×. The probability distribution on  with mass function

b( n, )5à : œ : Ð"  :Ñ
8

5
Š ‹ 5 8

for  is called the . This distribution5 œ !ßá ß 8 binomial distribution
gives the probability of getting exactly  successes in a binomial5
experiment with parameters  and .: 8
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Figure 1 shows the graph of two binomial distributions.

1 2 3 4 5 6 7 8 9 10 11 12
k

b(k;12,0.5)0.2

0.1

1 2 3 4 5 6 7 8 9 10 11 12
k

b(k;12,0.75)
0.2

0.1

Figure 1 – Binomial distributions

Empirical Versus Theoretical Probabilities

As alluded to earlier, there are two common ways in which to assign
probabilities. Consider, for example, the problem of setting the value of
the probability  in Example 2. This is the probability that the stock price:
will rise.

One approach is to carefully examine the history of the stock's price over
a substantial period of time. Then we can estimate  by taking the:
number of times that the stock price increased divided by the total
number of times. For instance, if the stock price increased  times in&!!$
the last  time periods, then we can set"!!!!

: œ
&!!$

"!!!!

Of course, it follows that the probability of a decrease is

"  : œ "  œ
&!!$ %**(

"!!!! "!!!!
 

Because these probabilities are the result of analyzing empirical data, or
at least because they are the result of some analysis of actual physical
phenomena, they are referred to as .empirical probabilities

On the other hand, we could simply have assumed, perhaps through lack
of any actual data for analysis that . This type of probability is: œ "

#

termed a . As we will see, both types oftheoretical probability
probabilities have their place in the mathematics of finance.

Random Variables
The following concept is key.
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Definition A real-valued function  defined on a finite sample\À ÄH ‘
space  is called a  on . The set of all randomH Hrandom variable
variables on  is denoted by RV . H HÐ Ñ

As the definition states, for finite (or discrete) probability spaces, a
random variable is nothing more or less than a real-valued function.
However, as we will see in a later chapter, for nondiscrete sample spaces,
not all real-valued functions can qualify as random variables.

Since RV  is just the set of all functions on , it is a Ð ÑH H vector space
under ordinary addition and scalar multiplication of functions. Thus, if \
and  are random variables on  and  then] +ß , −H ‘

+\  ,]

is a random variable on . Note also that the product of two randomH
variables on  is a random variable on .H H

One of the most useful types of random variables are those that identify
specific events.

Definition Let  be an event in . The function  defined byE "H E
H

" Ð Ñ œ
" − E
! Â EE

H =
=
=œ

is called the (or ) for .indicator function indicator random variable  E
When the set  is clear, we may also write  for the indicator functionH "E
for .E

EXAMPLE 4 Let

H œ Ö!Þ&ß !Þ(&ß "ß "Þ#&ß "Þ&ß "Þ(&×

be a sample space of possible Federal discount rates. Consider a
company whose stock price tends to fluctuate with interest rates. The
stock prices can be represented by a random variable  on . ForW H
example
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WÐ!Þ&Ñ œ "!&

WÐ!Þ(&Ñ œ "!!

WÐ"Ñ œ "!!

WÐ"Þ#&Ñ œ "!!

WÐ"Þ&Ñ œ *&

WÐ"Þ(&Ñ œ *!

The event that  is the event consisting of the discount ratesÖW œ "!!×
Ö!Þ(&ß "ß "Þ#&×, that is,

ÖW œ "!!× œ Ö!Þ(&ß "ß "Þ#&×

EXAMPLE 5 Consider the experiment of rolling two fair dice and
recording the values on each die. The sample space consists of the $'
ordered pairs

H œ ÖÐ"ß "Ñß Ð"ß #Ñß Ð"ß $Ñßá ß Ð'ß %Ñß Ð'ß &Ñß Ð'ß 'Ñ×

Since the dice are fair, each ordered pair is equally likely to occur and so
the probability of each outcome is ."Î$'

However, for some games of chance, we are interested only in the  ofsum
the two numbers on the dice. So let us define a random variable
WÀ ÄH ‘ by

WÐ+ß ,Ñ œ +  ,

The event  of getting a sum of  isÖW œ (× (

ÖW œ (× œ ÖÐ"ß 'Ñß Ð#ß &Ñß Ð$ß %Ñß Ð%ß $Ñß Ð&ß #Ñß Ð'ß "Ñ×

and

 Ð (Ñ œ ÐW œ (Ñ œ œ
' "

$' '
sum equals 

Perhaps the most fundamental fact about random variables is that they
are used to identify events. In fact, there are times when we don't really
care about the actual values of —we only care about the events that areW
represented by these values. For example, in the previous example if we
instead used the “doubled sum” random variable

HÐÐ+ß ,ÑÑ œ #Ð+  ,Ñ

then  serves equally well to describe the relevant events in the game ofH
chance. For instance, .ÖW œ (× œ ÖH œ "%×
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Of course, this is not always the case. The actual values of some random
variables are important in their own right. Some examples are stock price
random variables, the interest rate random variables, the cost random
variables. All of these random variables serve to describe a particular set
of events in which we are interested. Let us look at this a bit more
formally.

The Probability Distribution of a Random Variable

Let  be a random variable on a probability space  where\ Ð ß ÑH 
H = = Hœ Ö ßá ß × \" 8 . Since  is finite,  takes on a finite number of
possible values, say . For each  we can form theT œ ÖB ßá ß B × B" 7 3

event

Ö\ œ B × œ \ ÐB Ñ œ Ö ± \Ð Ñ œ B ×3 3 4 4 3
" = =

which is simply the inverse image of . The expression  is theB Ö\ œ B ×3 3

most common notation for events described by random variables. Since
the range of a random variable is the set of real numbers, we can also
consider events such as

Ö\ Ÿ B × œ \ ÐÐ_ß B ÑÑ œ Ö ± \Ð Ñ Ÿ B ×3 3 4 4 3
" = =

The events

Ö\ œ B ×ß Ö\ œ B ×ßá ß Ö\ œ B ×" # 7

form a  of the sample space , that is, the events are pairwisepartition H
disjoint and their union is all of  (because  must be defined on all ofH \
H). Thus,

"
3œ"

7

3Ð\ œ B Ñ œ "

Note that it is customary to replace the somewhat cumbersome notation
 ÐÖ\ œ B×Ñ Ð\ œ BÑ by the simpler .

It follows that the numbers  form a probability distribution onÐ\ œ B Ñ3
the set , which is a subset of . Thus, the randomT ‘œ ÖB ßá ß B ×" 7

variable  describes a probability measure  on the set  of values of\  T\

\ by

 \ 3 3ÐÖB ×Ñ œ Ð\ œ B Ñ

This is called the  (or )probability measure probability distribution
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defined by . The corresponding probability mass function \ 0À ÄT ‘
defined by

0ÐB Ñ œ Ð\ œ B Ñ3 3

is called the  of .probability mass function \

Thus, for example, to say that a random variable  has a binomial\
distribution with parameters  and  is to say that the values of  are: 8 \
Ö!ßá ß 8× \ and that the probability mass function of  is the function

Ð\ œ 5Ñ œ ,Ð5à 8ß :Ñ œ : Ð"  :Ñ
8

5
Š ‹ 5 8

It is also common to say in this case that  is .\ binomially distributed

These facts about random variables are so important that they bear
repeating. Random variables are used to identify certain relevant events
from the sample space. Moreover, a random variable serves to “transfer”
the probability measure from the events in the sample space that it
identifies to the range of the random variable in .‘

We will also have need of random vectors.

Definition A  function  from a sample space  to the vector\À ÄH ‘ H8

space  is called a  on . ‘ H8 random vector

The set RV  of all random vectors on a sample space  is also a8Ð ÑH H
vector space under ordinary addition and scalar multiplication of
functions.

EXAMPLE 6 Let

H œ Ö!Þ&ß !Þ(&ß "ß "Þ#&ß "Þ&ß "Þ(&×

be a sample space of possible Federal discount rates. Consider a
company whose stock price tends to fluctuate with interest rates. Of
course, bond prices also fluctuate with respect to interest rates. We might
define the price random vector  by  where  isWÀ Ä WÐ Ñ œ Ð=ß ,Ñ =H ‘ =#

the price of the stock and  is the price of the bond when the discount,
rate is . For example,=

WÐ!Þ&Ñ œ Ð"!&ß ""#Ñ
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means that if the discount rate is % then the stock price is  and the!Þ& "!&
bond price is .""#

Independence of Random Variables

Two random variables  and  on the sample space  are independent\ ] H
if the events  and  are independent for all choices of Ö\ œ B× Ö] œ C× B
and . Intuitively, this says that knowing the value of one of the randomC
variables provides no knowledge of the value of the other random
variable. Here is a more formal definition, where the notation
 Ð\ œ Bß ] œ CÑ ÐÖ\ œ B×  Ö] œ C×Ñ is shorthand for .

Definition independent The random variables  and  on  are  if\ ] H

  Ð\ œ Bß ] œ CÑ œ Ð\ œ BÑ Ð] œ CÑ

for all . More generally, the random variables  areBß C − \ ßá ß\‘ " 8

independent if

 Ð\ œ B ßá ß\ œ B Ñ œ Ð\ œ B Ñ" " 8 8 3 3

3œ"

8$
for all . B ßá ß B −" 8 ‘

Expectation
The notion of expected value plays a central role in the mathematics of
finance.

Definition Let  be a random variable on a finite probability space\
Ð ß Ñ œ Ö ßá ß ×H  H = = where . The  (also called the" 8 expected value
expectation mean or ) of  is given by\

X =  =Ð\Ñ œ \Ð Ñ Ð Ñ"
3œ"

8

3 3

This is the sum of terms of the form: value of  at  times probability\ =3

that  occurs. If  takes on the  values  then we=3 " 7\ ÖB ßá ß B ×distinct
also have

X Ð\Ñ œ B Ð\ œ B Ñ"
3œ"

7

3 3

(Note the different upper limit of summation) This is a weighted sum of
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the values of , each value weighted by its probability of occurring. The\
expected value of  is also denoted by .\ .\

The expected value function RV  maps random variables onX H ‘À Ð Ñ Ä
Ð ß ÑH   to real numbers. One of the most important properties of this
function is that it is .a linear functional

Theorem 4 The expectation function RV  is a linearX H ‘À Ð Ñ Ä
functional, that is, for any random variables  and  and real numbers\ ]
+ , and 

X X XÐ+\  ,] Ñ œ + Ð\Ñ  , Ð] Ñ

Proof. Let us suppose that  has values  and  has values\ ÖB ßá ß B × ]" 8

ÖC ßá ß C × +\  ,] +B  ,C 3 œ "ßá ß 8" 7 3 4. Then  has values  for  and
4 œ "ßá ß7 +\  ,]. To compute the expected value of  consider the
events

I œ Ö\ œ B ß ] œ C ×3ß4 3 4

for  and . These events form a partition of 3 œ "ßá ß 8 4 œ "ßá ß7 H
with the property that  has  value  on  and+\  ,] +B  ,C Iconstant 3 4 3ß4

so, using the theorem on total probabilities, we have

X 





 

Ð+\  ,] Ñ œ Ð+B  ,C Ñ Ð\ œ B ß ] œ C Ñ

œ + B Ð\ œ B ß ] œ C Ñ

 , C Ð\ œ B ß ] œ C Ñ

œ + B Ð\ œ B Ñ  , C Ð] œ C Ñ

""
" "– —

" "– —
" "

3œ" 4œ"

8 7

3 4 3 4

3œ" 4œ"

8 7

3 3 4

4œ" 3œ"

7 8

4 3 4

3œ" 4œ"

8 7

3 3 4 4

œ + Ð\Ñ  , Ð] ÑX X

as desired.

Expected Value of a Function of a Random Variable

Note that if  is a real-valued function of a real variable and 0À Ä \‘ ‘
is a random variable, then the composition  is also a0Ð\ÑÀ ÄH ‘
random variable. (For finite probability spaces, this is nothing more than
the fact that the composition of functions is a function.)
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The expected value of the random variable  is equal to0Ð\Ñ

X =  =Ð0Ð\ÑÑ œ 0Ð\Ð ÑÑ Ð Ñ"
3œ"

8

3 3

or

X Ð0Ð\ÑÑ œ 0ÐB Ñ Ð\ œ B Ñ"
3œ"

7

3 3

When there is no need to emphasize the probability measure, we will
drop the subscript and write  instead of  but is is important to keep inX X
mind that the expectation depends on the probability.

EXAMPLE 7 Consider a stock whose current price is  and whose"!!
price at time  depends on the state of the economy, which may be oneX
of the following states

H ¬ ¬ ¬ ¬œ Ö ß ß ß ×" # $ %

The probabilities of the various states are given by

 ¬

 ¬

 ¬

 ¬

Ð Ñ œ !Þ#

Ð Ñ œ !Þ$

Ð Ñ œ !Þ$

Ð Ñ œ !Þ#

"

#

$

%

The stock price random variable is given by

WÐ Ñ œ **

WÐ Ñ œ "!!

WÐ Ñ œ "!"

WÐ Ñ œ "!#

¬

¬

¬

¬

"

#

$

%

If we purchase one share of the stock now the expected return at time X
is

XÐWÑ œ **Ð!Þ#Ñ  "!!Ð!Þ$Ñ  "!"Ð!Þ$Ñ  "!#Ð!Þ#Ñ œ "!!Þ&

and so the expected profit is . Consider a derivative"!!Þ&  "!! œ !Þ&
whose return  is a function of the stock price, sayH
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HÐ**Ñ œ %

HÐ"!!Ñ œ &

HÐ"!"Ñ œ &

HÐ"!#Ñ œ '

Thus  is a random variable on . The expected return of the derivativeH H
is

X  

 

Ð Ñ œ HÐ**Ñ Ð**Ñ  HÐ"!!Ñ Ð"!!Ñ

 HÐ"!"Ñ Ð"!"Ñ  HÐ"!#Ñ Ð"!#Ñ

œ %Ð!Þ#Ñ  &Ð!Þ$Ñ  &Ð!Þ$Ñ  'Ð!Þ#Ñ

œ "

return

The previous example points out a key property of expected values. The
expected value is seldom the value expected! In this example, we never
expect to get a return of . In fact, this return is impossible. The"!!Þ&
return must be one of the numbers in the sample space. The expected
value is an , not the value most expected. (The value mostaverage
expected is called the .)mode

Expectation and Independence

We have seen that the expected value operator is linear, that is,

X X XÐ+\  ,] Ñ œ + Ð\Ñ  , Ð] Ñ

It is natural to wonder about also about . Let us suppose that XÐ\] Ñ \
has values  and  has values . Then the productÖB ßá ß B × ] ÖC ßá ß C ×" 8 " 7

\] B C 3 œ "ßá ß 8 4 œ "ßá ß7 has values  for  and .3 4

Consider the events

I œ Ö\ œ B ß ] œ C ×3ß4 3 4

for  and , which form a partition of  with the3 œ "ßá ß 8 4 œ "ßá ß7 H
property that  has  value  on . Hence\] B C Iconstant 3 4 3ß4

X Ð\] Ñ œ B C Ð\ œ B ß ] œ C Ñ""
3œ" 4œ"

8 7

3 4 3 4

In general, we can do nothing with the probabilities .Ð\ œ B ß ] œ C Ñ3 4

However, if  and  are  then\ ] independent
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X 

 

 

X X

Ð\] Ñ œ B C Ð\ œ B ß ] œ C Ñ

œ B C Ð\ œ B Ñ Ð] œ C Ñ

œ B Ð\ œ B Ñ C Ð] œ C Ñ

œ Ð\Ñ Ð] Ñ

""
""

– —– —" "

3œ" 4œ"

8 7

3 4 3 4

3œ" 4œ"

8 7

3 4 3 4

3œ" 4œ"

8 7

3 3 4 4

Thus, we have an important theorem.

Theorem 5 If  and  are  random variables on a\ ] independent
probability space  thenÐ ß ÑH 

X X XÐ\] Ñ œ Ð\Ñ Ð] Ñ

This theorem can be generalized to the product of more than two
independent random variables. For example, it is not hard to see that if
\ß ] ^ \] ^ and  are independent, then  and  are also independent and
so

X X X X X XÐ\] ^Ñ œ Ð\] Ñ Ð^Ñ œ Ð\Ñ Ð] Ñ Ð^Ñ

Variance and Standard Deviation
The expectation of a random variable  is a measure of the “center” of\
the distribution of . A common measure of the “spread” of the values\
of a random variable is the variance and its square root, which is called
the standard deviation. The advantage of the standard deviation is that it
has the same units as the random variable. However, its disadvantage is
the often awkward presence of the square root.

Definition Let  be a random variable with finite expected value . The\ .
variance of  is\

5 X .\
# #œ Ð\Ñ œ ÐÐ\  Ñ ÑVar

and the  is the positive square root of the variancestandard deviation

5\ œ Ð\Ñ œ Ð\ÑSD ÈVar

The following theorem gives some simple properties of the variance.
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Theorem 6 Let  be a random variable with finite expected value .\ .
Then
1) VarÐ\Ñ œ Ð\ Ñ  œ Ð\ Ñ  Ð\ÑX . X X# # # #

2) For any real number +

Var VarÐ+\Ñ œ + Ð\Ñ#

3) If  and  are  random variables then\ ] independent

Var Var VarÐ\  ] Ñ œ Ð\Ñ  Ð] Ñ

Proof. We leave proof as an exercise.

Note that, unlike the expectation operator, the variance is  linear.not
Thus, the quantities

VarÐ+\  ,] Ñ

and

+ Ð\Ñ  , Ð] ÑVar Var

are not the same. We will explore this matter further a bit later in the
chapter.

Expected Value of a Binomial Random Variable

We can easily compute the expected value and variance of a binomial
random variable.

Theorem 7 Let  be a binomial random variable with distribution\
,Ð5à 8ß :Ñ. Then

XÐ\Ñ œ 8:

Ð\Ñ œ 8:Ð"  :ÑVar
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Proof. Let . For the expected value, we have; œ "  :

X Ð\Ñ œ 5 Ð\ œ 5Ñ

œ 5 : ;
8

5

œ 8: : ;
8  "

5  "

œ 8: : ;
8  "

5

œ 8:

"
" Š ‹

"Œ 
"Œ 

5œ!

8

5œ"

8
5 85

5œ"

8
5" Ð8"ÑÐ5"Ñ

5œ!

8"
5 Ð8"Ñ5

We leave derivation of the variance as an exercise.

Covariance and Correlation; Best Linear Predictor
We now wish to explore the relationship between two random variables
defined on the same sample space.

Definition If  and  are random variables with finite means then the\ ]
covariance of  and  is defined by\ ]

5 X . .\ß] \ ]œ Ð\ß ] Ñ œ Ð\  ÑÐ]  ÑCov c d
Some properties of the covariance are given in the next theorem.

Theorem 8 The covariance satisfies the following properties.
1) Covariance in terms of expected values

CovÐ\ß ] Ñ œ Ð\] Ñ  Ð\Ñ Ð] ÑX X X

2) (Symmetry)

Cov CovÐ\ß ] Ñ œ Ð] ß\Ñ

3) The covariance of  with itself is just the variance of  \ \

CovÐ\ß\Ñ œ 5\
#

4) If  is a constant random variable (that is, if ) then \ œ !5\

CovÐ\ß ] Ñ œ !
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5) The covariance function is linear in both coordinates (that is, it is
bilinear)

Cov Cov CovÐ+\  ,] ß ^Ñ œ + Ð\ß^Ñ  , Ð] ß ^Ñ

6) The covariance is bounded by the product of the standard deviations

k kCovÐ\ß ] Ñ Ÿ 5 5\ ]

Moreover, equality holds if and only if either one of  or  is\ ]
constant or if there are constants  and  for which+ ,

] œ +\  ,

Proof. We prove only part 6). If  or  is constant then the result\ ]
follows since both sides are , so let us assume otherwise. Let  be a real! >
variable. Then

! Ÿ ÐÐ>\  ] Ñ Ñ

œ Ð> \  #>\]  ] Ñ

œ > Ð\ Ñ  #> Ð\] Ñ  Ð] Ñ

œ 0Ð>Ñ

X

X

X X X

#

# # #

# # #

where  is a quadratic function in . Since  and since the0Ð>Ñ > 0Ð>Ñ   !
leading coefficient of  is positive, we conclude that the discriminant0Ð>Ñ
of  must be nonpositive (draw the graph and look at the zeros), that0Ð>Ñ
is,

Ò# Ð\] ÑÓ  % Ð\ Ñ Ð] Ñ Ÿ !X X X# # #

or

X X XÐ\] Ñ Ÿ Ð\ Ñ Ð] Ñ# # #

Furthermore, equality holds (the discriminant is ) if and only if there is!
a value of  for which . But this is possible if> 0Ð>Ñ œ ÐÐ>\  ] Ñ Ñ œ !X #

and only if . (Our assumption that is not constant implies that] œ >\ ]
> Á !.)

Since this applies to any random variables  and  we can also apply it\ ]
to the random variables  and  to conclude that\  ] . .\ ]

Ò Ð\] ÑÓ ŸCov # # #
\ ]5 5

that is
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k kCovÐ\] Ñ Ÿ 5 5\ ]

with equality holding if and only if at least one of  or  is constant or\ ]
there is a nonzero real number  such that+

]  œ +Ð\  Ñ. .] \

that is

] œ +\  +  œ +]  ,. .\ ]

This concludes the proof of part 6).

The following definition gives a  version of covariance.dimensionless

Definition If  and  have finite means and nonzero variances then the\ ]
correlation coefficient of  and is\ ]

3
5 5

\ß]
\ ]

œ
Ð\ß ] ÑCov

It follows immediately that

" Ÿ Ÿ "3\ß]

Moreover, as we will soon see,  assumes one of the boundary values3\ß]

„" \ ] if and only if there is a linear relationship between  and , that is,
there exist constants  and  for which+ Á ! ,

] œ +\  ,

In fact,  implies that the slope  and  implies3 3\ß] \ß]œ " +  ! œ "
that . Thus, if  then  moves in the same direction as +  ! œ " ] \3\ß]

(both increase or both decrease) whereas if  then  decreases3\ß] œ " ]
when  increases and vice-versa.\

Also, it is easy to see that if  and  are independent then .\ ] œ !3\ß]

However, the converse is not true. The condition  does 3\ß] œ ! not
imply that  and  are independent.\ ]

Two random variables are said to be  if , uncorrelated perfectly3\ß] œ !
positively correlated perfectly negatively correlated if  and  if3\ß] œ "
3\ß] œ ". We will have much use for these terms during  our study of
portfolio risk management.
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Best Linear Predictor

Let us examine the meaning of the correlation coefficient more closely. It
is often said that the correlation coefficient is a measure of the linear
relationship between  and . Indeed, we have just said that perfect\ ]
correlation is equivalent to a (perfect) linear relationship between the
random variables.

To explore this further, suppose we wish to approximate  using some]
linear function  of . Such an approximation is called a " !\  \ best
linear predictor of  by . The error in this approximation] \

% " !œ ]  \ 

is called the . The best fit is generallyresidual random variable
considered to be the linear predictor that minimizes the mean squared
error, defined by

MSE œ Ð Ñ œ ÒÐ]  \  Ñ ÓX % X " !# #

When  we have said that the approximation can be made3\ß] œ „"
exact and so the MSE .œ !

In general, the MSE can be written

MSE œ Ð] Ñ  # Ð\] Ñ  # Ð] Ñ  Ð\ Ñ  # Ð\Ñ X "X !X " X !"X !# # # #

The minimum value of this expression (which must exist) is found by
setting its partial derivatives to . We leave it to the reader to show that!
the resulting equations are

"X !X X

"X ! X

Ð\ Ñ  Ð\Ñ œ Ð\] Ñ

Ð\Ñ  œ Ð] Ñ

#

Solving this system gives

"
5

5

! X "X

œ

œ Ð] Ñ  Ð\Ñ

\ß]

\
#

Let us summarize, beginning with a definition.

Definition Let  and be random variables. Write\ ]

] œ \  " ! %
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where  and  are constants and  is the random variable defined by" ! %

% " !œ ]  \ 

Thus,  is approximated by the linear function  with error] \ " !
random variable . The  of  with respect to ,% best linear predictor ] \
denoted by BLP is the linear function  that minimizes the " !\  mean
squared error beta . The coefficient  is called the  of  withX % "Ð Ñ ]#

respect to . The line  is called the .\ C œ B " ! regression line

Theorem 9 The best linear predictor of  with respect to  is] \

BLP œ \  
5 5

5 5
. .

\ß] \ß]

\ \
# #] \

Moreover, the minimum mean squared error is

X % 5 3Ð Ñ œ Ð"  Ñ# # #
] \ß]

Now we can state the following properties of the correlation coefficient.

ì œ „" \  if and only if there is a linear relationship between  and3\ß]

] .
ì „" The closer  is to  the smaller is the mean squared error in3\ß]

using the best linear predictor.
ì \ If  is positive then the BLP has positive slope. Hence, as 3\ß]

increases so does the BLP of  and as  decreases so does the BLP] \
of .]

ì œ " \ If  then the slope of the BLP is negative. Hence, as 3\ß]

increases the BLP of  decreases and vice-versa.]

It is worth mentioning that a strong correlation does not imply a causal
relationship. Just because a random variable  is observed to take values]
that are in an approximate linear relationship with the values of another
random variable  does not mean that a change in   a change in\ \ causes
] . It only means that the two random variables are observed to behave
similarly. For example, during the early 1990's the sale of personal
computers rose significantly. So did the sale of automobiles. Just because
there may be a positive correlation between the two does not mean that
the purchase of personal computers caused the purchase of automobiles.

The Variance of a Sum

The covariance is just what we need to obtain a formula for the variance
of a linear combination of random variables. Theorem 6 implies that if
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the random variables  and  are  then\ ] independent

Var Var VarÐ+\  ,] Ñ œ + Ð\Ñ  , Ð] Ñ# #

However, this does not hold if the random variables fail to be
independent. In this case, we do have the following formula.

Theorem 10 If  and  are random variables on  and  then\ ] +ß , −H ‘

Var Var VarÐ+\  ,] Ñ œ + Ð\Ñ  , Ð] Ñ  #+, Ð\ß ] Ñ# # # Cov

More generally, if  are random variables on  and \ ßá ß\ + ßá ß +" 8 " 8H
are constants then

Var " ""
3œ" 3œ" 4œ"

8 8 8

3 3 3 4 3 4+ \ œ + + Ð\ ß\ ÑCov

Exercises
1. A pair of fair dice are rolled. Find the probability of getting a sum

that is even.
2. Three fair dice are rolled. Find the probability of getting exactly one

6.
3. A basket contains  red balls,  black balls, and  white balls. A ball& $ %

is chosen at random from the basket.
 a) Find the probability of choosing a red ball.
 b) Find the probability of choosing a white ball or a red ball.
 c) Find the probability of choosing a ball that is not red.
4. A certain true and false test contains  questions. A student guesses"!

randomly at each question.
 a) What is the probability that he will get all  questions correct?"!
 b) What is the probability that he will get at least  questions*

correct?
 c) What is the probability that he will get at least  questions)

correct?
5. A die has six sides, but two sides have only  dot. The other four"

sides have  and  dots, respectively. Assume that each side is#ß $ß % &
equally likely to occur.

 a) What is the probability of getting a ?"
 b) What is the probability of getting a ?#
 c) What is the probability of getting an even number?
 d) What is the probability of getting a number less than ?$
6. Four fair coins are tossed. Find the probability of getting exactly #

heads.
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7.  Four fair coins are tossed. Find the probability of getting at least #
heads.

8. A fair die is rolled and a card is chosen at random. What is the
probability that the number on the die matches the number on the
card? (An ace is counted as a one.)

9. Studies of the weather in a certain city over the last several decades
have shown that, for the month of March, the probability of having a
certain amount of sun/smog is as follows:

 full sun/no smog   full sun/light smog ,c cÐ Ñ œ !Þ!( Ð Ñ œ !Þ!*
 full sun/heavy smog , haze/no smog ,c cÐ Ñ œ !Þ"# Ð Ñ œ !Þ!*
 haze/light smog ,  haze/heavy smogc cÐ Ñ œ !Þ!( Ð Ñ œ !Þ""
 no sun/no smog ,  no sun/light smogc cÐ Ñ œ !Þ"' Ð Ñ œ !Þ"#
 no sun/heavy smog ,cÐ Ñ œ !Þ"(

 What is the probability of having at a fully sunny day? What is the
probability of having at day with some sun? What is the probability
of having a day with no or light smog?

10. a) Consider a stock whose current price is  and whose price at&!
some fixed time  in the future may be one of the followingX
values: . Suppose we estimate that the probabilities%)ß %*ß &!ß &"
of these stock prices are









Ð%)Ñ œ !Þ#

Ð%*Ñ œ !Þ%

Ð&!Ñ œ !Þ$

Ð&"Ñ œ !Þ"

If we purchase one share of the stock now, what is the expected
return at time ? What is the expected profit?X

 b) Consider a derivative of the stock in part a) whose return  is aH
function of the stock price, say

HÐ%)Ñ œ #

HÐ%*Ñ œ "

HÐ&!Ñ œ !

HÐ&"Ñ œ $

Thus, the return  is a random variable on . What is theH H
expected return of the derivative?

11. Suppose that you roll a fair die once. If the number on the top face of
the die is even, you win that amount, in dollars. If it is odd, you lose
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that amount. What is the expected value of this game? Would you
play?

12. For a cost of  dollar, you can roll a single fair die. If the outcome is"
odd, you win  dollars. Would you play? Why?#

13. Suppose you draw a card from a deck of cards. You win the amount
showing on the card if it is not a face card, and lose $  if it is a face"!
card. What is your expected value? Would you play this game?

14. An American roulette wheel has  red numbers,  black numbers") ")
and two green numbers. If you bet on red, you win an amount equal
to your bet (and get your original bet back) if a red number comes
up, but lose your bet otherwise. What is your expected winnings in
this game? Is this a fair game?

15. Consider the dart board shown below

1

2

3

 

 A single dart cost $ . You are paid $  for hitting the center,"Þ&! $Þ!!
$  for hitting the middle ring and $  for hitting the outer ring.#Þ!! "Þ!!
What is the expected value of your winnings? Would you play this
game?

16. Prove that  where .VarÐ\Ñ œ Ð\Ñ  œ Ð\ÑX . . X# #

17. Prove that for any real number +

Var VarÐ+\Ñ œ + Ð\Ñ#

18. Prove that if  and  are  random variables then\ ] independent

Var Var VarÐ\  ] Ñ œ Ð\Ñ  Ð] Ñ

19. Let  be a binomial random variable with distribution .\ ,Ð5à 8ß :Ñ
Show that . : use the fact thatVarÐ\Ñ œ 8:Ð"  :Ñ Hint
VarÐ\Ñ œ Ð\ Ñ  Ð\ÑX X# #.

20. Prove the theorem on total probabilities.
21. Show that if ,  and  are independent random variables then so\ ] ^

are  and .\] ^
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22. Let  and  be independent random variables on . Let  and\ ] Ð ß Ñ 0H 
1 0Ð\Ñ 1Ð] Ñ be functions from  to . Then prove that  and  are‘ ‘
independent.

23. Show that  implies that the slope  and 3 3\ß] \ß]œ " +  ! œ "
implies that , where .+  ! ] œ +\  ,

24. Show that for any random variables  and \ ]

Var Var VarÐ+\  ,] Ñ œ + Ð\Ñ  , Ð] Ñ  #+, Ð\ß ] Ñ# # # Cov
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Chapter 2

Portfolio Management and the Capital Asset
Pricing Model
In this chapter, we explore the issue of  in a portfolio ofrisk management
assets. The main issue is how to  a portfolio, that is, how tobalance
choose the percentage (by value) of each asset in the portfolio so as to
minimize the overall risk for a given expected return. The first lesson that
we will learn is that the risks of each asset in a portfolio alone do not
present enough information to understand the overall risk of the entire
portfolio. It is necessary that we also consider how the assets interact, as
measured by the  (or equivalently the ) of thecovariance correlation
individual risks.

Portfolios, Returns and Risk
For our model, we will assume that there are only two time periods: the
initial time  and the final time . > œ ! > œ X Each asset  has an š3 initial
value final value  and a  .i i3ß! 3ßX

Portfolios

A portfolio consists of a collection of assets  in a givenš š" 8ßá ß
proportion. Formally, we define a  to be an ordered -tuple ofportfolio 8
real numbers

@ œ Ð ßá ß Ñ) )" 8

where  is the number of units of asset . If  is negative then the) š )3 3 3

portfolio has a short position on that asset: a short sale of stock, a short
put or call and so on. A positive value of  indicates a long position: an)3
owner of a stock, long on a put or call and so on.

Asset Weights

It is customary to measure the amount of an asset within a portfolio by its
percentage by . The   of asset  is the percentage of thevalue weight A3 3š
value of the asset contained in the portfolio at time , that is,> œ !

A œ3
3 3ß!

4œ"

8

4 3ß!

) i

) i!
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Note that the  of the weights will always be sum "

A âA œ "" 8

Asset Returns

The   on asset  is defined by the equationreturn V3 3š

i i3ßX 3ß! 3œ Ð"  V Ñ

which is equivalent to

V œ


3
3ßX 3ß!

3ß!

i i

i

Since the value of an asset at time  in the future is a random variable, soX
is the return . Thus, we may consider the expected value and theV3

variance of the return. The e  of asset  is denoted byxpected return š3

. X3 3œ ÐV Ñ

The variance of the return of asset š3

53
#

3œ ÐV ÑVar

is called the  of asset . We will also consider the standard deviationrisk š3
as a measure of risk when appropriate.

Portfolio Return

The  on the portfolio itself is defined to be the weighted sum ofreturn
the returns of each asset

V œ A V"
3œ"

8

3 3

For instance, suppose that a portfolio has only 2 assets, with weights !Þ%
and  and returns equal to % and %, respectively. Then the return!Þ' "! )
on the portfolio is

Ð!Þ%ÑÐ!Þ"!Ñ  Ð!Þ'ÑÐ!Þ!)Ñ œ !Þ!)) œ )Þ)%

Since the expected value operator is linear, the expected return of the
portfolio as a whole is

. .œ A"
3œ"

8

3 3
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Since the individual returns generally are  independent, the variancenot
of the portfolio's return is given by the formula

5

3 5 5

#

3œ" 3œ" 4œ"

8 8 8

3 3 3 4 3 4

3œ" 4œ"

8 8

3 4 3ß4 3 4

œ A V œ A A ÐV ßV Ñ

œ A A

Var " ""
""

Cov

where Cov  is the covariance of  and  and  is theÐV ßV Ñ V V3 4 3 4 3ß43
correlation coefficient. Let us make some formal definitions.

Definition expected return The   on a portfolio is the expected value of.
the portfolio's return, that is

. X .œ A V œ A " "
3œ" 3œ"

8 8

3 3 3 3

The  of a portfolio is the variance of the portfolio's return, that isrisk

5

3 5 5

#

3œ" 3œ" 4œ"

8 8 8

3 3 3 4 3 4

3œ" 4œ"

8 8

3 4 3ß4 3 4

œ A V œ A A ÐV ßV Ñ

œ A A

Var " ""
""

Cov

An asset is  if its risk  is positive and  if its risk is .risky risk-free53
# !

Until further notice, we will assume that the all assets in
a portfolio are risky, that is, .53

#  !

More On Risk

Let us take a closer look at the notion of risk. Generally speaking, there
are two forms of risk associated with an asset. The  of ansystematic risk
asset is the risk that is associated with macroeconomic forces in the
market as a whole and not just with any particular asset. For example, a
change in interest rates affects the market as a whole. A change in the
nation's money supply is another example of a contributor to systematic
risk. Global acts such as those of war or terrorism would be considered
part of systematic risk.
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On the other hand,  or  is the risk that isunsystematic risk unique risk
particular to an asset or group of assets. For instance, suppose that an
investor decides to invest in a company that makes pogs. There are many
unsystematic risks here. For example, customers may lose interest in
pogs, or the pog company's factory may burn down.

A Primer on How Risks Interact

The key difference between these two types of risk is that unsystematic
risk can be diversified away, whereas systematic risk cannot. For
instance, an investor can reduce or eliminate the risk that the pog
company's factory will burn down by investing in all pog-making
companies. In this way, if one pog factory burns down, another pog
company will take up the slack. More generally, an investor can reduce
the risk associated with an apathy for pogs by investing in all toy and
game companies. After all, when was the last time you heard a child say
that he was tired of buying pogs and has decided to put his allowance in
the bank instead?

To see the effect of individual assets upon risk, consider a portfolio with
a single asset , with expected return  and risk . The overall risk ofš . 5" " "

#

the portfolio is also . Let us now add an additional asset  to the5 š"
#

#

portfolio. Assume that the asset has expected return  and risk .. 5# #
#

If the weight of asset  is  then the weight of asset  is . Hence,š š" #> "  >
the expected return of the portfolio is

. . .œ >  Ð"  >Ñ" #

and the risk is

5 5 5 3 5 5# # # # #
" # "ß# " #œ >  Ð"  >Ñ  #>Ð"  >Ñ

How does this risk compare to the risks of the individual assets in the
portfolio? We may assume (by reversing the numbering if necessary) that
!  Ÿ5 5" #.
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Figure 1–Some risk possibilities. Bold curves indicate no short selling.

Suppose first that the assets are uncorrelated, that is, . The3"ß# œ !
portfolio risk is equal to

5 5 5 5 5 5 5# # # # # # # # # #
" # " # # #œ >  Ð"  >Ñ œ Ð  Ñ>  # > 

This quadratic in  is shown on the left in Figure 1. A bit of>
differentiation shows that the minimum risk occurs at

> œ


7
#
#

" #
# #

5

5 5

and is equal to

5
5 5

5 5
#
7

" #
# #

" #
# #œ
#



Note that since

5 5 5" 7 #
# # #Ÿ Ÿ

the minimum risk lies somewhere between the risks of the individual
assets.

Now suppose that the assets are perfectly positively correlated, that is,
3"ß# œ ". Then the risk is

5 5 5 5 5 5 5# # # # # #
" # " # " #œ >  Ð"  >Ñ  #>Ð"  >Ñ œ Ð>  Ð"  >Ñ Ñ

This quadratic is shown in the middle of Figure 1. The minimum risk is
actually  and occurs at!

> œ  !


7
#

# "

5

5 5

Note that
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"  > œ  !



7

"

# "

5

5 5

and so the minimum-risk portfolio must take a short position in the asset
with larger risk.

Finally, suppose that the assets are perfectly negatively correlated, that
is, . Then the risk is3"ß# œ "

5 5 5 5 5 5 5# # # # # #
" # " # " #œ >  Ð"  >Ñ  #>Ð"  >Ñ œ Ð>  Ð"  >Ñ Ñ

This quadratic is shown on the right side of Figure 1. The minimum risk
is again  and occurs at!

> œ  !


7
"

" #

5

5 5

In this case

"  > œ  !


7
#

" #

5

5 5

and so the minimum-risk portfolio does not require short selling.

Thus, the case where the assets are perfectly negatively correlated seems
to be the most promising, in that the risk can be reduced to  without!
short selling, which certainly has its drawbacks. Indeed, short selling
may not even be possible in many cases and when it is, there can be
additional costs involved. Of course, it is in general a difficult (or
impossible) task to select assets that are perfectly negatively correlated
with the other assets in a portfolio.

Two-Asset Portfolios
Let us now begin our portfolio analysis in earnest, starting with
portfolios that contain only two assets  and , with weights  andš š" # "A
A#, respectively. It is customary to draw risk-expected return curves with
the risk on the horizontal axis and the expected return on the vertical
axis. It is also customary to use the standard deviation as a measure of
risk for graphing purposes.

The expected return of such a portfolio is given by
. . .œ A  A" " # #

and the risk is
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5 5 5 3 5 5# # # # #
" " # # " # "ß# " #œ A  A  #A A

As before, we assume that the assets are risky, that is, .53  !

The Case 3"ß# œ „"

Let us first consider the case . In these cases, the expression for3"ß# œ „"
5# simplifies considerably and we have

5 5 5œ A „ Ak k" " # #

(The choice of sign matches the sign of .) Since  for3"ß# " #A  A œ "
convenience we can set  and  to get the A œ = A œ "  =# " parametric
equations

. . .

5 5 5

œ Ð"  =Ñ  =

œ Ð"  =Ñ „ =
" #

" #k k
where  ranges over all real numbers. For  in the range  both= = Ò!ß "Ó
weights are nonnegative and so the portfolio has no short positions.
Outside this range, exactly one of the weights is negative, indicating that
the corresponding asset is held short (the other asset is held long).

To help plot the points  in the plane, let us temporarily ignore theÐ ß Ñ5 .
absolute value sign and consider the parametric equations

. . .

5 5 5

œ Ð"  =Ñ  =

œ Ð"  =Ñ „ =
" #

w
" #

These are the equations of a straight line in the -plane. WhenÐ ß Ñ5 .w

3"ß# œ " the plus sign is taken and the line passes through the points
Ð ß Ñ Ð ß Ñ œ "5 . 5 . 3" " # # "ß# and . For  the line passes through the points
Ð ß Ñ Ð ß Ñ5 . 5 ." " # # and . These lines are plotted in Figure 2.

µ

σ

(σ1,µ1)

(σ2,µ2)

'

µ

σ

(σ1,µ1)

(−σ2,µ2)

'

ρ1,2=1 ρ1,2=−1

Figure 2–The graph before taking absolute values
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Now, the effect of the absolute value sign is simply to flip that part of the
line that lies in the left half-plane over the -axis (since ). The. 5 5œ k kw
resulting plots are shown in Figure 3. The bold portions correspond to
points where both weights are nonnegative, that is, no short selling is
required.

µ

σ

(σ1,µ1)

(σ2,µ2)

µ

σ

(σ1,µ1)

(σ2,µ2)

ρ1,2=1 ρ1,2=−1

Figure 3–The risk-return lines

From the parametric equations (or from our previous discussion), we can
deduce the following theorem, which shows again that there are cases
where we can reduce the risk of the portfolio to .!

Theorem 1 For  the risk and expected return of the portfolio3"ß# œ „"
are given by the parametric equations

. . .

5 5 5

œ Ð"  =Ñ  =

œ Ð"  =Ñ „ =
" #

" #k k
where  is the weight of asset  and ranges over all real numbers. For= š#
= − Ò!ß "Ó both weights are nonnegative and the portfolio has no short
positions. Outside this range, exactly one of the weights is negative, for
which the corresponding asset is held short. The plots of  areÐ ß Ñ5 .
shown in Figure 3.

Moreover, when  the risk  is  if and only if  and3 5 5 5"ß# " #œ " ! Á

A œ ßA œ


 
" #

# "

" # " #

5 5

5 5 5 5

and so short selling of asset  is required. In this case, the expectedš"
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return is

.
5 . 5 .

5 5
œ




" # # "

" #

When  the risk  is  if and only if3 5"ß# œ " !

A œ ßA œ
 

" #
# "

" # " #

5 5

5 5 5 5

and so no short selling is required. In this case, the expected return is

.
5 . 5 .

5 5
œ




" # # "

" #

The Case "   "3"ß#

When  the parametric equations for the risk and expected"   "3"ß#
return are

. . .

5 5 5 3 5 5

œ A  A

œ A  A  #A A

" " # #

# # # # #
" " # # " # "ß# " #

Parametrizing as above by letting  givesA œ "  =ßA œ =" #

. . . .

5 5 5 3 5 5 5 5 3 5 5

œ Ð  Ñ= 

œ Ð   # Ñ=  # Ð  Ñ= 

# " "

# # # # #
" # ""ß# " # " " "ß# #

We next observe that since  the coefficient of  in  satisfies3 5"ß#
# # " =

5 5 3 5 5 5 5 5 5 3" #
# # #

"ß# " # " # " # "ß#  # œ Ð  Ñ  # Ð"  Ñ  !

and so the expression for  is truly quadratic (not linear). The graph of5#

the points  is a parabola lying on its side, opening to the right andÐ ß Ñ5 .#

going through the points  and . Figure 4 shows the graphÐ ß Ñ Ð ß Ñ5 . 5 ." #
# #

" #

as well as two possible placements of the points  and . InÐ ß Ñ Ð ß Ñ5 . 5 ." " # #

the graph on the right, the minimum risk requires a short position.
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Figure 4–The risk-return graph

Let us assume again that . Differentiating the risk  with!  Ÿ5 5 5" #
#

respect to  gives=

.

.=
Ð Ñ œ #Ð   # Ñ=  # Ð  Ñ5 5 5 3 5 5 5 5 3 5# # #

" # "ß# " # " " "ß# #

so the minimum-risk point occurs at

= œ
Ð  Ñ

  #
min

5 5 3 5

5 5 3 5 5
" " "ß# #

" #
# #

"ß# " #

The minimum risk portfolio will have no short positions if and only if
= − Ò!ß "Ómin .

Since  and  a little algebra shows that . The5 5 3" # "ß#Ÿ  " =  "min
various possibilities are described as follows (recall that  is the= œ A#

weight of asset )š#

=  !min
Short selling of asset  is required to minimize risk. This risk is lessš#
than either of  or .5 5" #

# #

= œ !min
The minimum portfolio risk is , which is achieved by holding only5"

#

asset  (that is, ).š" "A œ "

!  =  "min
The minimum portfolio risk is achieved with no short selling and is less
than either of  or .5 5" #

# #

=   "min
Cannot happen at minimum risk under our assumption that .!  Ÿ5 5" #



57

Now, it is easy to see from the expression for  that=min

=  ! Í 

= œ ! Í œ

!  =  " Í 

min

min

min

3
5

5

3
5

5

3
5

5

"ß#
"

#

"ß#
"

#

"ß#
"

#

and so we have the following result, which describes when we can
achieve a minimum risk with no short selling and when we can achieve a
! overall risk.

Theorem 2 Assume that .!  Ÿ5 5" #

1) If   then the minimum risk can be achieved with no" Ÿ 3"ß#
5
5
"

#

short selling and is less than either of  or . For  the5 5 3" #
# #

"ß# œ "
minimum risk is .!

2) If  then the minimum risk is , which is achieved by3 5"ß# "
#œ 5

5
"

#

holding only asset .š"
3) If  then short selling of asset  is required to minimize"   3 š"ß# #

5
5
"

#

risk, which is less than either of  or . For  the minimum5 5 3" #
# #

"ß# œ "
risk is .!

Multi-Asset Portfolios
Now let us turn our attention to portfolios with an arbitrary number
8   # of assets. The weights of the portfolio can be written in matrix (or
vector) form as

[ œ A A â Aa b" # 8

It is also convenient to define the matrix (or vector) of 's by"

S œ " " â "a b
so that the condition

A âA œ "" 8

can be written as a matrix product

S[ œ ">

where  is the transpose of . We will also denote the matrix of[ [>

expected returns by
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Q œ âa b. . ." # 8

and the  bycovariance matrix

G œ Ð- Ñ3ß4

where

- œ ÐV ßV Ñ3ß4 3 4Cov

Note that  is the variance of . It can be shown, although we- œ V3ß3 33
#5

will not do it here, that the matrix  is  (that is ) andG G œ Gsymmetric >

positive semidefinite, which means that for any matrix E œ Ð+ ßá ß + Ñ" 8

we have . We shall also assume that  is invertable, which inEGE   ! G>

this case implies that  is , that is, for any matrixG positive definite
E œ Ð+ ßá ß + Ñ EGE  !" 8

> we have .

The expected return can now be written as as matrix product

. . .œ Q[ œ A â A>
" " 8 8

and the risk can be written as

5# >
" " 8 8 3ß4 3 4

3ß4œ"

8

œ ÐA V âA V Ñ œ - A A œ [G[Var "
The Markowitz Bullet

Let us examine the relationship between the weights [ œ ÐA ßá ßA Ñ" 8

of a portfolio and the corresponding risk-expected return point  forÐ ß Ñ5 .
that portfolio, given by the equations above. Note that we are now
referring to risk in the form of the standard deviation .5

Figure 5 describes the situation is some detail for a portfolio with three
assets and this will provide some geometric intuition for the multi-asset
case in general. (We will define the terms  andMarkowitz bullet
Markowitz efficient frontier a bit later.)
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µ
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Markowitz efficient
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1
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w3
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1
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f

(σmin,µmin)

Figure 5–The Markowitz bullet

The left-hand portion of Figure 5 shows the -dimensional space in8
which the weight vectors  reside. (In Figure 5 we haveÐA ßá ßA Ñ" 8

8 œ $ " of course.) Since the sum of the weights must equal , the weight
vectors must lie on the  whose equation ishyperplane

A âA œ "" 8

For  this is an ordinary plane in -dimensional space, passing8 œ $ $
through the points ,  and . For the sake of clarity,Ð"ß !ß !Ñ Ð!ß "ß !Ñ Ð!ß !ß "Ñ
the figure shows only that portion of this hyperplane that lies in the
positive orthant. This is the portion of the plane that corresponds to
portfolios with no short selling. Let us refer to the entire hyperplane as
the .weight hyperplane

We denote by  the function that takes each weight vector in the weight0
hyperplane to the risk-expected return ordered pair for the corresponding
portfolio, that is,

0ÐA ßá ßA Ñ œ Ð ß Ñ" 8 5 .

where

. . .

5

œ A â A œ Q[

œ - A A œ [G[

" " 8 8
>

# >

3ß4œ"

8

3ß4 3 4"
The function  is also pictured in Figure 5. Our goal is to determine the0
image of a straight line in the weight hyperplane under the function .0
This will help us get an idea of how the function  behaves in general. (It0
is analogous to making a contour map of a function.)
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The equation of a line in -dimensional space (whether in the weight8
hyperplane or not) can be written in the parametric form

jÐ>Ñ œ Ð+ >  , ßá ß + >  , Ñ" " 8 8

where the parameter  varies from  to . The value > _ _ > œ !
corresponds to the point  and  corresponds tojÐ!Ñ œ Ð+ ßá ß + Ñ > œ "" 8

jÐ"Ñ œ Ð, ßá ß , Ñ" 8 . It is also true that any equation of this form is the
equation of a line.

Now, for any point  on the line, corresponding to aÐA ßá ßA Ñ" 8

particular value of , the expected return is>

. . .

. .

. . . .

œ A â A

œ Ð+ >  , Ñ â Ð+ >  , Ñ

œ Ð + â + Ñ>  Ð , â , Ñ

" " 8 8

" " " " 8 8

" " 8 8 " " 8 8

which is a  of . This is a critical point. Solving for  giveslinear function > >

> œ œ E F
 Ð , â , Ñ

+ â +

. . .

. .
.

" " 8 8

" " 8 8

where we use the symbols  and  for convenience, and must assumeE F
that the denominator above is not .!

Now let us look at the risk (in the form of the variance)

5#

3ß4œ"

8

3ß4 3 4

3ß4œ"

8

3ß4 3 3 4 4

3ß4œ"

8

3ß4 3 4 3 4 4 3 3 4
#

3ß4œ" 3ß4œ"

8 8

3ß4 3 4 3ß4 3 4 4 3
#

œ - A A

œ - Ð+ >  , ÑÐ+ >  , Ñ

œ - + + >  Ð+ ,  + , Ñ>  , ,

œ - + + >  - Ð+ ,  + , Ñ> 

"
"
" ˆ ‰
" " "

3ß4œ"

8

3ß4 3 4

#

- , ,

œ >  > ! " #

where we have used the letters ,  and  to simplify the expression,! " #
which is just a quadratic in . Replacing  by its expression in terms of > > .
gives
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5 ! . " . ## #œ ÐE  FÑ  ÐE  FÑ 

which is a quadratic in  (assuming that ).. ! Á !

Thus, as  traces out a line in the weight hyperplane, the risk-expected>
return points  trace out a parabola (lying on its side) in the -Ð ß Ñ Ð ß Ñ5 . 5 .#

plane. Taking the square root of the first coordinate produces a curve
which we will refer to as a , although this term is notMarkowitz curve
standard. Thus, straight lines in the weight hyperplane are mapped to
Markowitz curves in the  plane under the function . Note thatÐ ß Ñ 05 .
Markowitz curves are  parabolas.not

Figure 6 shows an example of a Markowitz curve generated using
Microsoft Excel. For future reference, we note now that the data used to
plot this curve are

Ð ß ß Ñ œ Ð!Þ"ß !Þ""ß !Þ!(Ñ. . ." # $

Ð ß ß Ñ œ Ð!Þ#$ß !Þ#'ß !Þ#"Ñ5 5 5" # $

3 3"ß# #ß"œ œ !Þ"&
3 3"ß$ $ß"œ œ !Þ#&
3 3#ß$ #ß$œ œ !Þ#

Markowitz Bullet
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Figure 6–A Markowitz bullet

The Shape of a Markowitz Curve

It is important to make a clear distinction between the parabola traced out
by  and the Markowitz curve traced out by the points , asÐ ß Ñ Ð ß Ñ5 . 5 .#
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pictured in Figure 6. To get a feel for the differences in more familiar
territory, consider the functions

C œ +B  ,B  -#

and

D œ +B  ,B  -È #

for . The first graph is a parabola. The slope of the tangent lines to+  !
this parabola are given by the derivative

C œ #+B  ,w

and these slopes increase without bound as  tends to . On the otherB _
hand, for the function , for large values of  the first term dominates theD B
others and so

D œ +B  ,B  - ¸ +B œ + BÈ È È k k# #

The graph of the equation  is a pair of . ThisD œ + BÈ k k straight lines
shows that as  tends to  the graph of  flattens, unlike the case of aB _ D
parabola. In particular, the derivative is

D œ
#+B  ,

# +B  ,B  -

w

#È
Squaring this makes it easier to take the limit

lim lim
BÄ_ BÄ_

w #
# # #

#
ÐD Ñ œ œ +

%+ B  %+,B  ,

%Ð+B  ,B  -Ñ

so we see that  approaches  as  approaches .D + B _w È
Thus, unlike parabolas  as we move to theMarkowitz curves flatten out
right. One of the implications of this fact, which is important to the
capital asset pricing model, is that (looking ahead to Figure 9) if  is.rf
too large, there is no tangent line from the point  to the upperÐ!ß Ñ.rf
portion of the Markowitz curve.

The Point of Minimum Risk

Let us denote the point of minimum risk by . We will beÐ ß Ñ5 .min min
content with finding the portfolio weights (in the weight hyperplane) that
correspond to this point. For any particular case, these weights can easily
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be plugged into the formulas for  and  to get the actual point. (As the5 .
reader will see, the general formulas can get a bit messy.)

The next theorem gives the minimum risk weights. The proof uses the
technique of , which can be found in any standardLagrange multipliers
multi-variable calculus book, so we will not go into the details here. The
reader may skim over the few proofs that require this technique if
desired.

Theorem 3 A portfolio with minimum risk has weights given by

[ œ
SG

SG S

"

" >

Note that the denominator is a number and is just the sum of the
components in the numerator.
Proof. We seek to minimize the expression

5# >

3ß4œ"

8

3ß4 3 4œ - A A œ [G["
subject to the constraint

S[ œ A âA œ ">
" 8

According to the technique of Lagrange multipliers, we must take the
partial derivatives with respect to each  and  of the functionA3 !

1ÐA ßá ßA Ñ œ - A A  Ð"  A âA Ñ" 8 3ß4 3 4 " 8

3ß4œ"

8" !

and set them equal to . We leave it as an exercise to show that this!
results in the equation

G[ œ S
#

> >!

and so

[ œ SG
#

! "

Substituting this into the constraint (and using the fact that  and G G"

are symmetric) gives
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!

# SG S
œ

"
" >

and so we get the desired result.

The Markowitz Efficient Frontier

The set of points  that gives the minimum risk Ð ß Ñ5 .min for each expected
return  is called the  (frontier is another. Markowitz efficient frontier
word for boundary). The next theorem describes this set of points. While
the formula is a bit messy, there is an important lesson here. Namely, the
minimum risk weights are a  of the expected return. Thislinear function
means that as the expected return  takes on all values from  to ,. _ _
the minimum risk weights trace out a straight line in the weight
hyperplane and the corresponding points  trace out a MarkowitzÐ ß Ñ5 .min
curve!

In other words, the Markowitz efficient frontier is a Markowitz curve.
The weight line that corresponds to the Markowitz curve is called the
minimum risk weight line.

Theorem 4 For a given expected return , the portfolio with minimum.
risk has weights given by

[ œ

QG S QG Q

" SG S SG Q "
QG  SG

QG Q QG S
SG Q SG S

º º º º
º º

. ." > " >

" > " >
" "

" > " >

" > " >

In particular, each weight  is a linear function of .A3 .
Proof. In this case, we seek to minimize the expression

5# >

3ß4œ"

8

3ß4 3 4œ - A A œ [G["
subject to the constraints

Q[ œ A âA œ>
" " 8 8. . .

and

S[ œ A âA œ ">
" 8

This is done by setting the partial derivatives of the following function to
!
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1 œ - A A  Ð  A âA Ñ  Ð"  A âA Ñ"
3ß4œ"

8

3ß4 3 4 " " 8 8 " 8! . . . "

This results in the matrix equation

#G[ œ Q  S> > >! "

and so

[ œ Ð Q  SÑG
"

#
! " "

Substituting the expression for  into the matrix form of the constraints[>

gives the system of equations

ÐQG Q Ñ  ÐQG S Ñ œ #

ÐSG Q Ñ  ÐSG S Ñ œ #

" > " >

" > " >

! " .

! "

Cramer's rule can now be used to obtain a formula for  and .! "
Substituting this into the expression for  gives the desired result. We[
leave all details to the reader as an exercise.

An ordered pair  is said to be an , if it is of theÐBß CÑ attainable point
form  for some portfolio. Since the Markowitz efficient frontierÐ ß Ñ5 .
contains the points of minimum risk, all attainable points must lie to the
right (corresponding to greater risk) of some point on this frontier. In
other words, the attainable points are contained in the shaded region on
the right-hand side of Figure 5. This region (including the frontier) is
known as the , due to its shape.Markowitz bullet

To explain the significance of the Markowitz efficient frontier, we make
the following definition.

Definition Let  and  be attainable points.T œ Ð ß Ñ T œ Ð ß Ñ" " " # # #5 . 5 .
Then    ifÐ ß Ñ Ð ß Ñ5 . 5 ." " # #dominates

5 5 . ." # " #Ÿ   and 

in words,  has smaller or equal risk and larger or equal expectedT"

return.

Theorem 5 Any attainable point is dominated by an attainable point on
the Markowitz efficient frontier. Thus, investors who seek to minimize
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risk for any expected return need only look on the Markowitz efficient
frontier.

EXAMPLE 1 Let us sketch the computations needed in order to get the
Markowitz bullet in Figure 6. The data are as follows

Ð ß ß Ñ œ Ð!Þ"ß !Þ""ß !Þ!(Ñ

Ð ß ß Ñ œ Ð!Þ#$ß !Þ#'ß !Þ#"Ñ

œ œ !Þ"&

œ œ !Þ#&

œ œ !Þ#

. . .

5 5 5

3 3

3 3

3 3

" # $

" # $

"ß# #ß"

"ß$ $ß"

#ß$ #ß$

Since the computations are a bit tedious, they are best done with some
sort of software program, such as Microsoft Excel. Figure 7 shows a
portion of an Excel spreadsheet that has the required computations. The
user need only fill in the gray cells and the rest will adjust automatically.

User Data Returns µi Risks σi Correlation
i=1 0.1 0.23 -0.15  =ρ1,2=ρ2,1

i=2 0.11 0.26 0.25  =ρ1,3=ρ3,1

i=3 0.07 0.21 0.2  =ρ2,3=ρ3,2

C=(ci,j)=(ρi,jσiσj) j=1 j=2 j=3
i=1 0.0529 -0.00897 0.012075
i=2 -0.00897 0.0676 0.01092
i=3 0.012075 0.01092 0.0441

Inverse of C 21.10168374 3.888932099 -6.740815639
3.888932099 16.12598046 -5.05792657

-6.740815639 -5.05792657 25.77387544
Min Risk Point OC-1= 18.2498002 14.95698599 13.97513323

OC-1Ot= 47.18191942
W= 0.386796477 0.31700673 0.296196793
µ= 0.094284164

WC= 0.02119456 0.02119456 0.02119456
WCWt= 0.02119456

σ= 0.145583514
Min Risk Line MC-1= 2.06609381 1.808696201 0.573717794

MC-1Ot= 4.448507805
OC-1Mt= 4.448507805
MC-1Mt= 0.445726209

Denom Det= 1.24099637

Capital Asset Pricing Model-Fill In Grey Cells

Figure 7-Excel worksheet

Referring to Figure 7, the point of minimum risk is given in Theorem 3
by
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[ œ
SG

SG S

"

" >

These weights can be used to get the expected return and risk

. œ Q[>

and

5# >œ [G[

Thus, the minimum risk point is

Ð ß Ñ œ Ð!Þ"%'ß !Þ!*%Ñ œ Ð"%Þ' ß *Þ% Ñ5 .min min % %

Next, we compute the minimum risk for a given expected return . The.
formula for the minimum risk is given in Theorem 4. All matrix products
are computed in Figure 7, and so is the denominator, which does not
depend on . Figure 8 shows the computation of the minimum risk for 3.
different expected returns. 

Figure 8–Computing minimum risk for a given expected return

The Capital Asset Pricing Model

Now that we have discussed the so-called , weMarkowitz portfolio theory
are ready to take a look at the , or CAPMCapital Asset Pricing Model
(pronounced “Cap M”). The major factor that turns Markowitz portfolio
theory into capital market theory is the inclusion of a risk-free asset in
the model. (Recall that up to now we have been assuming that all assets
are risky.)
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As we have said, a  is one that has  risk, that is, variancerisk-free asset !
!. Thus, its risk-expected return point lies on the vertical axis, as shown
in Figure 9.

The inclusion of a risk-free asset into the Markowitz portfolio theory is
generally regarded as the contribution of William Sharpe, for which he
won the Nobel Prize, but John Lintner and J. Mossin developed similar
theories independently and at about the same time. For these reasons, the
theory is sometimes referred to as the Sharpe-Lintner-Mossin (SLM)
capital asset pricing model.

The basic idea behind the CAPM is that an investor can actually improve
his or her risk/expected return balance by investing partially in a
portfolio of risky assets and partially in a risk-free asset. Let us see why
this is true.

Imagine a portfolio that consists of a risk-free asset  with weight šrf rfA
and the risky assets  as before, with weights . Noteš š" 8 " 8ßá ß A ßá ßA
that now the sum of the weights of the risky assets will be  . Inat most "
fact, we have

A  A œ "

A œ A Ÿ "

rf

risky

"
"
3œ"

8

3

3œ"

8

3

The expected return of the complete portfolio is

. . . . .œ A  A œ A rf rf rf rf risky"
3œ"

8

3 3

and since the variance of the risk-free asset is , the return  is a! Vrf
constant. Hence, its covariance with any other return is  and so!

5

5

#

3œ"

8

3 3

3œ"

8

3 3

#

œ ÐA V  A V Ñ

œ Ð A V Ñ

œ

Var

Var

rf rf

risky

"
"

Hence
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5 5œ risky

We also want to consider the portfolio formed by removing the risk-free
asset and “beefing up” the weights of the risky assets by the same factor
to make the sum of these weights equal to . Let us call this portfolio the"
derived risky portfolio (a nonstandard term). For example, if the
original portfolio is composed of a

risk-free asset with weight A œ !Þ#!rf
risky asset  with weight š" "A œ !Þ$!
risky asset  with weight 5š# "A œ !Þ !

then the sum of the risky weights is  so the derived risky portfolio!Þ)!
consists of the

risky asset  with weight š" "A œ !Þ$!Î!Þ)! œ !Þ$(&
risky asset  with weight 5š# "A œ !Þ !Î!Þ)! œ !Þ'#&

which has a total weight of . Let us denote the expected return of the"
derived risky portfolio by  and the risk by . It follows that. 5der der

#

. . .

. .

. .

œ A  A

œ A  A
A

A

œ A  A

rf rf

rf rf risky
risky

rf rf risky der

"
"

3œ"

8

3 3

3œ"

8
3

3

and

5

5

#

3œ"

8

3 3

#

3œ"

8
3

3

# #

œ Ð A V Ñ

œ A Ð V Ñ
A

A

œ A

Var

Var

"
"risky

risky

risky der

Thus

. . .

5 5

œ A  A

œ A
rf rf risky der

risky der
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or since A  A œ "rf risky

. . . .

5 5

œ A Ð  Ñ

œ A
rf risky der rf

risky der

(1)

As  ranges over all real numbers, equations (1) trace out a straightArisky
line. Figure 9 shows the point  corresponding to .Ð ß Ñ A œ "5 .der der risky
This point, being the risk-expected return point for a risky portfolio
whose weights sum to , must lie in the Markowitz bullet. We are"
interested in all of the possible values of  given by equations (1).Ð ß Ñ5 .

µ

σ

(σm,µm)

µrf

(σder,µder)
(σ,µ)

Capital market
line

Capital market
portfolio

Figure 9

It is clear that if  thenA œ !risky

Ð ß Ñ œ Ð!ß Ñ5 . .rf

and if  thenA œ "risky

Ð ß Ñ œ Ð ß Ñ5 . 5 .der der

and so equations (1) map the line connecting  and ,Ð!ß Ñ Ð ß Ñ. 5 .rf der der
whose slope is

7 œ
. .

5
der rf

der

and whose equation (in slope-intercept form) is

. 5 .
. .

5
œ 

der rf

der
rf (2)

So where do we stand? An investor who invests in a risk-free asset along
with some risky assets will have risk-expected return point lying
somewhere on the line joining the points  and . But it isÐ!ß Ñ Ð ß Ñ. 5 .rf der der
clear from the geometry that among all lines joining the point Ð!ß Ñ.rf
with various points  in the Markowitz bullet, the line thatÐ ß Ñ5 .der der
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produces the points with the highest expected return for a given risk is
the tangent line to the upper portion of the Markowitz bullet, as shown in
Figure 10.

µ

σ

µrf

Capital market
line

Capital market
portfolio

Acceptable
risk

Investment
Portfolio

A

B

Figure 10–The investment portfolio for a given level of risk

The tangent line in Figure 10 is called the  and thecapital market line
point of tangency on the Markowitz efficient frontier is called the
(capital) market portfolio.

The reader may recall our previous discussion about the flattening out of
the Markowitz curves. It follows from this discussion that if the risk-free
rate is too large then there will be no capital market line and hence no
market portfolio.

Assuming that a capital market line does exist, by adjusting the balance
between the risk-free asset and the risky portion of the portfolio, that is,
by adjusting the weights  and , any point on the capital marketA Arf risky
line can be achieved. To get a point to the right of the market portfolio
requires selling the risk-free asset short and using the money to buy more
of the market portfolio.

We can now state the moral of this discussion:

In order to maximize the expected return for a given
level of risk the investor should invest is a portfolio
consisting of the risk-free asset and the market portfolio
(no other risky portfolio). The relative proportions of
each is determined by the level of acceptable risk.
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The Equation of the Capital Market Line

If the market portfolio has risk-expected return point  then theÐ ß Ñ5 .Q Q

equation of the capital market line is

. 5 .
. .

5
œ 

Q

Q

rf
rf

For any point  on the line, the valueÐ ß Ñ5 .

. . 5
. .

5
 œ


rf

rfQ

Q

which is the additional expected return above the expected return on the
risk-free asset, is called the . It is the additional return thatrisk premium
one may expect for assuming the risk. Of course, it is the presence of risk
that implies that the investor may not actually see this additional return.

To get a better handle on this equation, we need more information about
the market portfolio's risk-expected return point . The weightsÐ ß Ñ5 .Q Q

that correspond to the market portfolio's risk and expected return are
given in the next theorem.

Theorem 6 For any expected risk-free return , the capital market.rf
portfolio has weights

[ œ
ÐQ  SÑG

ÐQ  SÑG S

.

.
rf

rf

"

" >

Note that the denominator is just a number, being the sum of the
coordinates of the vector in the numerator.
Proof. For any point  in the Markowitz bullet, the slope of the lineÐ ß Ñ5 .
from  to  isÐ!ß Ñ Ð ß Ñ. 5 .rf

= œ œ
 A 

- A A

. . D. .

5 D
rf rf3 3

3ß4 3 4

It is intuitively clear that the point of tangency is the point with the
property that this slope is a maximum among all points  in theÐ ß Ñ5 .
Markowitz bullet. So we seek to maximize  subject to the constraint that=
DA œ "3 . Using Lagrange multipliers once again, we must take the
partial derivatives of the following function and set the results to !
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0 œ  Ð"  A Ñ

A 

- A A

!
! "3

3 3

3ß4
3ß4 3 4 3

3

. .

-
rf

We leave it as an exercise to show that the resulting equations are

`0 - A A  Ð A  ÑÐ - A Ñ

`A
œ  œ !

Ð - A A Ñ5

5 3ß4 3 4 3 3 3ß5 3

3ß4 3 4
$Î#

. D D. . D

D
-

rf

This can be cleaned up to get

Ð[G[ Ñ  ÐQ[  ÑG [ œ Ð[G[ Ñ> > > > $Î#
5 5. . -rf

where  is the -th row of the covariance matrix . This can be writtenG 5 G5

5 . . . -5# > $
5 5 Ð  ÑG [ œrf

Since this holds for all , we have5

5 . . -5# > > $ >Q  Ð  ÑG[ œ Srf

Taking transposes and recalling that  givesG œ G>

5 . . -5# $Q  Ð  Ñ[G œ Srf

Multiplying on the right by  and recalling that , we get[ S[ œ "> >

5 . . -5# > > $Q[  Ð  Ñ[G[ œrf

or

5 . . . 5 -5# # $ Ð  Ñ œrf

and so

-
.

5
œ

rf

We can now use this value of  in an earlier equation to get-

5 . . . 5# #Q  Ð  Ñ[G œ Srf rf

This can be rewritten as
. .

5
.


[ œ ÐQ  SÑG

rf
rf#

"

Multiplying on the right by  and noting that  we getS [S œ "> >
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. .

5
.


œ ÐQ  SÑG S

rf
rf#

" >

Using this in the previous equation gives

[ œ
ÐQ  SÑG

ÐQ  SÑG S

.

.
rf

rf

"

" >

as desired.

To illustrate, let us continue Example 1 to derive the market portfolio.

EXAMPLE 2 Continuing Example 1, Figure 11 shows more of our
Excel worksheet. This portion computes the market portfolio's risk-
expected return based on various risk-free rates (in this case only three
rates).

Figure 11–The market portfolio

For instance, a risk-free return on investment of  leads to a.rf œ !Þ!$
expected return of

.7 œ "Þ!2956084

and a risk of

57 œ 0.155092557

More on the Market Portfolio

According to our theory, all rational investors will invest in the market
portfolio, along with some measure of risk-free asset. This has some
profound consequences for this portfolio. First, the market portfolio must
contain all possible assets! For if an asset is not in the portfolio, no one
will want to purchase it and so the asset will wither and die.
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Since the market portfolio contains all assets, the portfolio has no
unsystematic risk—this risk has been completely diversified out. Thus,
all risk associated with the market portfolio is systematic risk.

In practice, the market portfolio can be approximated by a much smaller
number of assets. Studies have indicated that a portfolio can achieve a
degree of diversification approaching that of a true market portfolio if it
contains a well-chosen set of perhaps 20-40 securities. We will use the
term market portfolio to refer to an unspecified portfolio that is highly
diversified and thus can be considered as essentially free of unsystematic
risk.

The Risk-Return of an Asset Compared with the Market Portfolio

Let us consider any particular asset  in the market portfolio. We wantš5
to use the best linear predictor, discussed in Chapter 1, to approximate
the return  of asset  by a linear function of the return  of theV V5 5 Qš
entire market portfolio. According to Theorem 9 of Chapter 1, we can
write

V œ V  5 5 Q 5" ! %

where

 
Cov

"
5

! X " X

5
5 Q

Q
#

5 3 5 Q

œ
ÐV ßV Ñ

œ ÐV Ñ  ÐV Ñ

and  is the error (residual random variable). The coefficient  is the% "5

beta of the asset's return with respect to the market portfolio's return and
is the slope of the linear regression line.

To get a feel for what to expect, Figure 12 shows the best linear predictor
in the case of a relatively large beta and three magnitudes of error,
ranging from very small to rather large.

RM

Rk

RM

Rk

RM

Rk
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Figure 12–A large beta and different magnitudes of error

Because the beta is large, in all three cases when the market return
fluctuates a certain amount, the asset's return fluctuates a relatively larger
amount. Put another way, if the market returns should fluctuate over a
specific range of values (as measured by the variance, for example), the
asset returns will fluctuate over a larger range of values (as measured by
the variance). Thus, the market risk is “magnified” in the asset risk.

Figure 13 shows the best linear predictor when the beta is small, again
with three magnitues of error.

RM

Rk

RM

Rk

RM

Rk

Figure 13–A small beta and different magnitudes of error

Because the beta is small, in all three cases when the market return
fluctuates a certain amount, the asset's return fluctuates a relatively
smaller amount. Thus, the market risk is “demagnified” in the asset risk.

It is intuitively clear then that an asset's , that is, the risksystematic risk
that comes from the asset's relationship to the market portfolio (whose
risk is purely systematic) is related in some way to the beta of the asset.

In addition, it can be seen from the graphs in Figures 12 and 13 that there
is another factor that contributes to the asset's risk, a factor that has
nothing whatever to do with the market risk. It is the error. The larger the
error , as measured by its variance  for example, the larger the% %VarÐ Ñ
uncertainty in the asset's expected return.

Now let us turn to the mathematics to see if we can justify these
statements. In fact, the BLP will provide formulas for the expected return
and the risk of the individual asset  in terms of the beta.V5



77

As to the risk, we leave it as an exercise to show that

CovÐV ß Ñ œ !Q %

and so the risk associated with the asset  isš5

5 " ! %

" %

" 5 %

5
#

5 5 Q 5

5 Q

5 Q
# #

œ ÐV Ñ œ Ð V   Ñ

œ Ð V  Ñ

œ  Ð Ñ

Var Var
Var

Var

Thus, we see that our intuition is upheld. The term , which is" 55
# #

Q

referred to as the  of the asset , is indeed an increasingsystematic risk š5
function of the beta. Thus, it is the beta of the asset, that is, the slope of
the best linear fit, that measures the proportion of the market portfolio's
risk that makes up part of the asset's risk.

The remaining portion of the asset's risk is the term , which isVarÐ Ñ%
precisely the measure of the error that we discussed earlier. This is called
the or  of the asset.unsystematic risk unique risk

According to economic theory, when adding an asset to a diversified
portfolio, the unique risk of that asset is canceled out by other assets in
the portfolio. Accordingly, the unique risk should not be considered
when evaluating the expected return of the asset. Put another way, when
determining whether the expected return of an asset is sufficient to accept
the risk involved, only the systematic risk of the asset should be
considered. Thus, the expected return of an asset that the market will
sustain under market equilibrium depends only on the asset's beta.

Let us see if we can justify this statement by turning our attention to a
formula for the asset's expected return. The expected return of the market
portfolio is

.Q Q
>œ Q[

and the expected return of the individual asset  isš3

.5 5
>œ Q/

where

/ œ ! â ! " ! â !5 a b
is the matrix with a  in the th position and s elsewhere. To relate" 5 !
these two quantities, we need an expression for .Q
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Recall that the weights of the market portfolio are given in Theorem 6 by

[ œ
ÐQ  SÑG

ÐQ  SÑG S
Q

"

" >

.

.
rf

rf

Since the denominator is just a constant, let us denote its reciprocal by .$
Thus

[ œ ÐQ  SÑGQ
"$ .rf

Solving for  givesQ

Q œ [ G  S
"

$
.Q rf

We can now write
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$
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$
.
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Q Q
>

Q Q
>

Q Q Q
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"

Œ rf

rf
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Also
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$
.

$
.

$
.

5 5
>

Q 5
>

Q 5 5
> >

5 Q

œ Q/

œ [ G  S /
"

œ [ G/  S/
"

œ ÐV ßV Ñ 
"

Œ rf

rf

rfCov

Now, the reader may notice a resemblance between some of these terms
and the beta

"
5

5
5 Q

Q
#œ

ÐV ßV ÑCov

Solving the previous equations for the numerator and denominator of "5

gives
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"
5

$ . . . .

$ . . . .
5

5 Q 5 5

Q
#

Q Q
œ œ œ

ÐV ßV Ñ Ð  Ñ 

Ð  Ñ 

Cov rf rf

rf rf

Finally, solving ths for  gives.5

. " . . .5 5 Qœ Ð  Ñ rf rf

Let us collect these important formulas in a theorem.

Theorem 7 The expected return and risk of an asset  in the marketš5
portfolio is related to the asset's beta with respect to the market portfolio
as follows

. " . . .5 5 Qœ Ð  Ñ rf rf (3)

and

5 " 5 %5 5 Q
# # #œ  Ð ÑVar

where  is the error (residual random variable).%

The expression for the expected return of the asset is very interesting, for
it says that the expected return is a  of the beta. Thislinear function
justifies our earlier discussion to the effect that an asset's expected return
under market equilibrium should depend only on the asset's systematic
risk (through the asset's beta) and not on its unique risk.

Since  is positive under normal conditions, the slope of the. .Q  rf
linear relation is positive, meaning that large betas imply large expected
returns and vice-versa. This makes sense—the more (systematic) risk in
an asset the higher should be the expected return.

Of course, there is no  that says that higher risk should be rewardedlaw
by higher expected return. However, this is the condition of market
equilibrium. If an asset is returning less than the market feels is
reasonable with respect to the asset's perceived risk, then no one will buy
that asset and its price will decline, thus increasing the asset's return.
Similarly, if the asset is returning more than the market feels is required
by the asset's level of risk, then more investors will buy the asset, thus
raising its price and lowering its expected return.

The graph of the line in equation (3) is called the  orsecurity market line
SML for short. The equation shows that the expected return of an asset is
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equal to the return of the risk-free asset plus the so-called risk premium
of the asset.

EXAMPLE 3 Suppose that the risk-free rate is 3% and that the market
portfolio's risk is 12%. Consider the following assets and their betas

Asset Beta
š
š
š
š
š

"

#

$

%

&

!Þ'&
"Þ!!
"Þ#!
!Þ#!
!Þ'!

The market's risk premium is

. .Q  œ !Þ"#  !Þ!$ œ !Þ!*rf

and so the security market equation is

. "5 œ !Þ!*  !Þ!$

We can now compute the expected returns under market equilibrium

Asset Beta Expected Return 
%

%
%

%
%

.
š
š
š
š
š

5

"

#

$

%

&

!Þ'& )Þ)&
"Þ!! "#
"Þ#! "$Þ)
!Þ#! "Þ#
!Þ'! 'Þ*

The expected returns in the previous table are the values that the market
will sustain based on the market portfolio's overall systematic risk (and
the risk-free rate). For example, since asset  has a beta less than , itš" "
has a smaller risk than the market portfolio. Therefore, the market will
sustain a lower expected return than that of the market portfolio. Asset š#
has the same systematic risk as the market portfolio so the market will
sustain an expected return equal to that of the market portfolio.

Exercises
1. What is the beta of the market portfolio? Can a portfolio have any

real number as its ?"
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2. For a risk-free rate of 4% and a market portfolio expected return of
8% calculate the equation of the security market line.

3. Show that the parametric equations

. . .

5 5 5

œ Ð"  =Ñ  =

œ Ð"  =Ñ „ =
" #

w
" #

are the equations of a straight line in the -plane. (Here  is theÐ ß Ñ =5 .w

parameter and ranges over all real numbers. Take the plus sign first
and then the minus sign.)

4. For  we have  for . If the risk is  then3"ß# # "œ " V œ +V  , +  ! !
compute the expected return.

5. Under the assumption that  and  show that5 5 3" # "ß#Ÿ  "

= œ  "
Ð  Ñ

  #
min

5 5 3 5

5 5 3 5 5
" " "ß# #

" #
# #

"ß# " #

6. If  is the error in the best linear predictor of an asset  with respect% š3
to the market portfolio, show that Cov .ÐV ß Ñ œ !Q %

7. Show that the regression lines for all assets in the market portfolio go
through a single point. What is that point?

8. Let  be the market portfolio, where asset  has weight . WriteT AQ 3 3š
the best linear predictor of  asV3

BLPÐV Ñ œ V 3 3 Q 3" !

Consider the first two assets  and , with their respective weightsš š" #

A A" # and . The return from these two assets is

V œ V A V! " " # #w

If the best linear predictor is

BLPÐV Ñ œ V ! ! Q Q" !

what is the relationship between ,  and  and between , " " " ! !! " # ! "

and ? Can you generalize this result to any subset of assets in the!#

market portfolio, that is, to any subportfolio?
9. Verify the data in Figure 14 (at least to a few decimal places). For a

5% return, show that the minimum risk is . If the risk-free!Þ#$)*&#
rate is 3% show that the market portfolio has weights
Ð!Þ$$&ß !Þ$(#ß !Þ#*$Ñ Ð!Þ"*%ß !Þ"*'Ñ and risk-return .
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User Data Returns µi Risks σi Correlation
i=1 0.1 0.2 -0.1  =ρ1,2=ρ2,1

i=2 0.2 0.3 0.2  =ρ1,3=ρ3,1

i=3 0.3 0.4 0.2  =ρ2,3=ρ3,2

C=(ci,j)=(ρi,jσiσj) j=1 j=2 j=3
i=1 0.04 -0.006 0.016
i=2 -0.006 0.09 0.024
i=3 0.016 0.024 0.16

Inverse of C 26.6075388 2.58684405 -3.048780488
2.58684405 11.8255728 -2.032520325

-3.048780488 -2.032520325 6.859756098
Min Risk Point OC-1= 26.14560237 12.37989653 1.778455285

OC-1Ot= 40.30395418
W=OC-1/OC-1Ot= 0.648710602 0.307163324 0.044126074

µ=MWt= 0.139541547
WC= 0.024811461 0.024811461 0.024811461

σ2=WCWt= 0.024811461
σ= 0.157516543

For Min Risk Line MC-1= 2.263488544 2.014042868 1.346544715
MC-1Ot= 5.624076127
OC-1Mt= 5.624076127
MC-1Mt= 1.033120843

Denom Det= 10.00862281

Capital Asset Pricing Model-Fill In Grey Cells
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Chapter 3

Background on Options
In preparation for our study of derivative pricing models, we need to
discuss the basics of stock options. Readers who are familiar with these
derivatives will want merely to skim through the chapters to synchronize
the terminology, as it were.

Stock Options
Stock options take two forms:  (  and  ( .put options puts) call options calls)
Here are the definitions.

Definition call writer seller A  is a contract between the  (or ) of the call
and the  of the call. The buyer has the right to buy from the writerbuyer
(that is, ) the stock at a fixed price called the  orcall for exercise price
strike price, which we denote by  or  (both are commonly usedI O
symbols). In a , the right to buy can only be exercised onEuropean call
the  of the call. In an , the right to buy canexpiration date American call
be exercised at any time on or before the expiration date of the call.

A  is a contract between the  (or ) of the put and theput writer seller
buyer of the put. The buyer has the right to sell to (or ) the writerput to
the stock at the  or . In a , theexercise price strike price European put
right to sell can only be exercised on the  of the call. In anexpiration date
American put, the right to sell can be exercised at any time on or before
the expiration date of the call.

The writer of an option has a  and the buyer of an optionshort position
has a . long position

The Purpose of Options
Options are primarily used for  and for . (Arbitrage ishedging speculation
always good too if you can get it.) Also, options have one significant
advantage over owning the underlying asset, namely, .leverage

A  is an investment that reduces the risk in an existing position,hedge
such as another investment. To illustrate the hedging feature of an
option, suppose an investor currently (October) owns 1000 shares of a
stock IBM whose current price is about $88 per share. The investor is
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justifiably concerned that a significant drop is the stock's price will cause
his portfolio to take a big hit.

So to hedge against this possibility the investor buy a December put with
strike price $85. This gives him the right to sell the stock at $85 per share
for the next 3 months. Thus, if the stock price tumbles the investor can
bail out at $85 per share. The price paid for this hedge is the price of the
put, which is currently selling for $1.50. So a total cost of $1500 will
protect an $88,000 investment.

Leverage

At the moment of this writing, IBM is selling for about $90 per share. A
small investor with $450 can purchase only 5 shares of the stock. If the
investor feels that the stock price is about to rise significantly, then the
use of options allows him to leverage his meager bankroll and speculate
on the stock in a much more meaningful way than buying the shares.

For example, the current price of a 1 month call with strike price of $90
is $3.80. Thus, the investor is able to purchase 118 such calls (ignoring
commissions). If the price of IBM is $95 at exercise time the profit on 5
shares would be only $25 whereas the profit on the calls would be $590.
The return is thus over 100% on the investment in options, whereas it is
less than 6% for the stock investment. This is leverage.

Of course, the downside to the call options is that if the stock does not
rise, or does not rise before the expiration date, the investor will receive
nothing from the options and will be out the commission on the purchase
of these options, whereas the stock holder still owns the stock.

Profit and Payoff Curves
When the expiration date arrives, the owner of an option will exercise
that option if and only if there is a positive return. Thus, if the strike
price of the option is  and the spot price of the stock is , the owner ofO W
a call will exercise the option (call for the stock at the price ) if andO
only if . On the other hand, the owner of a put will exercise theO  W
option (put the stock at the price ) if and only if . Some termsO O  W
are used to describe the various possibilities.

Definition A call option is
1)  if in-the-money O  WX

2)  if at-the-money O œ WX

3)  if out-of-the-money O  WX
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A put option is
4)  if in-the-money O  WX

5)  if at-the-money O œ WX

6)  if out-of-the-money O  WX

It is important to note that just because an option is in the money does
not mean that the owner makes a profit. The problem is that the initial
cost (as well as any commissions, which we will ignore throughout this
discussion) may outweigh the return gained from exercising the option.
In that case, the investor will still execute because the positive return will
help reduce the overall loss.

Figure 2 shows the  (ignoring costs) for each option position.payoffs
Note that the horizontal axis is the stock price at exercise time and all
line segments are either horizontal or have slope .„ "

For example, for a long call, the owner will exercise if and only if the
spot price of the stock is greater than . In this case, the payoff to theW O
owner is . Otherwise, the owner will let the call expire, receivingW O
nothing.
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Long Call

K
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K

Stock
Price

Long Put

K
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Stock
Price

Stock
Price

Stock
Price

Payoff

PayoffPayoff

Figure 2 - Payoff Curves

Figure 3 shows the actual profit curves, which take into account the cost
of the purchase or sale of the option. (As mentioned, we will ignore all
commissions.)
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Figure 3 - Profit Curves

The payoff formulas are actually quite simple. For a long call, if the
stock price  satisfies  then the payoff from exercising the call isW W   O
W O W  O ! whereas if  then the call will expire and so the payoff is .
Thus, the payoff is

Payoff(Long Call) œ ÖW Oß !×max

On the put side, we have

Payoff(Long Put) œ ÖO  Wß !×max

As mentioned, the payoff curves are very informative. Here are some of
the things we can see immediately from these curves.

Long Call

ì  Limited Downside: The downside is limited to the cost of the call.
ì  Unlimited Upside: The upside is unlimited since there is no limit to

the price of the stock.
ì  Optimistic Position: The buyer hopes the stock price will rise.
ì  A long call should be exercised when the stock price is above the

strike price .O

Short Call

ì  Unlimited Downside: The downside is unlimited because there is no
limit to the price of the stock.
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ì  Limited Upside: The upside is limited to the selling price of the call.
ì  Pessimistic Position: The buyer hopes the stock price will fall.
ì  A short call should be exercised when the stock price falls below the

strike price .O

Long Put

ì  Limited Downside: The downside is limited to the cost of the put.
ì  Limited Upside: The upside is also limited because the stock price

can only fall to , in which case the profit is equal to the strike price!
times the number of shares minus the cost of the put.

ì  Pessimistic Position: The buyer hopes the stock price will fall.
ì  A long put should be exercised when the stock price falls below the

strike price .O

Short Put

ì  Limited Downside: The downside is limited because the stock price
can only fall to , in which case the loss is equal to the strike price!
times the number of shares  the cost of the put.:6?=

ì  Limited Upside: The upside is also limited to the selling price of the
put.

ì  Optimistic Position: The buyer hopes the stock price will rise.
ì  A short put should be exercised when the stock price rises above the

strike price .O

It is also worth noting that long calls and short puts are related in that
they are both , that is, they are profitableoptimistic (bullish) positions
when the stock rises. It is the degree of risk and the degree of profit that
distinguish the two in this regard, however. Similarly, long puts and
short calls are both .pessimistic (bearish) positions

The profit curves also hold some interesting information. Setting aside
for the moment the risk factor, we can say the following:

ì  If we believe that a stock's price will decline but only slightly,
settling within the interval Cost , then a short call is theÐO  ßOÓ
most advantageous position. In this case, a long put will still be in
the red, due to the cost of the put. However, if we believe that a
stock's price will decline sharply, then a long put is the most
advantageous position.

ì  If we believe that a stock's price will rise but only slightly, then a
short put is the most advantageous position. If we believe that a
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stock's price will rise sharply, then a long call is the most
advantageous position.

Covered Calls

We have said that a short call position has an unlimited downside
because the stock price can theoretically rise indefinitely. Of course, this
assumes that the writer of the call buys the shares at exercise time in
order to deliver them to the owner of the call. However, if the writer of
the call already owns the shares his downside is limited to the price paid
for those shares, because they can be used to “cover” the call.

If the writer of a call owns the shares at the time he writes the call, then
he is said to write a . Writing covered calls is far safer thancovered call
writing  (also called ) calls.uncovered naked

Profit Curves for Option Portfolios

An  consists of a collection of options. The followingoption portfolio
example shows how to obtain the profit curve for a simple portfolio.

EXAMPLE 2 Consider the purchase and sale of options, all with the
same expiration date, given by the following expression

 T  T  #G  G"!! "#! "&! ")!

This position is: short a put with strike price , long a put with strike"!!
price , long two calls with strike price  and short a call with strike"#! "&!
price . The overall profit curve can be obtained from the individual")!
profit curves by plotting them all on a single set of coordinates, as shown
in Figure 3. Note that it is simpler to ignore all costs in drawing the
curves and then simply translate the final curve up or down an amount
equal to the total cost for all the options involved, which in this case is

 ÐT Ñ  ÐT Ñ  # † ÐG Ñ  ÐG ÑCost Cost Cost Cost"!! "#! "&! ")!

Long Put

Short Call

Stock
Price

100
120 150

180

Long Call

Short Put

Profit
(no cost) (180,360)
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Figure 3 - Profit Curve (no costs)

Selling Short
A complete analysis of options cannot be made without also discussing
the notion of selling a stock short. Simply put, to sell a stock short, the
investor borrows the stock (usually from a broker) and sells it
immediately (in one transaction), thus realizing an amount equal to the
current price of the stock (less the ever-present commission). For this
privilege, the investor must return the stock (not the money) to the
lender.

As with short calls, selling a stock short incurs a potentially unlimited
downside, unless the seller also owns shares of the stock with which to
cover the inevitable return of the stock borrowed. Figure 3 shows the
profit curve for a short sale of stock, as well as the profit curve for a long
position.

S

Stock
Price

Profit

Short a Stock

S

S

Stock
Price

Profit

Long a Stock
-S

Figure 3 - Profit Curves for Short and Long Stock Positions

Exercises
1. Without looking in the book, draw the profit curves for a long put,

short put, long call and short call.
2. To write a , the investor writes a put and at the samecovered put

time must be short the same quantity of the underlying stock. For
example, suppose an investor writes a put for 100 shares of IBM and
is also short 100 shares of IBM. This means that the investor has
borrowed 100 shares of IBM and sold them. Describe the upside and
downside to writing covered puts. Why would someone want to
write a covered put?

3. Draw the payoff graph for the following option portfolio

 T  T  #G  G8 0 3 5! " ! " ! " !

A  is a transaction in which an investor simultaneously buys onespread
option and sells another option, both on the same underlying asset, but
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with different terms (strike price and/or expiration date). A call spread
involves the purchase and sale of calls, and similarly for a .put spread
The idea is that one option is used to hedge the risk of the other option.

4. In a , the investor buys a call at a certain strike price bull spread O"

and sells another call at a higher strike price , with the sameO#

expiration date. Draw the profit curve for a bull spread. When is a
bull spread most profitable? Is this an optimistic or pessimistic
investment? : you must first decide how the costs of the twoHint
calls compare.

5. In a , the investor buys a call at a certain strike price bear spread O"

and sells another call at a lower strike price , with the sameO#

expiration date. Draw the profit curve for a bear spread. When is a
bear spread most profitable? Is this an optimistic or pessimistic
investment? : you must first decide how the costs of the twoHint
calls compare.

6. In a  also called a  an investor sells acalendar spread time spread
call with a certain expiration date  and buys a  call,H" more distant
that is, a call with a longer expiration date . Assume that theH  H# "

calls have the same strike price. Consider the following calendar
spread. The current (JAN) price of XYZ is $50. Call prices as as
follows:

 APR 50 call:  (expiring in April at a strike price of $50) costs $5
 JUL 50 call:  $8
 OCT 50 call: $10

 Suppose that in 3 months (in April) the stock price is still $50. Then
if all things else are equal the call prices should be

 APR 50 call:  $0 (expiring)
 JUL 50 call:  $5
 OCT 50 call: $8

 Is there a profit here for the investor? Describe the reason.
7. A  is a combination of a bull spread and a bearbutterfly spread

spread. A call butterfly spread consists of buying a call at strike price
O O  O" # ", selling two calls at strike price  and selling another call
at strike price . All calls have the same expiration date.O  O$ #

Draw a profit curve for a butterfly spread. : they don't call it aHint
butterfly spread for nothing.
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Chapter 4

An Aperitif on Arbitrage
As a simple introduction to the concept of arbitrage and how to use the
assumption of no arbitrage to price assets, let us briefly discuss the
pricing of forward contracts and some simple issues related to option
pricing.

Background on Forward Contracts
We begin with the necessary background on forward contracts.

Forward Contracts

A  is an agreement to buy a certain quantity of anforward contract
asset, called the  at a given price , called theunderlying asset O
settlement price delivery price or  to be paid at a given time  in theX
future, called the  or . Entering a forwardsettlement date delivery date
contract does not require any initial purchase price—it is free.

The party that agrees to buy the asset is taking the  on thelong position
contract and is said to be the  of the contract. The party that agreesbuyer
to sell the asset is taking the  on the contract and is said toshort position
be the  of the contract.seller

Futures Contracts

In contrast to plain-vanilla forward contracts as described above, a
futures contract is a forward contract with a number of constraints and a
much more complicated payoff model. Indeed, futures contracts seldom
come to maturity, that is, very few (perhaps on the order of 1 or 2
percent) of all futures contracts survive to the delivery date. The main
properties of futures contracts are as follows.

1) Futures contracts trade on an organized exchange. For example, the
Chicago Board of Trade (CBT or CBOT) is the largest futures
exchange.

2) Futures contracts have standardized terms, specifying the amount
and precise type of the underlying, the delivery date and delivery
price. Just like you can only buy bolts of specific lengths and
diameters at the hardware store, you can only buy futures contracts
with specific terms.
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3) Performance (delivery of losses or gains) of futures contracts is
guaranteed by a .clearinghouse

4) The purchase of a futures contract requires that the buyer post
margin, that is, some amount of money to cover potential day-to-day
price changes.

5) Futures markets are regulated by a government agency, whereas
forward contracts are largely unregulated.

6) Futures contracts can be  (terminated) either by delivery, byclosed
offset (that is, by a reversing trade that cancels both contracts) or by
exchange-for-physical (which is a form of “settle up early”
arrangement).

We will not discuss the details of futures contracts in this book.

Forward Prices

Consider forward contracts for a given underlying (such as wheat) that
have a given delivery date  (such as December 2003). At any timeX
>  X , one can potentially enter into such a contract. Of course, the
delivery price will depend on the time  of formation of the contract, so>
we will denote it by . This would-be delivery price is called theJ>ßX

forward price of the contract.

For example, on July 1 the forward price of a contract to deliver 5000
bushels of wheat in September might be 170 cents (per bushel). A week
later, the forward price for such a contract might be 168 cents.

Spot Prices

In contrast to forward prices, the   of an asset at a given timespot price W>  
> is the price of the asset  for  delivery. Forat that time immediate
example, we can speak of the current spot price of a bushel of wheat. We
can also speak of the spot price of wheat in one month. This is the price
that investors would pay in one month for immediate delivery at that
time. Of course, at the present time, this spot price is unknown.

The Pricing of Forward Contracts
To determine the forward price of a forward contract, we can use a
simple no-arbitrage argument. Suppose that the forward contract is for
one “share” of an asset whose initial price is . (One share of a wheatW!

contract is 5000 bushels of wheat, for example.) Consider the following
two portfolios.

Portfolio A: Long the Contract
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One forward contract.

Portfolio B: Cash-and-Carry the Asset
One share of the asset itself and a debt of  dollarsW!

In a perfect market it is possible to go either long or short on either
portfolio. To short Portfolio A, we short (sell) the forward contract. To
short Portfolio B, we sell the asset short (borrow the asset and sell it for
W!) and then lend the resulting income. This is referred to as reverse
cash-and-carry.

The initial values for these portfolios are . The final payoffs are!

i

i

i

i

Ð Ñ œ W  J

Ð Ñ œ J  W

Ð Ñ œ W  W /

Ð Ñ œ W /  W

long contract
short contract

cash-and-carry
reverse cash-and-carry

X !ßX

!ßX X

X !
<X

! X
<X

For example, in the case of cash-and-carry, at time  the investor ownsX
the asset, worth  but must repay the loan, which values .W W /X !

<X

Now consider the following two strategies.

Strategy 1: Long the contract and reverse cash-and-carry the asset
The final payoff for this strategy is

i iÐ Ñ  Ð Ñ œ W /  Jlong contract reverse cash-and-carry ! !ßX
<X

Strategy 2: Short the contract and cash-and-carry the asset
The final payoff for this strategy is

i iÐ Ñ  Ð Ñ œ J  W /short contract cash-and-carry !ßX !
<X

If either of these  payoffs is positive, the investor has anconstant
arbitrage strategy. Hence, the lack of arbitrage implies that

W /  J œ !! !ßX
<X

that is

J œ W /!ßX !
<X
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Theorem 1 Consider the terms of a forward contract to buy an
underlying asset at time  in the future. Then under the assumption of aX
perfect market with no arbitrage, the forward price is

J œ W /!ßX !
<X

where  is the interest rate.<

The Put-Call Option Parity Formula
We can also apply the no-arbitrage principle to derive relationships
between the prices of puts and calls for the same underlying under the
same conditions (strike price and expiration date).

First, let us make a comment about risk-free bonds. We will assume that
it is possible to buy or sell any amount of a risk-free bond (such as a U.S.
Treasury bond). The bond pays a continuouly compounded interest at the
rate . We will assume that the value of  unit of risk-free bond at time < " !
is  dollar."

It is important to keep separate in one's mind the notion of quantity and
price of the bond. For example, if we invest in  units of risk-free bondE
at time  then at time  the quantity is still  but the value is . Also,! > E E/<>

if we invest  dollars in the risk-free bond at time  we get  unitsO > O/<>

of bond each worth ./<>

It will also be convenient to use the following common notation

\ œ Ö\ß !× max

The European Case

The put-call option parity formula is a formula that compares the price T
of a European put to the price  of a European call on the sameG
underlying stock and with the same expiration date and strike price .O

Assume that the underlying stock pays no dividend and is currently
selling for . Consider the following two portfolios.W!

Portfolio A
A  position on the put and a  position on the call. The initiallong short
value of this portfolio is  and the payoff isT  G
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max maxÐO  W ß !Ñ  ÐW Oß !Ñ œ O  WX X X

where  is the final price of the stock.WX

Portfolio B
A  position on one share of stock and  worth of risk-freeshort O/<X

bond. The initial value of this portfolio is

O/  W<X
!

and the final payoff is

O  WX

Since the final payoffs of the two portfolios are the same, the initial
values must also be the same. Otherwise, an investor could sell the more
expensive portfolio and buy the cheaper portfolio, which would produce
a guaranteed profit at time . HenceX

T  G œ O/  W<X
!

This is the put-call option parity formula.

If the stock pays a dividend then the analysis is somewhat different. The
reason is that the investor from whom the stock was borrowed under
Portfolio B will demand not only the return of his share of stock, but also
the return of the dividends that he has foregone by lending the stock.

Suppose that the time-  value of the dividend is . Then the final> .! !

payoff of Portfolio B is

O  W  . /X !
<X

Thus, we cannot compare the initial values of the two portfolios, since
the final payoffs are not equal. This calls for an adjustment to Portfolio B
so that the payoff is the same as that of Portfolio A.

Portfolio Bw

A  position on one share of stock and  worth of risk-short O/  .<X
!

free bond. The initial value of this portfolio is

O/  .  W<X
! !
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and the final payoff is

O  . /  W  . / œ O  W! X ! X
<X <X

Now we can equate the initial values of Portfolio A and Portfolio B  tow

get

T  G œ O/  .  W<X
! !

Theorem 2 (European Options With Dividends) Suppose that a stock is
currently selling at a price of  per share, a European put on this stockW!

sells for  dollars and a European call for  dollars, both having theT G
same strike price  and expiration time . Suppose that the presentO X
value of any dividends paid by the stock during the period in question is
.!. Then assuming that no arbitrage occurs, we must have

G  T œ W O/  .! !
<X

where  is the risk-free interest rate. This formula is called the < put-call
option parity formula. 

The American Case

The case of American options is more complicated. Here the price
difference  is not a constant as it was in the European case.G  T

Consider the following strategy: We go long one put, short one call and
long one share of stock (to cover the call in case it is exercised). The
initial portfolio is thus

1)  put @ " T
2)  call @ " G
3)  share @ " W!

The initial value of this portfolio is thus

i! !œ T  G  W

Now, one of two things can happen during the lifetime of the holdings:
the call can be exercised against us or it can expire worthless.

If the call is exercised at time  then we give up the stock to cover the>
call, taking in  units of risk-free bond. Our position is thusO/<>

" O/ put,  bonds<>

At the final time , our position will beX
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1)  put @ " ÐO  W ÑX


2)  bonds @ O/ /<> <X

3)  dollars if the call was exercised after the dividend was paid. /!
<X

The final value is thus

i $X ß" X !
 <ÐX>Ñ <Xœ ÐO  W Ñ O/  . /

where  or .$ œ ! "

If the call is not exercised, we do nothing until the final time, when our
holdings are

1)  put @ " ÐO  W ÑX


2)  call @ " !
3)  share @ " WX

4)  dollars. /!
<X

for a final value of

iX ß# X X ! X !
 <X <Xœ ÐO  W Ñ  W  . / œ ÖW ßO×  . /max

Now, an arbitrage situation will occur if the  final value isdiscounted
greater than the initial value, for this implies that a profit can be made
that is guaranteed to be greater than that of the risk-free bond. (Why?)

The discounted final values under the two scenarios are

i $

i

X ß" X !
 <X <> <X

X ß# X !
<X <X <X

œ ÐO  W Ñ / O/  .   O/

œ ÖW / ßO/ ×  .   O/max

Since equality may hold above, the best we can say is that arbitrage will
occur if

O/  T  G  W<X
!

Thus, to avoid arbitrage, we must have

T  G   O/  W<X
!

Now let us consider the opposite strategy: We go short one put, long one
call and short one share of stock. The initial portfolio is thus

1)  put @ " T
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2)  call @ " G
3)  share @ " W!

The initial value of this portfolio is thus

i! !œ T  G  W

One of two things can happen during the lifetime of this portfolio: the
put can be exercised against us or it can expire worthless.

If the put is exercised at time  then we must buy the share for , but at> O
least we can use that share to cover the short position on the stock. This
results in the following position

" O/ call,  bonds<>

At the final time , our position will beX

1)  call @ " ÐW OÑX


2)  bonds @ O/ /<> <X

3)  dollars if the put was exercised before the dividend was paid. /!
<X

4)  dollars if the put was exercised after the dividend was paid. /!
<>

The final value is thus

i $ $

$

X ß" X ! !
 <ÐX>Ñ <X <>

X ! !
 <ÐX>Ñ <X <> <>

œ ÐW OÑ O/  . /  . / Ð"  Ñ

œ ÐW OÑ O/  . Ð/  / Ñ  . /

where  if the put was exercised after the dividend was paid and$ œ !
$ œ " if the put was exercised before the dividend was paid.

If the put is not exercised, we do nothing until the final time, when our
holdings are

1)  put @ " !
2)  call @ " ÐW OÑX



3)  share @  with dividends" WX

for a final value of

iX ß# X X ! X !
 <X <Xœ ÐW OÑ  W  . / œ ÖW ßO×  . /max

As before, an arbitrage situation will occur if the  final valuediscounted
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is greater than the initial value, for this implies that a profit can be made
that is guaranteed to be greater than that of the risk-free bond. (Why?)

The discounted final values under the two scenarios are

i $

i

X ß" X ! !
 <X <> <ÐX>Ñ <ÐX>Ñ

!

X ß# X ! !
<X <X

œ ÐW OÑ / O/  . Ð"  / Ñ  . /

  O  .

œ ÖW / ßO/ ×  .   O  .max

Hence arbitrage will occur if

O  .  T  G  W! !

or

O  .  T  G  W! !

Thus, to avoid arbitrage, we must have

T  G Ÿ O  .  W! !

Let us summarize.

Theorem 3 (American Options With Dividends) Suppose that a stock is
currently selling at a price of  per share, an American put on this stockW!

sells for  dollars and an American call for  dollars, both having theT G
same strike price  and expiration time . Suppose that the presentO X
value of any dividends paid by the stock during the period in question is
.!. Then assuming that no arbitrage occurs, we must have

W O  . Ÿ G  T Ÿ W O/! ! !
<X

where  is the risk-free interest rate. Thus, in the American case, the<
difference  can be no larger than in the European case, but it canG  T
be smaller.

Option Prices
Simple arbitrage arguments, along with some common sense, can give us
some information about option prices. For instance, since an American
option provides all of the features of a corresponding European option
and more, it seems obvious that American options should not be less
expensive than their European counterparts. In symbols,

G   G ß T   TE I E I
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We leave it to the reader to produce an arbitrage argument to support
these inequalitites.

It is not hard to see that the price of an American put can exceed the
price of its European counterpart. The idea is that early exercise of the
American put can turn a share of stock into bonds that earn the risk-free
rate . If that rate is sufficiently high, the profit can be higher than that of<
the European put, which is limited by the strike price, since the best case
scenario for the owner of a European put is when the stock price is  at!
time .X

More specifically, suppose that the bond rate is  and a share of stock is<
selling for . Consider an American put with strike price . TheW O!

maximum profit from a similar European put is , which happens if theO
stock price drops to  at time . On the other hand, suppose we exercise! X
the American put at time , and invest the resulting  dollars at! O  W!

rate . The resulting profit is . Hence, if< ÐO  W ÑÐ"  <Ñ!

ÐO  W ÑÐ"  <Ñ  O!

then the American put is more valuable than its European counterpart.

As a numerical example, there was a time when the bond rate was %"#
(and even higher). Suppose a share of stock is selling for $ . Consider an&
American put with strike price . The resulting profit is&!

ÐO  W ÑÐ"  <Ñ œ %&Ð"Þ"#Ñ œ &!Þ%!  &!!

Thus, the American  put is worth more than the European  put.&! &!

On the other hand, it is a perhaps somewhat surprising result that an
American call is worth exactly the same as a European call with the same
terms. That is,

G œ GE I

(We are assuming that the stock does not pay a dividend.) However,
some reflection reveals the reason. Namely, the ownership of a European
call implies that the owner can borrow a share of stock at any time and
can use the call to cover the short position at time  for  the strikeX at most
price . This provides protection against early exercise of the AmericanO
call.
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To be specific, suppose that  and consider the following initialG  GE I

portfolio

1)  American call @ " GE

2)  European call @ " GI

3)  bonds @ G  G  ! "E I

This portfolio has initial value . As mentioned, the ownership of the!
European call protects us against exercise of the American call since we
can always borrow a share of stock to cover early exercise of the
American call.

In particular, clearly, if the calls are never exercised then there is a
guaranteed profit from the risk-free position. If the American call is
exercised at time  then we can also exercise the European call inX
response, again resulting in a net profit from the bonds. Finally, if the
American call is exercised at time  then we borrow one share of>  X
stock and cover the call. At that time, the portfolio is

1)  share @ " W>

2)  European call @ ?"
3)  bonds @ G  G  ! /E I <>

4)  dollarsO

At time  this becomesX

1)  share @ " WX

2)  European call @ " ÐO  W ÑX


3)  bonds @ G  G  ! /E I <X

4)  dollarsO/<ÐX>Ñ

Now we simply exercise the call to cover the short stock position or, if
the stock price has fallen below the stock price , buy the stock on theWX

open market. In this way, we cover the short stock position at a cost of
minÖOß W ×X . The final profit is thus

ÐG  G Ñ/ O/  ÖOß W ×  !E I <X <ÐX>Ñ
Xmin

The essence of this inequality is that . In words, it is betterO/  O<ÐX>Ñ

to pay the strike price at the end than anywhere in the middle.
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There is one more lesson to be learned here. Namely, it is never wise to
exercise an American call early . Theif the intention is to keep the stock
alternative of borrowing the stock still gives the investor possession of
the stock but at no immediate cost. The cost  can be deferred to theO
final time  by exercising the option at that time (or buying the stock onX
the open market if it is cheaper) to cover the short position on the stock.
Of course, if the intention is to exercise the call and sell the stock, then
this may be more profitable than holding the call until the end.

Theorem 4 Assume that the underlying stock does not pay a dividend.
For an American and European call under the same terms, we have

G œ GE I

For an American and European put under the same terms, we have

T   TE I

with strict inequality possible. Moreover, it is never wise to exercise an
American call before the expiration date if the intention is to keep the
stock. 

Exercises
If the underlying asset of a forward contract provides a dollar income
during the life of the contract, then the long investor in the contact will
lose out on this income and the cash-and-carry investor will get the
income. This effects the previous no-arbitrage argument. The following
exercises are  to this situation.á propos

1. Suppose that the income from the underlying asset has present value
M . What are the payoffs in this case? Assume that the annual interest
rate is  compounded continuously.<

2. What are the payoffs for the two strategies in this case?
3. Show that the assumption of no arbitrage implies that

J œ ÐW  MÑ/!ßX !
<X

We have seen that in the simplest case of a forward contract that does not
produce an income, the non-arbitrage forward price at time  is!

J œ W /!ßX !
<X

However, we derived this formula under the very idealistic assumption
of a perfect market. Let us examine what happens if this restriction is
lifted. In particular, suppose that the lending and borrowing rates are
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different, as is almost always the case in real life. Let the lending rate for
the investor be  and the borrowing rate be . Of course, life being what< <j ,

it is for individual investors, we have .<  <j ,

4. Under these conditions, what are the payoffs? Assume that the
annual interest rate is  compounded continuously.<

5. What are the payoffs for the two strategies in this case?
6. Show that the assumption of no arbitrage implies that

W / Ÿ J Ÿ W /! !ßX !
< X < Xj b

Hint nonpositive: To avoid arbitrage, both strategies must yield a 
payoff.

The upper and lower bounds given in Exercise 6 are called no-arbitrage
bounds and the range of values of the futures price that is implied by the
absence of arbitrage is the . Thus, in the absence ofno-arbitrage spread
a perfect market, the lack of arbitrage implies that the futures price can
lie anywhere within a  of values.range

Upper Bounds for Option Prices

7. Prove by an arbitrage argument that the initial value of a European or
American call is less than the initial price of the stock, that is

G Ÿ W

G Ÿ W

I
!

E
!

7. Solution If not then buy the share, sell the call and pocket the
difference. Use the share to cover the call if and when it is exercised.

8. Prove the following by an arbitrage argument

T Ÿ O/

T Ÿ O

I <X

E

8. Solution: If not, sell the put and invest the money. The put cannot
cost you more than  in either case and you will have O O
immediately in the case of the American put or at the end in the case
of the European put.
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Lower Bounds for Option Prices

9. Prove that

W O/  . Ÿ G

O/  .  W Ÿ T

! !
<X I

<X I
! !

Solution: Use put-call option parity formula.
10. a) Prove that for a nondividend paying stock

W O/ Ÿ G

O  W Ÿ T

!
<X E

!
E

 b) If the stock pays a dividend whose discounted value is  then.!

max
max

ÖW O/  . ß W O× Ÿ G

ÖO/  .  W ßO  W × Ÿ T

! ! !
<X E

<X E
! ! !

Solution: a) First comes from . Second from the fact thatG œ GI E

O  W >! ! can be gotten by exercising the put at time .
b) For the first formula, since  we getG œ GE I

W O/  . Ÿ G! !
<X E

In addition, immediate exercise of the American call will return
W O!  and so the call cannot be purchased for less than this
amount. For the second formula,  because immediateO  W Ÿ T!

E

exercise is worth . For the other part, consider two portfolios.O  W!

Portfolio A is 1 put. Portfolio B is  in cash and a shortÐO  . Ñ/!
<X

share of stock.
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Chapter 5

Probability II: More Discrete Probability
In this chapter, we cover the material on finite probability spaces that is
needed for the discussion of discrete-time models in the next chapter.

Conditional Probability
When additional information is available about an experiment, the notion
of conditional probability can be used to take that information into
account. The idea is to “concentrate” all of the probability of  onto theH
set , in a manner that is proportional to the original probability measureI
.

Definition Let  be a probability space. Let  be an event withÐ ß Ñ IH 
ÐIÑ  ! E E. Then for any event , the    conditional probability of given
I is





ÐE ± IÑ œ

ÐE  IÑ

ÐIÑ

The symbol  is read “the probability of  given .” Note thatÐE ± IÑ E I
we do not need to worry about the case , for it makes littleÐIÑ œ !
sense to ask about a probability conditioned upon the occurrence of an
impossible event.

Conditioning on an event allows us to define a new “conditional”
probability measure on .H

Theorem 1 Let  be a finite probability space and let  be an eventÐ ß Ñ IH 
for which . Then the set function  defined by ÐIÑ  ! I

 IÐEÑ œ ÐE ± IÑ

is a probability measure  for which .on H IÐIÑ œ "
Proof. To show that  is a probability measure on  we must verify a HI

few facts. First, monotonicity of  implies that

! Ÿ ÐE  IÑ Ÿ ÐIÑ 

and so , that is! Ÿ ÐE ± IÑ Ÿ "
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! Ÿ ÐEÑ Ÿ "I

Also

 H  H
 H 

 
IÐ Ñ œ Ð ± IÑ œ œ œ "

Ð  IÑ ÐIÑ

ÐIÑ ÐIÑ

Finally, if  then since  and  are also disjoint, weE  F œ g E  I F  I
have

 









 



 

 

 

 

I

I I

ÐE  FÑ œ ÐE  F ± IÑ

œ
ÐÐE  FÑ  IÑ

ÐIÑ

œ
ÐÐE  IÑ  ÐF  IÑÑ

ÐIÑ

œ
ÐE  IÑ  ÐF  IÑ

ÐIÑ

œ 
ÐE  IÑ ÐF  IÑ

ÐIÑ ÐIÑ

œ ÐE ± IÑ  ÐF ± IÑ

œ ÐEÑ  ÐFÑ

This completes the proof. 

The theorem on total probabilities takes on a nice form using conditional
probabilities.

Theorem 2 Theorem on Total Probabilities  ( ) Let  be a sample spaceH
and let  form a partition of . Provided that  for allI ßá ßI ÐI Ñ Á !" 8 5H 
5 E, we have for any event  in ,H

  ÐEÑ œ ÐE ± I Ñ Ð Ñ"
5œ6

8

5 5E

Partitions and Measurability
For convenience, let us repeat the definition of a partition.

Definition partition Let  be a nonempty set. Then a  of  is a collectionH H
c Hœ ÖF ßá ßF ×" 5  of  subsets of , called the  of thenonempty blocks
partition, with the following properties
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1) The blocks are pairwise disjoint

F  F œ g3 4

2) The union of the blocks is all of H

F âF œ" 5 H

Figure 1 shows a partition of a set .H

B1 2B
3B

Ω

4B

Figure 1 - A Partition of H

We will also have use for the notion of a refinement of a partition.

Definition Let  be a partition of a set . Then ac Hœ ÖF ßá ßF ×" 5

partition  that comes from  by breaking up some ofd cœ ÖG ßá ßG ×" 8

the blocks  into smaller blocks is called a  of . Thus,  isF3 refinement c d
a refinement of  if each block of  is contained in a some block of c d c
or, equivalently, each block of  is a union of blocks of . We denotec d
this by . c d¡

Note that when we say that a set  is the union of sets in the collectionE
ÖF ßá ßF × E" 8  this includes the possibility that  is the “union" of a
single set , that is, .F E œ F5 5

Figure 2 shows a refinement of the partition in Figure 1. Note that

F œ G  G

F œ G  G  G

F œ G

F œ G

" " #

# $ % &

$ '

% (

and so each block  is the union of blocks .F G3 4
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C1

2C

3C

Ω

C4

5C

6C 7C

Figure 2 - A Refinement

The Partition Defined by a Random Variable

If  is a random variable it is customary to denote the inverse image of a\
set  under  not by , as for ordinary functions, but instead byF \ \ ÐFÑ"

Ö\ − F×

Also, instead of writing  it is customary to write\ ÐBÑ"

Ö\ œ B×

We also remind the reader that the set of  values  ofdistinct ÖB ßá ß B ×" 8

\ \ Ð\Ñ is called the  of  and is denoted by im .image

Any random variable  on a finite sample space  defines a partition\ H
c H\  of , as shown in Figure 3.

R
x1 x2

{X=x1} {X=x2}

Ω

xn

{X=xn}

The partition PX

Figure 3–The partition defined by a random variable

Definition Let  be a random variable on  with\ H

imÐ\Ñ œ ÖB ßá ß B ×" 8

Then  defines a partition of  whose blocks are the inverse images of\ H
the  of im , that iselements Ð\Ñ

c\ " 8œ Ö\ œ B× ± B − Ð\Ñ œ Ö\ œ B ×ßá ß Ö\ œ B ×e f e fim

This is called the  .partition defined by \



109

Measurability Of a Random Variable with Respect to a Partition

The partition  defined by a random variable has one very importantc\

property:  is  on the blocks  of . In fact, at the risk\ Ö\ œ B×constant c\

of being redundant,  takes the constant value  on . This\ B Ö\ œ B×
property is expressed by saying that  is .\ c\-measurable

Definition Let  be any partition of . A random variable  on  isc H H\
said to be  if  is constant on each block of .c c-measurable \

There is another rather obvious property of  with respect to ,\ c\

namely, not only is  constant on the blocks of , but it is a \ c\ different
constant on each block of .c\

Now, given a nonconstant random variable, there are many partitions d
for which  is constant on each block of , that is, for which  is -\ \d d
measurable. However,  is the only partition for which  is a c\ \ different
constant on each block. We can characterize all partitions  for which d \
is -measurable quite simply. (See Figure 4.)d

{X=x1} {X=x2}

Ω

{X=x1} {X=x2}
Ω

{X=xn}

The partition PX

{X=xn}

A refinement Q of PX

Figure 4–A refinement of c\

Theorem 3 Let  be a random variable on .\ H
1) Then  is -measurable if and only if  is a refinement of .\ d d c\

2)  is the coarsest partition for which  is measurable and the onlyc\ \
partition for which  is measurable and takes on a \ different
constant value on each block.

Proof. For 1), if  is -measurable and  then for any\ œ ÖF ßá ßF ×d d " 5

= − F3 we have
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F © Ö\ œ \Ð Ñ×3 =

and so  is a refinement of . The converse is clear. We leave proof ofd c\

part 2) to the reader.

The following very important theorem states that there is a very strong
connection between a random variable  and any other random variable\
]  that is -measurable.c\

Theorem 4 Let  and  be random variables. Then  is -\ ] ] c\

measurable if and only if  is a function of , that is, if and only if there] \
is a function  for which0À Ä‘ ‘

] œ 0Ð\Ñ

Proof. We know that  is constant on the blocks of the partition]
c\ " 5œ ÖF ßá ßF ×. Let us assume that

] ÐF Ñ œ ÖC ×3 3

Of course,  is also constant on the blocks of , so let\ c\

\ÐF Ñ œ ÖB ×3 3

Define  by setting0

0ÐB Ñ œ C3 3

Then for = − F3

0Ð\ÑÐ Ñ œ 0Ð\Ð ÑÑ œ 0ÐB Ñ œ C œ ] Ð Ñ= = =3 3

and so , as desired. The converse is much easier and we leave] œ 0Ð\Ñ
it as an exercise.

Partitions and Independence

Let us take another brief look at the notion of independence. Here again
is the definition.

Definition independent The events  and  of  are  ifI J Ð ß ÑH 

  ÐI  JÑ œ ÐIÑ ÐJ Ñ

The events  are independent if for any subcollectionI ßá ßI" 5
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I ßá ßI3 3" 7
 of these events

  ÐI â I Ñ œ ÐI Ñâ ÐI Ñ3 3 3 3" 7 " 7

We can extend the definition of independence to families of collections
of events.

Definition independent The collections  of events is  if for anyV V" 5ßá ß
choice of events  the events  are independent. I − I ßá ßI3 3 " 5V

We will have reason to apply this definition when the collections are
partitions of . In fact, let us recall that the random variables H \ ßá ß\" 8

are independent if

 Ð\ œ B ßá ß\ œ B Ñ œ Ð\ œ B Ñ" " 8 8 3 3

3œ"

8$
for all  B ßá ß B −" 8 ‘

This definition can be reformulated in terms of partitions as follows.

Theorem 5 The random variables  are independent if and\ ßá ß\" 8

only if the partitions  are independent collections ofc cÐ\ Ñßá ß Ð\ Ñ" 8

events.
Proof. This follows immediately from the fact that the blocks of cÐ\ Ñ3
are precisely the sets .Ö\ œ B ×3 3

Algebras
We have seen that for a finite sample space, partitions are intimately
connected with random variables. As it happens, the notion of a partition
does not generalize readily for nonfinite sample spaces. For this, we need
another concept called an .algebra

We will not use the topics discussed in this section directly, because
partitions are sufficient for our analysis of discrete time pricing models,
and they are a bit more intuitive than algebras. However, we do want to
discuss algebras here because they provide a helpful bridge between the
intuitive notion of partition and the notion of -algebra, which we will5
need for our analysis of continuous-time pricing models and the Black-
Scholes option pricing formula.
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Definition Let  be a nonempty set. A collection  of subsets of  isH T H
called an  (or just an ) if it satisfies the followingalgebra of sets algebra
properties
1) (Empty set is in )T

g − T

2) (  is closed under complements)T

E − Ê E −T T-

3) (  is closed under unions)T

EßF − Ê E  F −T T

It is not hard to show that any algebra of sets is closed under
intersections and differences as well, that is

EßF − Ê E  F −

EßF − Ê E Ï F −

T T

T T

The following concept will be very useful. It makes precise the notion of
the “smallest” nonempty sets in an algebra .T

Definition atom Let  be an algebra of sets on . An  of  is aT H T
nonempty set  with the property that no nonempty  subset ofE − T proper
E is also in .T

Partitions and Algebras

Starting with a partition  of  we can generate an algebra  of setsc H T cÐ Ñ
simply by taking all possible finite unions of the blocks of . Thec
reverse is also possible: starting with an algebra of sets on a  samplefinite
space, we can get a partition.

Theorem 6 Let  be a nonempty finite set.H
1) For any partition  of  the setc H

T c H cÐ Ñ œ ÖG © ± G œ g G œ × or union of blocks of 

is an algebra, called the  .algebra generated by c
2) If  is an algebra on  then the set of all atoms of T H T

c T TÐ Ñ œ Ö ×all atoms of 

is a partition of , called the  .H Tpartition defined by
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Proof. We prove part 2), leaving part 1) as an exercise. Let

c œ ÖE ßá ßE ×" 5

be a complete list of distinct atoms of . We must show that  is aT c
partition of . By definition, atoms are nonempty. If  forH E  E Á g3 4

3 Á 4 E  E then  would be an element of  that was nonempty and a3 4 T
proper subset of , which is not possible. Hence, the atoms are pairwiseE3

disjoint. Finally, suppose that . The the intersection  of all= H− M
elements of  containing  is an element of  that contains .T = T =
Moreover,  is nonempty and no proper subset of  is in , for any suchM M T
proper subset would have been part of the intersection that defined .M
Hence,  is actually an atom of . This shows that every element of  isM T H
contained in some atom of  and so the union of the atoms of  is all ofT T
H c T. Thus,  is a partition of .

The main theme of our current discussion is that for finite sample spaces,
the notions of partition and algebra are in some sense equivalent

Partitions of Algebras on H HÍ

By this we mean that, while these concepts are certainly not the same, all
statements made about partitions have an analog for algebras and vice-
versa. Put another way, whatever theory we can develop in the context of
partitions could just as well have been developed in the context of
algebras and vice-versa.

The precise connection between the two concepts is made by the
correspondences

d T d

U c U

Ä Ð Ñ

Ä Ð Ñ

 [Partition to algebra generated by partition]
 [Algebra to partition defined by algebra]

described in Theorem 6. The first correspondence takes any partition of
H and produces an algebra and the second takes any algebra and
produces a partition. It is a fact that these correspondences are inverses of
each other (and are therefore one-to-one).

To see this, suppose that  is a partition of . The algebra  is thed H T dÐ Ñ
set of all unions of blocks of . Hence, the blocks of  are precisely thed d
atoms of the algebra , that is,T dÐ Ñ

c T d dÐ Ð ÑÑ œ

Similarly, if we start with an algebra  of , then the partition  isU H c UÐ Ñ
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the set of atoms of . But all elements of  are unions of atoms of  andU U U
so  is the same as , that isT c U UÐ Ð ÑÑ

T c U UÐ Ð ÑÑ œ

This shows that the two correspondences are one-to-one and are inverses
of each other. This is a very tight connection indeed between the two
concepts.

The next theorem strengthens the connection between partitions and
algebras. It says that the concept of refinement of partitions corresponds
to set inclusion of algebras. Notice that there are two statements in the
theorem. These statements say exactly the same thing: one from the point
of view of partitions and the other from the point of view of algebras.
Recall that we denote the fact that  is a refinement of  by .d c c d¡

Theorem 7
1) Let  and  be partitions of . Thenc d H

T c T d c dÐ Ñ © Ð Ñ Í ¡

2) Let  and  be algebras on . ThenT U H

T U c T c U© Í Ð Ñ ¡ Ð Ñ

Proof. We only need to prove statement 1). (Why?) Suppose that
T c T d c T cÐ Ñ © Ð Ñ Ð Ñ E. Then the blocks of  are the atoms in . If  is an
atom of  then it is also in  and so it is the union of blocks of .c T d dÐ Ñ
In other words, each block of  is the union of blocks of  and so  is ac d d
refinement of .c

Conversely, suppose that  is a refinement of . Then any block of  isd c c
the union of blocks of . It follows that any element of , being thed T cÐ Ñ
union of blocks of , is also the union of blocks of  and so belongs toc d
T d T c T dÐ Ñ Ð Ñ © Ð Ñ. Thus .

The Algebra Generated by a Random Variable

We have seen the strong connection between partitions of  and algebrasH
on . It is now time to bring random variables into the picture.H

Just as a random variable  defines a partition  of \ c H\

c\ œ Ö\ œ B× ± B − Ð\Ñe fim

consisting of the inverse images of the  of im , the randomelements Ð\Ñ
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variable also defines an algebra  on  consisting of the inverseT H\

images of the  of im .subsets Ð\Ñ

Definition Let  be a random variable on . Then  defines an algebra\ \H
on  whose elements are the inverse images of the  of im , thatH subsets Ð\Ñ
is

T\ œ Ö\ − F× ± F © Ð\Ñe fim

It is easy to see that  and  are connected (see Figure 5).c T\ \

X

PX AX

Figure 5–The partition and algebra generated by a random variable

In fact,  is nothing more than the algebra generated by , inT c\ \

symbols

T T c\ \œ Ð Ñ

To see this, note that if  is a subset of im  thenF œ Ö, ßá ß , × Ð\Ñ" 7

Ö\ − F× œ Ö\ œ , × − Ð Ñ.
3œ"

7

3 \T c

and so . But  is the smallest algebra that containsT T c T c\ \ \© Ð Ñ Ð Ñ
the blocks of , that is, the sets . Hence, .c T T c\ 3 \ \Ö\ œ , × œ Ð Ñ

Theorem 8 Let  be a random variable on a finite sample space .\ H
Then the algebra generated by  is the algebra generated by , in\ c\

symbols

T T c\ \œ Ð Ñ

and the partition defined by  is the partition defined by , in symbols\ T\

c c T\ \œ Ð Ñ

Measurability Of a Random Variable with Respect to an Algebra

We have defined measurability of a random variable  with respect to a\
partition  of . This simply means that  is constant on the blocks ofc H \
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c c c. We have also seen that  is -measurable if and only if  is a\
refinement of . Now let us turn to measurability of  with respect toc\ \
an algebra of sets on .H

It should come as no surprise that we want this concept to be defined so
that a random variable  is -measurable if and only if it is -\ Ð ÑT c c
measurable, that is, constant on the blocks of . In fact, since c any
algebra  is generated by a partitionT

T T c Tœ Ð Ð ÑÑ

we can actually use this as the  of measurability withdefining property
respect to an algebra. This definition reads as follows: If  is an algebraT
on  then  is -measurable if  is constant on all of the atoms of .H T T\ \

While this definition is quite intuitive, it is not standard and we would be
doing the reader a disservice by adopting it. To understand the usual
definition, note that the following are equivalent

1)  is -measurable\ c
2)  is constant on the blocks of \ c
3)  is constant on the atoms of \ Ð ÑT c
4) Each set  is the union of atoms of Ö\ œ B× Ð ÑT c
5) Each set  is in Ö\ œ B× Ð ÑT c
6) For any subset im , the set  is in F © Ð\Ñ Ö\ − F× Ð ÑT c

Now we are ready for the standard definition, which we have just shown
is equivalent to the previous intuitive definition.

Definition Let  be a random variable on a finite sample space . Let\ H
T H be any algebra of sets on . Then  is  if\ T-measurable

Ö\ œ F× − ß F © Ð\ÑT  for all im

We have shown that  is -measurable if and only if  is -\ \ Ð Ñc T c
measurable.

Theorem 9 Let  be a random variable on .\ H
1) If  is an algebra on  then  is -measurable if and only if it isT H T\

c TÐ Ñ-measurable.
2) If  is a partition of  then  is -measurable if and only if it isc H c\

T cÐ Ñ-measurable.
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Just as we have characterized measurability with respect to a partition by
showing that  is -measurable if and only if , we can\ ¡c c c\

characterize measurability with respect to an algebra.

Theorem 10 A random variable  on  is measurable with respect to\ H
an algebra  if and only if .T T T\ ©
Proof. The following statements are equivalent and prove the theorem
1)  is -measurable\ T
2)  is -measurable\ Ð Ñc T
3)  is a refinement of c T cÐ Ñ \

4)  is contained in T c T c TÐ Ñ Ð Ð ÑÑ\

5)  is contained in  T T\

Conditional Expectation
We can put together the notions of conditional probability and
expectation to get , which plays a key role inconditional expectation
derivative pricing models.

Conditional Expectation with Respect to an Event

Conditional expectation with respect to an event  with positiveE
probability is pretty straightforward—we just take the ordinary
expectation but with respect to the conditional probability measure E

defined by

 EÐFÑ œ ÐF ± EÑ

Definition Let  be a finite probability space and let  be an eventÐ ß Ñ EH 
for which . The  of a random variableÐEÑ  ! conditional expectation
\ E with respect to the event  is

X X Ð\ ± EÑ œ Ð\Ñ
E

The symbol  is read “the expected value of  given .”XÐ\ ± EÑ \ E

A little algebra gives another useful expression for the conditional
expectation in terms of the nonconditional expectation.

Theorem 11 Let  be a finite probability space and let  be anÐ ß Ñ EH 
event for which . The conditional expectation of a randomÐEÑ  !
variable  with respect to the event  is\ E
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X
X





Ð\ ± EÑ œ

Ð\" Ñ

ÐEÑ
E

where  is the indicator function of ." EE

Proof. We have

X =  =

=
 =




=  =


= =  =


X





E
Ð\Ñ œ \Ð Ñ Ð ± EÑ

œ \Ð Ñ
Ð  EÑ

ÐEÑ

œ \Ð Ñ Ð  EÑ
"

ÐEÑ

œ \Ð Ñ" Ð Ñ Ð Ñ
"

ÐEÑ

œ Ð\" Ñ
"

ÐEÑ

"
"

"
"

3œ"

8

3 3

3œ"

8

3
3

3œ"

8

3 3

3œ"

8

3 3 3E

E

as desired. 

One simple consequence of the previous theorem is the following useful
result.

Theorem 12 If  and  are events with  thenE F ÐE  FÑ  !

X XE
Ð\ ± FÑ œ Ð\ ± E  FÑ

Proof. Using the previous theorem, we have

X
X



X

 

X



X










E

EÐ\ ± FÑ œ
Ð\" Ñ

ÐFÑ

œ
Ð\" " Ñ

ÐEÑ ÐFÑ

œ
Ð\" Ñ

ÐE  FÑ

œ Ð\ ± E  FÑ

F

E

F E

E

EF

as desired.

Next we have the expected value analog of the theorem on total
probabilities.
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Theorem 13 Let  be a partition of . Then for anyc Hœ ÖF ßá ßF ×" 8

random variable  on \ H

X X Ð\Ñ œ Ð\ ± F Ñ ÐF Ñ"
3œ"

8

3 3

Moreover, if  is an event of positive probability thenE

X X Ð\ ± EÑ œ Ð\ ± F  EÑ ÐF ± EÑ"
3œ"

8

3 3

These sums are valid provided that we consider each term in which the
conditional probability is not defined as equal to . Put another way, if!
either of the factors in a term is  then the term is considered , that is! !

undefined † ! œ !

Proof. For the first part, suppose that
a)  for ÐF Ñ  ! 3 œ "ßá ß73

b)  for ÐF Ñ œ ! 3 œ 7 "ßá ß 83

Since

\ œ \"  \"" "
3œ" 3œ7"

7 8

F F3 3

applying expected values gives

X X X

X




X 

Ð\Ñ œ Ð\" Ñ  Ð\" Ñ

œ ÐF Ñ
Ð\" Ñ

ÐF Ñ

œ Ð\ ± F Ñ ÐF Ñ

" "
"
"

3œ" 3œ7"

7 8

F F

3œ"

7
F

3
3

3œ"

7

3 3

3 3

3

which proves the first statement.

For the second statement, we apply the first statement to the conditional
probability E

X X X   Ð\ ± EÑ œ Ð\Ñ œ Ð\ ± F Ñ ÐF Ñ
E E

"
3œ"

8

3 3E
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where the undefined terms are . But these are the terms for which!
X E

Ð\ ± F Ñ ÐF Ñ œ !3 3E is not defined, that is, for which , or finally
 ÐE  F Ñ œ ! ÐF Ñ E3 3E. (Note that  is always defined because  is
assumed to have positive probability.) For all other terms, we may write

X X E
Ð\ ± F Ñ œ Ð\ ± F  EÑ3 3

to get the desired sum.

Conditional Expectation with Respect to a Partition

Next we define conditional expectation with respect to a partition of the
sample space. Unlike the conditional expectation given an event, which
is a real number, the conditional expectation given a partition is a
random variable.

By way of motivation, let us briefly revisit the ordinary expected value
of a random variable. Of course, the expected value  of a randomXÐ\Ñ
variable  is a constant. In fact, it represents the \ best possible
approximation of  by a constant. The measure that is used to judge the\
quality of the approximation is the  or ,mean squared error MSE
defined by

MSE œ ÒÐ\  -Ñ ÓX #

where  is a constant. As it happens, for all constants , the mean squared- -
error is smallest if and only if  is the expected value , that is- .\

X . XÒÐ\  Ñ Ó Ÿ ÒÐ\  -Ñ Ó\
# #

with equality if and only if . To prove this, we write- œ .\

X X . .

X . X . . X .

ÒÐ\  -Ñ Ó œ ÒÖÐ\  Ñ  Ð  -Ñ× Ó

œ ÒÐ\  Ñ Ó  ÒÐ\  ÑÐ  -ÑÓ  ÒÐ  -Ñ Ó

# #
\ \

\ \ \ \
# #

But the middle term is  (why?) and so!

X X . X . X .ÒÐ\  -Ñ Ó œ ÒÐ\  Ñ Ó  ÒÐ  -Ñ Ó   ÒÐ\  Ñ Ó# # # #
\ \ \

with equality holding if and only if .- œ .\

Now, we want the expected value with respect to a partition  of  to bec H
the best approximation to  that is constant on each block of the\
partition. The point is that if we are given a block  of the partition, thenF
we can get a better constant approximation to  on  than the ordinary\ F
expected value. In fact, we get the  constant approximation by usingbest
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the conditional expectation . This idea is shown in Figure 6 forXÐ\ ± FÑ
a random variable  that is defined on an interval  of the real line.\ Ò+ß ,Ó
(We chose this illustration because it is easier to picture the conditional
expectation for such intervals than for random variables on a finite
sample space).

B1 2B 3B 4Ba b

X
E(X|P)

Figure 6 - Conditional Expectation

The definition of  should now be fairly clear: its value on eachX cÐ\ ± Ñ
block  of  is . Hence, we can define the random variableF Ð\ ± F Ñ3 3c X
X cÐ\ ± Ñ as a linear combinations of the indicator functions of the
blocks of .c

Definition Let  be a finite probability space and letÐ ß ÑH 
c H œ ÖF ßá ßF × ÐF Ñ  ! 3" 8 3 be a partition of  for which  for all . The
conditional expectation of a random variable  with respect to the\
partition  is a random variablec

X c H ‘Ð\ ± ÑÀ Ä

defined by

X c X X  Ð\ ± Ñ œ Ð\ ± F Ñ" â Ð\ ± F Ñ"" F 8 F" 8

In particular, for any = H−

X c = X =  cÐ\ ± ÑÐ Ñ œ Ð\ ± Ò Ó Ñ

where  is the block of  containing .Ò Ó= c =c

Here is a formal statement of the value of the conditional expectation in
approximating .\

Theorem 14 The random variable  is the best approximation toX cÐ\ ± Ñ
\ among all functions that are constant on the blocks of , that is, thec
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best approximation to  among all -measurable random variables, in\ c
the sense of mean squared error. By this, we mean that

X X c XÒÐ\  Ð\ ± ÑÑ Ó Ÿ ÒÐ\  ] Ñ Ó# #

for all -measurable random variables , with equality holding if andc ]
only if .] œ Ð\ ± ÑX c
Proof. As an aid to readability let us set

X c .Ð\ ± Ñ œ \±c

We begin by writing for any -measurable random variable c ]

X X . .

X . X .

X . .

ÒÐ\  ] Ñ Ó œ ÒÖÐ\  Ñ  Ð  ] Ñ× Ó

œ ÒÐ\  Ñ Ó  ÒÐ  ] Ñ Ó

 ÒÐ\  ÑÐ  ] ÑÓ

# #
\± \±

\± \±
# #

\± \±

c c

c c

c c

Now, we want to show that the last term is . This can be done by using!
Theorem 13. Assuming that  we havec œ ÖF ßá ßF ×" 8

X . . X . . ÒÐ\  ÑÐ  ] ÑÓ œ ÒÐ\  ÑÐ  ] Ñ ± F Ó ÐF Ñ\± \± \± \±

3œ"

8

3 3c c c c"
Let us now focus on the expressions

X . . X . .


ÒÐ\  ÑÐ  ] Ñ ± F Ó œ ÒÐ\  ÑÐ  ] Ñ" Ó
"

ÐF Ñ
\± \± \± \±3 F

3
c c c c 3

for the terms with . (The other terms are equal to .) Since ÐF Ñ  ! ! ]3

is -measurable, the random variable  is constant on eachc .\±c  ]

block  and can be pulled from under the expectation to getF3

"

ÐF Ñ
Ð  ] Ñ ÒÐ\  Ñ" Ó


. X .

3
\± \± Fc c 3

But since  we have. X\± F 3 Fc" œ Ð\ ± F Ñ"
3 3

" "

ÐF Ñ ÐF Ñ
ÒÐ\  Ñ" Ó œ Ò Ð\" Ñ  Ð " ÑÓ

œ Ò Ð\" Ñ  Ð Ð\ ± F Ñ" ÑÓ
"

ÐF Ñ

œ Ð\ ± F Ñ  Ð\ ± F Ñ

œ !

 
X . X X .


X X X

X X

3 3
\± \±F F F

3
F 3 F

3 3

c c3 3 3

3 3

Thus, we have shown that the last term is  and so!
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X X . X . X .ÒÐ\  ] Ñ Ó œ ÒÐ\  Ñ Ó  ÒÐ  ] Ñ Ó   ÒÐ\  Ñ Ó# # # #
\± \± \±c c c

with equality if and only if . This completes the proof.] œ .\±c

The following theorem gives some key properties of conditional
expectation.

Theorem 15 Let  be a finite probability space. LetÐ ß ÑH 
c H œ ÖF ßá ßF × ÐF Ñ  ! 3" 8 3 be a partition of  for which  for all . The
conditional expectation  has the following properties.X cÐ\ ± Ñ
1) The function  is linear, that is, for random variables  andX cÐ † ± Ñ \

] + , and real numbers  and ,

X c X c X cÐ+\  ,] ± Ñ œ + Ð\ ± Ñ  , Ð] ± Ñ

2) The conditional expectation satisfies

X X c XÐ Ð\ ± ÑÑ œ Ð\Ñ

3) The conditional expectation  can be characterized as theX cÐ\ ± Ñ
only random variable  that is -measurable and satisfies] c

X XÐ] " Ñ œ Ð\" ÑF F3 3

for all blocks  of .F3 c
4) (Taking out what is known) If  is a -measurable random variable] c

then

X c X cÐ] \ ± Ñ œ ] Ð\ ± Ñ

5) If  is -measurable then\ c

X cÐ\ ± Ñ œ \

6) ( ) If  is a finer partition than  we haveThe Tower Properties d c

X X c d X c X X d cÐ Ð\ ± Ñ ± Ñ œ Ð\ ± Ñ œ Ð Ð\ ± Ñ ± Ñ

In words, if we take the expected values with respect to  and  c d in
either order coarser then only the expected value with respect to the 
partition has any effect.

7) (An Independent Condition Drops Out) If  and  are independent,\ c
that is, if  and  are independent thenc c\

X c XÐ\ ± Ñ œ Ð\Ñ
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Proof. To prove 1), we have

X c X

X



X



X X



X

Ð+\  ,] ± Ñ œ Ð+\  ,] ± F Ñ"

œ "
ÐÐ+\  ,] Ñ" Ñ

ÐF Ñ

œ "
Ð+\"  ,] " Ñ

ÐF Ñ

œ "
+ Ð\" Ñ  , Ð] " Ñ

ÐF Ñ

œ +
Ð\"

"
"
"
"
"

3œ"

5

3 F

3œ"

5
F

3
F

3œ"

5
F F

3
F

3œ"

5
F F

3
F

3œ"

5
F

3

3

3

3 3

3

3 3

3

3 3

3 3

3 3

Ñ Ð] " Ñ

ÐF Ñ ÐF Ñ
"  , "

œ + Ð\ ± F Ñ"  , Ð] ± F Ñ"

œ + Ð\ ± Ñ  , Ð] ± Ñ

 

X

X X

X c X c

3 3
F F

3œ"

5
F

3œ" 3œ"

5 5

3 F 3 F

"
" "

To prove 2), we have

X X c X X

X X

X 

X

X

X

Ð Ð\ ± ÑÑ œ Ð\ ± F Ñ"

œ Ð\ ± F Ñ Ð" Ñ

œ Ð\ ± F Ñ ÐF Ñ

œ Ð\" Ñ

œ \"

œ Ð\Ñ

 "
"
"
"
 "

3œ"

5

3 F

3œ"

5

3 F

3œ"

5

3 3

3œ"

5

F

3œ"

5

F

3

3

3

3

To prove 3), let . Then  is -measurable by definition.] œ Ð\ ± Ñ ]X c c
Also (since  unless )" " œ ! 3 œ 4F F4 3
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X X X c

X X

X X

X X

X 

X

Ð] " Ñ œ Ð Ð\ ± Ñ" Ñ

œ Ð Ð\ ± F Ñ" " Ñ

œ Ð Ð\ ± F Ñ" Ñ

œ Ð\ ± F Ñ Ð" Ñ

œ Ð\ ± F Ñ ÐF Ñ

œ Ð\" Ñ

F F

4œ"

5

4 F F

3 F

3 F

3 3

F

3 3

4 3

3

3

3

"

as desired. Now we show that  is the only such random] œ Ð\ ± ÑX c
variable. So suppose that  is a random variable that is -measurable^ c
and for which

X XÐ^" Ñ œ Ð\" ÑF F3 3

for all blocks  of . Since  is constant on , suppose that F ^ F ^Ð Ñ œ -3 3c =
for all . Then  and so= − F ^" œ -"3 F F3 3

X X XÐ^" Ñ œ Ð-" Ñ œ - Ð" ÑF F F3 3 3

It follows that

- Ð" Ñ œ Ð\" ÑX XF F3 3

and so

^Ð Ñ œ - œ œ Ð\ ± F Ñ œ Ð\ ± ÑÐ Ñ
Ð\" Ñ

Ð" Ñ
= X X c =

X

X
F

F
3

3

3

which shows that , as desired.^Ð Ñ œ Ð\ ± Ñ= X c

To prove 4), suppose that  is -measurable. Let  for all^ ^Ð Ñ œ ,c =
= − F ^\" œ ,\"3 F F. Then since  we have3 3

X c = X

X



X



X c =

= X c =

Ð^\ ± ÑÐ Ñ œ Ð^\ ± F Ñ

œ
Ð^\" Ñ

ÐF Ñ

œ
, Ð\" Ñ

ÐF Ñ

œ , Ð\ ± ÑÐ Ñ

œ ^Ð Ñ Ð\ ± ÑÐ Ñ

3

F

3

F

3

3

3

and so , as desired.X c X cÐ^\ ± Ñ œ ^ Ð\ ± Ñ
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To prove 5) take  in part 4), to get\ œ "

X c X cÐ^" ± Ñ œ ^ Ð" ± Ñ œ ^

which is 5) with  in place of .^ \

To prove 6), first we have for = H−

X X c d = X X c =

X X c

 =

Ð Ð\ ± Ñ ± ÑÐ Ñ œ Ð Ð\ ± Ñ ± Ò Ó Ñ

œ
Ð Ð\ ± Ñ" Ñ

ÐÒ Ó Ñ

d

=Ò Ó
d

d

Now, since  is constant on the blocks of  and since  is finerX c c dÐ\ ± Ñ
than , it follows that  is also constant on the blocks of .c X c dÐ\ ± Ñ
Hence

X X c d =
X c = X

 =

X c =

Ð Ð\ ± Ñ ± ÑÐ Ñ œ
Ð\ ± ÑÐ Ñ Ð" Ñ

ÐÒ Ó Ñ

œ Ð\ ± ÑÐ Ñ

Ò Ó=
d

d

Since this holds for all , we have=

X X c d X cÐ Ð\ ± Ñ ± Ñ œ Ð\ ± Ñ

Now we must show that

X X d c X cÐ Ð\ ± Ñ ± Ñ œ Ð\ ± Ñ

It is possible to do so directly, but the computation is a bit long. So
instead, let us use part 3). First, set

] œ Ð\ ± ÑX d

Then according to 3)

X XÐ] " Ñ œ Ð\" ÑF F (1)

for all . Since  is finer than , it follows thatF − Ð ÑT d d c
T c T dÐ Ñ © Ð Ñ and so the equation above holds  for alla fortiori
F − Ð ÑT c . Now let

^ œ Ð\ ± ÑX c

Then according to 3)

X XÐ^" Ñ œ Ð\" ÑF F (2)

for all . Putting together (1) and (2) we haveF − Ð ÑT c
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X XÐ] " Ñ œ Ð^" ÑF F

for all . Finally, since  is -measurable, part 3) implies thatF − Ð Ñ ^T c c

^ œ Ð] ± ÑX c

Substituting for  and  we have^ ]

X c X X d cÐ\ ± Ñ œ Ð] œ Ð\ ± Ñ ± Ñ

as desired.

To prove 7) suppose that  and  are independent. Then for any blockc c\

F of  we havec

 Ð\ œ < ± FÑ œ Ð\ œ <Ñ

and so

X c = X =

 =



X

Ð\ ± ÑÐ Ñ œ Ð\ ± Ò Ó Ñ

œ < Ð\ œ < ± Ò Ó Ñ

œ < Ð\ œ <Ñ

œ Ð\Ñ

c

H

c

H

"
"<−\Ð Ñ

<−\Ð Ñ

This completes the proof. 

Conditional Expectation with Respect to a Random Variable

We can use the results concerning conditional expectation with respect to
a partition to define conditional expectation with respect to a random
variable. Indeed, this is really nothing new at all (for  samplefinite
spaces).

Definition Let  be a finite probability space. Let  be a randomÐ ß Ñ ]H 
variable whose distinct values are . Then the ÖC ßá ß C ×" 5 conditional
expectation of a random variable  with respect to  is the conditional\ ]
expectation of  with respect to the partition  generated by , in\ ]c]

symbols

X X c XÐ\ ± ] Ñ œ Ð\ ± Ñ œ Ð\ ± Ö] œ C ×Ñ"] 3

3œ"

5

Ö] œC ×"
3
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Stochastic Processes
We will be very interested in the price of a stock as it progresses through
a sequence of times . If the stock price at time >  >  >  â  > >! " # R 3

is denoted by  then initially these prices are unknown and so they can\3

be thought of as random variables on some probability space. This leads
to the following simple concept, which plays a very important role in
many areas of applied mathematics, including the mathematics of
finance.

Definition A  on a sample space  is a(finite) stochastic process H
sequence  of random variables defined on . \ ßá ß\" R H

Stochastic processes are used to model phenomena, like stock prices, that
evolve through time. In such cases, there is a relationship between the
random variables that gives substance to the stochastic process. We
explore this relationship next.

Filtrations and Martingales
Let us introduce the notion of a filtration using an example.

Filtrations

Consider the following game. At each time

>  >  >  â  >! " # R

a coin is tossed. A record is kept of the sequence of results.

Let us denote by  the set of all sequences of 's and 's ofÖLß X× L X5

length . These sequences are called  or  of length  over5 5words strings
the  .alphabet ÖLß X×

Thus, at time , the  of the game is a string of length  over> 33 current state
ÖLß X× R. The  of the game consist of all words of length final states
over ÖLß X×

H œ ÖLß X× œ Ö/ â/ ± / œ L / œ X×R
" R 3 3 or 

The State Tree
Figure 7 gives a pictorial view of the states of the game, called the state
tree for the game. (In this case .) The states are indicated on theR œ $
lines of the tree. At time  there is only one state, which is not shown. It>!
is the .empty string
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H

T
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TH

TT

HHH
HHT

HTH
HTT

THH
THT

TTH
TTT

HHH
HHT
HTH
HTT

THH
THT
TTH
TTT

HHH
HHT

HTH
HTT

THH
THT

TTH
TTT

t
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HHH
HHT
HTH
HTT
THH
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TTH
TTT

HHH

HHT
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HTT
THH

THT
TTH

TTT

Figure 7–A state tree

The boxes (nodes of the tree) contain the set of   final statesstill possible
of the game given the current state. In particular, if the current state is
$ œ / â/" 3 then the set of still possible final states is the set of all final
states with prefix , in symbols$

Y $ = H = $3 3Ð Ñ œ Ö − ± Ò Ó œ ×

where  denotes the prefix of  of length . Let us make someÒ Ó 3= =3

observations about these sets.

First, at each time  the  subsets  form a partition  of . For> # Ð Ñ3 3 3
3 Y $ c H

instance,

c Y Y Y Y# # # # #œ Ö ÐLLÑß ÐLXÑß ÐXLÑß ÐXXÑ×

and in general

c Y $ Y $3 3 " 3 #œ Ö Ð Ñßá ß Ð Ñ×3

where  are the  elements of .$ $" #
3 3ßá ß # ÖLß X×3

Next, each block  in  is contained in a block  of theY $ c Y %3 3 3"Ð Ñ Ð Ñ
previous partition . In fact,c3"

Y $ Y $3 3" 3"Ð Ñ © ÐÒ Ó Ñ

Hence  is a refinement of  andc c3 3"

c c c! " R¡ ¡ â ¡

is a sequence of finer and finer partitions of .H
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Finally, note that  is the coarsest possible partition of , withc H H! œ Ö ×
only one block consisting of  itself. On the other end,  is theH c HR œ
finest possible partition, since each block has size , containing just one"
final state. We are now ready for a definition.

Definition A sequence  of partitions of a set… c cœ Ð ßá ß Ñ! R

H = =œ Ö ßá ß ×" 7  for which

c c c! " R¡ ¡ â ¡

is called a . Moreover, if a filtration satisfies the followingfiltration
conditions it is called an information structure
1)  is the coarsest possible partitionc!

c H! œ Ö ×

representing no knowledge about .H
2)  is the finest possible partitioncR

c = =R " 7œ ÖÖ ×ßá ß Ö ××

in which each block has size , representing complete knowledge"
about . H

Thus, an information structure starts with no knowledge of the final state
(other than the fact that it is in ), possibly gains some additionalH
knowledge at each time instance (but never loses information) and ends
with complete knowledge of the final state.

We should probably mention explicitly that the partitions in a filtration
need not double in size as is the case in the example. All that is required
is that  be a refinement of .c c3 3"

One final note. At any time  there is a one-to-one correspondence>3
between the possible states  at that time and the blocks of the partition$
c3, given by

$ = H = $Ç Ö − ± Ò Ó œ ×3

This allows us to identify the intermediate states of the game at time >3
with the blocks  of . In fact, when we discuss discrete-timeY $ c3 3Ð Ñ
derivative pricing models, we will actually  the intermediate statesdefine
of the model as the blocks of the partitions in a filtration.
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Probabilities
Let us now assume that the probability of getting heads is  and that the:
coin tosses are independent. Then for any  we can define a5  !
probability measure on the set  by settingÖLß X×5

 $Ð Ñ œ : ;R Ð Ñ R Ð ÑL X$ $

where

R Ð Ñ œ L

R Ð Ñ œ X
L

X

$ $

$ $

Number of 's in 
Number of 's in 

It is not hard to show that  is a finite probability space.ÐÖLß X× ß Ñ5 

Theorem 16  For any  let$ − ÖLß X×5

 $Ð Ñ œ : ;R Ð Ñ R Ð ÑL X$ $

1) If  and  then$ %− ÖLß X× − ÖLß X×5 j

 $%  $  %Ð Ñ œ Ð Ñ Ð Ñ

2) The pair  is a probability space.ÐÖLß X× ß Ñ5 
Proof. For part 1), we have

 $%

 $  %

Ð Ñ œ : ;

œ : ;

œ : ; : ;

œ Ð Ñ Ð Ñ

R Ð Ñ R Ð Ñ

R Ð ÑR Ð Ñ R Ð ÑR Ð Ñ

R Ð Ñ R Ð Ñ R Ð Ñ R Ð Ñ

L X

L L X X

L L X X

$% $%

$ % $ %

$ $ % %

For part 2), it is clear that for any $ − ÖLß X×5

! Ÿ Ð Ñ Ÿ " $

so we need only show that

"
5−ÖLßX×5

 5Ð Ñ œ "

This is clear for  since then we simply have5 œ "

 ÐLÑ  ÐXÑ œ :  Ð"  :Ñ œ "

We proceed by induction on . Assuming it is true for  then  5 5



132

" " "
" "

"

5 5 5

5 5

5

−ÖLßX× −ÖLßX× −ÖLßX×

−ÖLßX× −ÖLßX×

−ÖLßX×

5" 5 5

5 5

5

 5  5  5

  5   5

   5

 

Ð Ñ œ ÐL Ñ  ÐX Ñ

œ ÐLÑ Ð Ñ  ÐXÑ Ð Ñ

œ Ò ÐLÑ  ÐXÑÓ Ð Ñ

œ ÐLÑ  ÐXÑ

œ "

and so the result is also true for . Thus, it is true for all . 5  " 5   "

Adapted Random Variables
Now let us suppose that for each heads, a player wins  dollar and for"
each tails the player loses  dollar. Let the random variable  denote the" \3

player's winnings at time .>3

Thus, for a given time-  state , the winnings are> − ÖLß X×3
3$

R Ð Ñ  R Ð ÑL X$ $

At first, it seems natural to define  to be . The\ Ð Ñ R Ð Ñ  R Ð Ñ3 L X$ $ $
problem is that in this case each function  would be defined on a\3

different domain  and so the functions  would not form aÖLß X× \3
3

stochastic process.

Instead, we define each  on the same set  of  states\ œ ÖLß X×3
RH final

simply by ignoring that portion of a final state that comes after time . In>3
other words, for any  we define= H−

\ Ð Ñ œ R ÐÒ Ó Ñ  R ÐÒ Ó Ñ3 L 3 X 3= = =

where  is the  of  of length . In this way, the random variablesÒ Ó 3= =3 prefix
\3 have a common domain and yet no “future knowledge” of the state of
the game is required in order to compute the time-  winnings .> \3 3

Moreover, under this definition the function  is -measurable. In fact,\3 3c
for any  we have= Y $− Ð Ñ3

\ Ð Ñ œ R Ð Ñ  R Ð Ñ3 L X= $ $

Hence, knowledge of  implies knowledge of the value of .c3 3\
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In summary, we have a filtration

… c cœ Ð ßá ß Ñ! R

on the sample space  and a stochastic processH

— œ Ð\ ß\ ßá ß\ Ñ! " R

on  (with ) for which  is -measurable for all . Because H c\ œ ! \ 3 \! 3 3 3

is -measurable for all , we say that the stochastic process  isc —3 3
adapted -adapted to the filtration , or is .… …

Martingales

We would now like to compute the conditional expectation
X cÐ\ ± Ñ >5" 5 5", which is the expected value of the time-  winnings
given knowledge of the previous time-  partition. To this end, let us>5
collect a few simple facts.

Theorem 17 Let  be the probability space defined byÐÖLß X× ß Ñ5
5

 $5
R Ð Ñ R Ð ÑÐ Ñ œ : ;L X$ $

Then
1) For $ − ÖLß X×5

 Y $  $R 3 5Ð Ð ÑÑ œ Ð Ñ

2) If  and  then$ %− ÖLß X× − ÖLß X×5 j

 $ %  $ %  $%5j 5j 5j+1 +1Ð L Ñ „ Ð X Ñ œ Ð ÑÐ: „ ;Ñ

Proof. For part 1), we have  

 Y $  $5  $  5  $R 3 R 5 R5 5

−ÖLßX× −ÖLßX×

Ð Ð ÑÑ œ Ð Ñ œ Ð Ñ Ð Ñ œ Ð Ñ" "
5 5R5 R5

For part 2), we have

 $ %  $ %  $%  $%

 $%  

 $%

5j 5j 5j 5j

5j " "

5j

+1 +1 +1 +1Ð L Ñ „ Ð X Ñ œ Ð LÑ „ Ð XÑ

œ Ð ÑÒ ÐLÑ „ ÐXÑÓ

œ Ð ÑÒ: „ ;Ó

and the proof is complete. 

Now we can proceed with our computation of . ForX cÐ\ ± Ñ5" 5

$ − ÖLß X×5
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X Y $ =  = Y $

 Y $
=  = Y $

Ð\ ± Ð ÑÑ œ \ Ð Ñ ÐÖ × ± Ð ÑÑ

œ \ Ð Ñ ÐÖ ×  Ð ÑÑ
"

Ð Ð ÑÑ

5" 5 5" R 5

−ÖLßX×

R 5 −ÖLßX×

5" R 5

"
"

=

=

R

R

But the set  is empty unless , in which caseÖ ×  Ð Ñ − Ð Ñ= Y $ = Y $5 5

Ö ×  Ð Ñ œ Ö ×= Y $ =5  and so

X Y $ =  =
 Y $

Ð\ ± Ð ÑÑ œ \ Ð Ñ ÐÖ ×Ñ
"

Ð Ð ÑÑ
5" 5 5" R

R 5 − Ð Ñ

"
= Y $5

As  ranges over the set  we can write  where  ranges over= Y $ = $5 55Ð Ñ œ
the set  soÖLß X×R5

X Y $ $5  $5
 Y $

Ð\ ± Ð ÑÑ œ \ Ð Ñ Ð Ñ
"

Ð Ð ÑÑ
5" 5 5" R

R 5 −ÖLßX×

"
5 R5

Now, in order to evaluate  we need the prefix of  of length\ Ð Ñ5" $5 $5
5  " so we need to know something about the first symbol in . This5
prompts us to split the sum into two parts based on the first symbol in 5
to get

X Y $ $ 5  $ 5
 $

 $
$ 5  $ 5

Ð\ ± Ð ÑÑ œ \ Ð L Ñ Ð L Ñ
"

Ð Ñ

 \ Ð X Ñ Ð X Ñ
"

Ð Ñ

5" 5 5" R
5 −ÖLßX×

5 −ÖLßX×

5" R

"
"

5

5

R5"

R5"

We can now evaluate \5"

\ Ð L Ñ œ R Ð LÑ  R Ð LÑ

œ "  R Ð Ñ  R Ð Ñ

œ \ Ð Ñ  "

5" L X

L X

5

$ 5 $ $

$ $

$

and

\ Ð X Ñ œ R Ð XÑ  R Ð XÑ

œ R Ð Ñ  R Ð Ñ  "

œ \ Ð Ñ  "

5" L X

L X

5

$ 5 $ $

$ $

$

Substituting gives



135

X Y $ $  $ 5
 $

 $
$  $ 5

 $
 $ 5  $ 5

$

Ð\ ± Ð ÑÑ œ Ò\ Ð Ñ  "Ó Ð L Ñ
"

Ð Ñ

 Ò\ Ð Ñ  "Ó Ð X Ñ
"

Ð Ñ

œ Ò Ð L Ñ  Ð X ÑÓ
"

Ð Ñ


\ Ð Ñ

5" 5 5 R
5 −ÖLßX×

5 −ÖLßX×

5 R

5 −ÖLßX×

R R

5

"
"

"

5

5

5

R5"

R5"

R5"

 $
 $ 5  $ 5

 $
 $5

$

 $
 $5

$

5 −ÖLßX×

R R

5 −ÖLßX×

R"

5

5 −ÖLßX×

R"

5

−ÖLßX×

Ð Ñ
Ò Ð L Ñ  Ð X ÑÓ

œ Ð ÑÐ:  ;Ñ
"

Ð Ñ

 Ð ÑÐ:  ;Ñ
\ Ð Ñ

Ð Ñ

œ ÒÐ:  ;Ñ  \ Ð ÑÓ

"
"

"
"

5

5

5

5

R5"

R5"

R5"

R5"

 5

$

Ð Ñ

œ Ð:  ;Ñ  \ Ð Ñ5

and so for any  we can write  and get= H = $5− œ

X c = X Y $

$

=

Ð\ ± ÑÐ Ñ œ Ð\ ± Ð ÑÑ

œ Ð:  ;Ñ  \ Ð Ñ

œ Ð:  ;Ñ  \ Ð Ñ

5" 5 5" 5

5

5

and so

X cÐ\ ± Ñ œ \  Ð:  ;Ñ5" 5 5 "

where  is the random variable whose value is always ." "

For  this takes on special significance, for we get: œ ;

X cÐ\ ± Ñ œ \5" 5 5

which says that if we know the time-  partition , that is, if we know>5 5c
the state of the game at time , then the expected value of the time->5
> >5" 5winnings is the time-  winnings. In other words, just as we would
expect from the fact that , the game is a fair one in that the: œ ;
expected  from one time to the next is .gain !

We are ready for an important definition.
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Definition A stochastic process

— œ Ð\ ß\ ßá ß\ Ñ! " R

is a martingale with respect to the filtration

… c c cœ Ð ¡ ¡ â ¡ Ñ! " R

or an  if  is adapted to  (that is,  is -measurable)… — … c-martingale \3 3

and

X cÐ\ ± Ñ œ \5" 5 5

that, is, given , the expected value of  is just .c3 5" 5\ \

Thus, martingales model fair games. The following result says that given
c3 3 the expected value of  future random variable is just .any \

Theorem 18 If  is an -martingale where— …œ Ð\ ß\ ßá ß\ Ñ! " R

… c c cœ Ð ß ßá ß Ñ 3  !! " R  then for any 

X cÐ\ ± Ñ œ \53 5 5

Proof. We know that

X cÐ\ ± Ñ œ \5# 5" 5"

Taking conditional expected values gives

X X c c X cÐ Ð\ ± Ñ ± Ñ œ Ð\ ± Ñ œ \5# 5" 5 5" 5 5

But by the tower property,

X X c c X cÐ Ð\ ± Ñ ± Ñ œ Ð\ ± Ñ5# 5" 5 5# 5

and so

X cÐ\ ± Ñ œ \5# 5 5

An induction argument can now be used to complete the proof. We leave
the details to the reader. 

Exercises
1. Show that if  is a random variable on  then\ H
 a) \ ÐE  FÑ œ \ ÐEÑ  \ ÐFÑ" " "

 b) \ ÐE  FÑ œ \ ÐEÑ  \ ÐFÑ" " "

 c) \ ÐE Ï FÑ œ \ ÐEÑ Ï \ ÐFÑ" " "
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2. Let  and  be partitions of a nonempty set . Prove that thec d H
following are equivalent.

 a)  is a refinement of d c
 b) Each block of  is the union of blocks of d c
 c) Each block of  is contained in a block of c d
 d) .T c T dÐ Ñ © Ð Ñ
3. Prove that if  is a  random variable, that is, \ \Ð Ñ   !nonnegative =

for all  then .= H X c− Ð\ ± Ñ   !
4. Let  be a random variable on . Show that  can be written as\ Ð ß Ñ \H 

a linear combination of indicator functions of the blocks of the
partition generated by .\

5. A certain operation results in complete recovery 60% of the time,
partial recovery 30% of the time and death 10% of the time. What is
the probability of complete recovery, given that a patient survives the
operation?

6. Imagine the following experiment. You have an unfair coin, whose
probabilities are

 Ð Ñ œ Ð Ñ œ
# "

$ $
heads , tails

You also have two urns containing colored balls, where
 1) urn  has  blue balls and  red balls" $ &
 2) urn  has  blue balls and  red balls# ( '
 First you toss the coin. If the coin comes up heads, you draw a ball at

random from urn . If the coin comes up tails, you draw a ball at"
random from urn . What is the probability that the ball drawn is#
blue?  use the Theorem on Total Probabilities.Hint:

7. Let  be a sample space and let  form a partition of H HI ßá ßI" 8

with  for all . Show that for any event  in , HÐI Ñ Á ! 5 E5

  ÐEÑ œ ÐE ± I Ñ Ð Ñ"
5œ6

8

5 5E

8. Let  be a partition of  with  for allc H  œ ÖF ßá ßF × Ð ß Ñ ÐF Ñ  !" 5 3

3 E. Prove , which states that for any event  in Bayes' Formula H
with , we haveÐEÑ  !


 

 

ÐI ± EÑ œ
ÐE ± I Ñ ÐI Ñ

ÐE ± I Ñ ÐI Ñ

4
4 4

3œ"

5

3 3!
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9. Show that any algebra of sets is closed under intersections and
differences. What about symmetric differences? (The symmetric
difference of two sets is the set of all elements that are in exactly one
of the two sets.)

10. Prove that any nonempty collection of subsets of  is an algebra ifH
and only if it contains  and is closed under differences. (TheH
difference  is the set of all elements of  that are not in .)E Ï F E F

11. Prove that if  are events with  thenI ßá ßI ÐI â I Ñ  !" 8 " 8



   

ÐI â I Ñ

œ ÐI Ñ ÐI ± I Ñ ÐI ± I  I Ñâ ÐI ± I â I Ñ
" 8

" # " $ " # 8 " 8"

12. Prove in detail that for any partition  of  the setc H

T c H cÐ Ñ œ ÖG © ± G œ g G œ × or union of blocks of 

is an algebra.
13. Suppose that words of length  over the binary alphabet  are& Ö!ß "×

sent over a noisy communication line, such as a telephone line.
Assume that, because of the noise, the probability that a bit (  or )! "
is received correctly is . Assume also that the event that one bit!Þ(&
is received correctly is independent of the event that another bit is
received correctly.

 a) What is the probability that a string will be received correctly?
 b) What is the probability that exactly  of the  bits in a string are$ &

received correctly?
14. Let  and  be random variables on . Suppose that  and \ ] Ð ß Ñ \ ]H 

have the same range  and thatÖ+ ßá ß + ×" 8

 Ð\ œ + Ñ œ Ð] œ + Ñ œ :3 3 3

Compute .Ð\ œ ] Ñ
15. Let  be a partition of a probability space . What is c H  X cÐ ß Ñ Ð ± Ñ"

where  is the constant random variable ." Ð Ñ œ "" =
16. Let  be a martingale with respect to the filtrationÐ\ Ñ3 3œ"ßáß8

Ð Ñ Ð\ Ñ œ Ð\ Ñ 5 œ "ßá ß 8c X X3 3œ"ßáß8 5 !. Prove that  for all . :Hint
Use the fact that .X X c XÐ Ð\ ± ÑÑ œ Ð\Ñ

17. Let  be random variables on  all of which have the\ ßá ß\ Ð ß Ñ" 8 H 
same expected value  and the same range . Let  be a. Ö< ßá ß < × R" 7

random variable on  where  takes the values .Ð ß Ñ R "ßá ß 8H 
Assume also that  is independent of the 's. Then we can define aR \3

random variable  byW
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W œ \ â\" R

where

WÐ Ñ œ \ Ð Ñ â\ Ð Ñ= = =" RÐ Ñ=

Show that
 a) X .ÐW ± R œ 5Ñ œ 5
 b) X .ÐW ± RÑ œ R
 c) X .XÐWÑ œ ÐRÑ
 Explain in words why part c) makes sense.
18. Prove if  is finer than  then . Proved c X X d c X cÐ Ð\ ± Ñ ± Ñ œ Ð\ ± Ñ

this directly.

Exercises on Submartingales and Supermartingales

Let  be a stochastic process with respect to a filtration— œ Ð\ ßá ß\ Ñ! R

… c c — … — …œ Ð ßá ß Ñ! R . Then  is an  if  is adapted to -submartingale
and

X cÐ\ ± Ñ   \5" 5 5

Similarly,  is an  if  is adapted to  and— … — …-supermartingale

X cÐ\ ± Ñ Ÿ \5" 5 5

A stochastic process  is  with respect to œ ÐE ßá ßE Ñ! R predictable
the filtration  if  is -measurable for all .… cE 55 5"

19. Show that  is an -supermartingale if and only if  is an -sub-— … — …
martingale. Are submartingales fair games? Whom do they favor?
What about supermartingales?

20. ( ) Let  be an -adaptedDoob Decomposition Ð\ ßá ß\ Ñ! R …
stochastic process.

 a) Show that there is a unique martingale  and aÐQ ßá ßQ Ñ! R

unique predictable process  such thatÐE ßá ßE Ñ! R

\ œ Q E E œ ! Q œ \ E œ !5 5 5 ! ! ! ! and . : Set  and .Hint
Then write

\ \ œ Q Q E E5" 5 5" 5 5" 5

and take the conditional expectation with respect to . Use thec5

martingale condition to get an expression for  in terms ofE5"

E5 .
 b) Show that if  is a supermartingale then  is nonincreasingÐ\ Ñ E5 5

(that is ). What if  is a submartingale?E Ÿ E Ð\ Ñ5" 5 5
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21. Let  be a stochastic process.— œ Ð\ ± 5 œ !ßá ß XÑ5

 a) Prove that for any partition c

max max
5 5

5 5Ö Ð\ ± Ñ× Ÿ Ð Ö\ × ± ÑX c X c

 b) Prove that if  and  are submartingales then— ˜ œ Ð] ßá ß ] Ñ! R

the process defined by

^ œ Ö\ ß ] ×5 5 5max

is also a submartingale. What about supermartingales?
22. Define the  of a random variable  bypositive part \

\ œ Ö\ß !× max

If  is a martingale show that — —œ Ð\ ßá ß\ Ñ œ Ð\ ßá ß\ Ñ! R


!
 

R

is a submartingale.
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Chapter 6

Discrete-Time Pricing Models
We are now ready to discuss discrete-time pricing models, that is, pricing
models in which all transactions take place at a series of discrete times.

The is to determine a fair initial value ofderivative pricing problem 
any derivative. The difficulty is that the of the derivative isfinal value 
not known at time , since it generally depends on the final value of> œ !
the underlying asset. However, we will assume that the final value of the
underlying is a  and so the set of known random variable possible final
values of the asset is known. Consequently, the set of possible final
values of the derivative is also known. Knowledge of this set along with
the no-arbitrage principle is the key to derivative pricing.

General Assumptions
We will make the following basic assumptions for the model.

A Unit of Accounting or Numeraire

All prices are given in terms of an unspecified unit of accounting or
numeraire. This numeraire may be dollars, Eurodollars, pounds Sterling,
Yen and so on. A phrase such as “stock worth ” refers to  units ofW W
accounting. Later we shall find it useful to use one of the assets of the
model as a numeraire. This will have the effect of expressing all prices in
relative terms, that is, relative to the chosen asset.

Assumption of a Risk-Free Asset

We will assume that there is always available a asset. The risk-free idea 
of the risk-free asset is simple: for each time interval , the risk-Ò> ß > Ó3" 3

free asset is an asset that cannot decrease in value and generally increases
in value. Furthermore, the amount of the increase over each interval is
known in advance. Practical examples of securities that are generally
considered risk free are U.S. Treasury bonds and Federally insured
deposits.

For reasons that will become apparent as we begin to explore the
discrete-time model, it is important to keep separate the notions of the
price quantity of an asset and the  of an asset and to assume that it is the
price of an asset that changes with time, whereas the quantity only
changes when we deliberately change it by buying or selling the asset.
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Accordingly, one simple way to model the risk-free asset is to imagine a
special asset with the following behavior. At time  the asset's price is .> "!

During each interval , the asset's price increases by a factor ofÒ> ß > Ó3" 3

/ << Ð> > Ñ
3

3 3 3" , where  is the  for that interval.risk-free rate

It is traditional in books on the subject to model the risk-free asset as
either a bank account or a risk-free bond. For a normal bank account,
however, it is not the value of the units (say dollars) that change, but the
quantity. If we deposit  dollars (  units of dollar) in an account at"! "!
time  then after a period of % growth we have  dollars, not > & "!Þ& "!!

“dollars” each worth $ ."Þ!&

Whatever the nature of the risk-free asset, the important thing for our
analysis is the asset's price structure, which we will define when we
formally define asset prices in a moment.

Additional Assumptions
In addition to the previous assumptions, we must also make some not-so-
realistic simplifying assumptions. These assumptions are very helpful to
the analysis and despite their presence, we can still learn a great deal
about how the market works based on these simple models.

Infinitely Divisible Market

The market is infinitely divisible, which means that we can speak of, for
example,  or  worth of a stock or bond.È# 1

Frictionless Market

All transactions take place immediately and without any external delays.

Perfect Market

The market is perfect, that is
ì  there are no transaction fees or commissions,
ì  there are no restrictions on short selling,
ì  the borrowing rate is the same as the lending rate.

Buy-sell Parity

As an extension of the notion of a perfect market, we assume that any
asset's buying price is equal to its selling price, that is, if an asset can be
bought for  then it can also be sold for . For instance, if shares of aW W
stock can be bought for  per share then shares can also be sold for  perW W
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share. If a bond can be purchased for  then a similar bond can be soldW
for .W

Prices are Determined Under the No-Arbitrage Assumption

As we have discussed, if an arbitrage opportunity exists in the market,
then prices will be adjusted to eliminate that opportunity. Therefore, it
makes sense to price securities under the assumption that there is no
arbitrage.

Notation
We have defined the terms positive, strictly positive and strongly
positive for vectors in . Let us now define these terms for random‘8

variables.

Definition Let  be a random variable on . Then\ H
1)  is , written  if\ \   !nonnegative

\Ð Ñ   ! −= = H for all 

(The term  is also used in the literature for this property.)positive
2)  is , written  if\ \  !strictly positive

\Ð Ñ   ! − \Ð Ñ  ! −= = H = = H for all  and  for at least one 

3)  is , written  if\ \ ¦ !strongly positive

\Ð Ñ  ! −= = H for all 

The Basic Model by Example
Before defining the discrete-time model formally, it seems like a good
idea to motivate the definition with an example.

Suppose we are interested in a certain stock that is very sensitive to
interest rates, in such a way that the stock price generally rises when
interest rates fall and vice-versa. (A home-building company would be
such a company, for example.)

Thus, we decide to track the discount rate over the next few times that
the Federal Reserve Board meets to consider changes in this rate. For our
purposes, a  of the economy will correspond to a discount rate. (Thestate
discount rate is the rate that the Federal government charges member
banks to borrow money. This rate is often used as a starting-off point for
other interest rates.)
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It is important to emphasize that when setting up a model of interest
rates, we can only  about future changes based on economicspeculate
reports, research and other often tenuous tools. However, the model must
be created at time  so we have no other choice.>!

Referring to Figure 1, let us assume that at the current time  the>!
discount rate is %. At this time, the economy has only one state,#
denoted by .A!

t0 1t 2t 3t

ω0
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2.5

2.25

2.5

3

2.75

3.25

2.75

2.5

3

3

2.75

2.5

2.75

3
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Figure 1

Now, the latest economic information leads us to believe that at time >"
the Fed will raise interest rates either  points or  points. Thus, at!Þ#& !Þ&
time  there will be two states of the economy, denoted by  and .> A A" "ß! "ß"

The interest rates are shown next to each state in Figure 1.

We further believe upon good information that at time  the Fed will be>#
inclined to raise rates again. We speculate that if the previous rate hike
was  points, there is a possibility of further hikes of  or  points!Þ& !Þ& !Þ#&
and also a possibility of no change in the rate. However, if the previous
hike was only  points, the strong feeling is that another rate hike of!Þ#&
!Þ& !Þ#& or  points will occur.

In general, we produce a model of interest rates, or states of the economy
by speculating on the path of the discount rate over a period of time.
Based on predicted interest rates, we also speculate on the price of the
stock. These prices are shown in Figure 1 in italics.
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Note that there is a stock price for each state and each time. Thus, for
example, the time-    can be defined by> Ws" "price function

W ÐA Ñ œ *!ß W ÐA Ñ œ *&s s
" "ß! " "ß"

and the time-    is> Ws# #price function

W Ð Ñ œ )!s

W Ð Ñ œ )&s

W Ð Ñ œ *!s

W Ð Ñ œ )&s

W Ð Ñ œ *!s

# #ß"

# #ß#

# #ß$

# #ß%

# #ß&

=

=

=

=

=

While these functions are simple to understand, they do suffer from a
significant drawback when it comes to doing mathematics, namely, they
are defined on different domains. In particular,  is defined onWs"

Ö ß × W Ö ßá ß ×s= = = ="ß! "ß" # #ß" #ß& and  is defined on .

Accordingly, it is preferable to work with a sequence of price random
variables defined on a single probability space. The first step in this
endeavor is to take a slightly different view of the states of the economy.
We begin with the set of final states

H œ ÖA ßá ßA ×$ß" $ß"!

and define all intermediate states as  of the final states. This ideasubsets
is pictured in Figure 2.
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Thus, for example, at time  there are two intermediate states>"

¬

¬
" $ß" $ß'

# $ß( $ß"!

œ ÖA ßá ßA ×

œ ÖA ßá ßA ×

Now, for example, we can define the time-   > W" "price random variable
on the set  of final states by assigning the value  to  elements of H ¬*! all "

and the value  to  elements of . In symbols*& all ¬#

W ÐAÑ œ
*! A −
*& A −"

"

#
œ for all 

for all 
¬
¬

It is important to emphasize that this procedure is just a mathematical
expediency. It makes no economic sense to talk about the time-  price of>"
a  state, since the final state does not exist at time . However, thisfinal >"
expediency does no harm and is very useful.

Of course, for this to make sense, the random variable  must beW"

constant on each of the subsets  and  of , as it is in our example.¬ ¬ H" #

Note that at each time  the set of intermediate states is a   of>3 3partition c
the set  of final states and that the time-  partition is a  of theH >3 refinement
previous time-  partition. Moreover, the price random variable  is> W3" 3

c3-measurable.

With this example for motivation, we are ready to formally define the
general discrete-time model.

The Basic Model
Here are the basic ingredients of the discrete-time model .Œ

Time

The model  has  timesŒ X  "

>  >  â  >! " X

Note that there are precisely  time   for .X Ò> ß > Ó 3 œ "ßá ß Xintervals 3" 3

Assets

The model has a finite number of basic assets

T š šœ Ö ßá ß ×" 8

The asset  is assumed to be the risk-free assetš" .
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States of the Economy

At the final time , we assume that the  is in one of  possible> 7X economy
final states state space, given by the 

H = =œ Ö ßá ß ×" 7

Initially, that is, at time  we know nothing about the final state of the>!
economy other than the fact that lies in . However, as time passes, weH
may gain some information (but never lose information) about the
possible final state of the economy.

To model this partial knowledge, at each time , we assume that there is>3
a partition

c3 3ß" 3ß7œ ÖF ßá ßF ×3

of the state space , called the  . For , theH time-t state partition3 3  X
blocks of  correspond to the possible states of the economy at time c3 3>
and are called . Figure 3 shows the  orintermediate states state tree
information tree for the model.

Thus, the term  can refer to either an intermediate state (whichstate
includes the initial state) or a final state. Also, we will think of both the
element  and the singleton   as a final state, whichever is more= =3 3set Ö ×
convenient at the time.
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Figure 3
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Since no loss of information can occur, it follows that  is a refinementc3

of . In fact, we will assume that the  is an informationc3" state filtration
structure

… c cœ Ð ßá ß Ñ! X

on . ThusH

c H = =! " 8œ Ö × œ ÖÖ ßá ß ××

and

c = =X " 7œ ÖÖ ×ßá ß Ö ××

Natural Probabilities

It is also customary to assume the existence of a probability measure on
H H that reflects the likelihood that each final state in  will be the actual
final state. These are called .natural probabilities

Asset Prices

In a discrete-time model, each asset must not only have a price at each
time  but that price may depend on the state of the economy at that>3
time. This calls for a price random variable for each time and for each
asset. For reasons made clear in the previous example, the time-  price>3
random variable should be defined on the sample space  and be H c3-
measurable.

Definition price random For each time  and each asset , the >3 4š
variable  is a  random variable for whichW À Ä3ß4 H ‘ c3-measurable
W Ð Ñ >3ß4 3 4= š = is the time-  price of asset  under the final state . The price
random variables must satisfy the following properties.
1) For the risk-free asset, the price random variables are constant, that

is, they do not depend upon the state of the economy (which is
precisely why they are called ). In particular,risk-free

W œ "!ß"

and for all times 3  !

W œ / W3ß" 3"ß"
< Ð> > Ñ3 3 3"

where  is the risk-free rate in effect during the time interval<   !3

Ò> ß > Ó3" 3 .
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2) For all other assets (that is, for ) and for all times 4  " >3

W   !3ß4

3) For a fixed time period  the  is the random vector of>5 price vector
time-  prices>5

W œ ÐW ßá ß W Ñ5 5ß" 5ß8

4) For a fixed asset  the sequenceš4

ÐW ßá ß W Ñ!ß4 X ß4

is a stochastic process, called the  for . It describesprice process š4
the evolution of the price of  over time.š4

Using the Risk-Free Asset as Numeraire

As we will see in some detail, rather than using dollars, yen or other
constant (inflation aside) units of accounting, the use of the risk-free
asset itself will provide a great simplification (although it may not seem
like it now).

As an example, suppose we wish to assess the quality of various
investments. Consider an investment that turns $100 into $104 in one
year. Is that a good investment? It is not possible to tell because the
quality of an investment must be measured relative to some guaranteed
standard. For example, if the risk-free asset turns $100 into $105 in a
year, then the 4% investment is not good.

Now, if we use the risk-free asset as unit of accounting instead of dollars,
then it is easy to decide whether or not an investment is good (relative to
the risk-free investment). For example, if an investment turns 100 risk-
free asset units of value into  100, then it is aany number greater than
good investment, at least relative to the minimal standard risk-free
investment.

The  are given bydiscounted asset prices

W œ
W

W
3ß4

3ß4

3ß"

Thus, the discounted price is the nondiscounted price divided by the
price  of the risk-free asset W3ß" at the same time. Note in particular that
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W œ "3ß"

In words, the risk-free asset has constant unit price at all times. This is
beacuse the risk-free asset is neutral (not good and not bad) compared to
itself.

The  is given bydiscounted price vector

W œ ÐW ßá ß W Ñ3 3ß" 3ß8

Portfolios and Trading Strategies
Portfolios are designed to model the holdings of an investor over a fixed
period of time. Of course, it is reasonable to allow adjustments to the
asset holdings at each intermediate time. It is also reasonable to allow
these adjustments to depend on the state of the economy at that time.
Here is the formal definition.

Definition A  for the time interval  is a random vectorportfolio Ò> ß > Ó3" 3

@ ) )3 3ß" 3ß8œ Ð ßá ß Ñ

on  where  is the quantity of asset  acquired at time  andH ) = š3ß4 5 4 3"Ð Ñ >
held during the interval  assuming state . Moreover,  isÒ> ß > Ó3" 3 5 3ß4= )
required to be -measurable. This corresponds to the obvious factc3"

that the quantities  must be known at the time  at which the assets)3ß4 3">
are acquired. 

It is worth repeating: The portfolio  is acquired at time  and held@3 3">
up to time .>3

Note also that the random variables  indicate the position as well as)3ß4
the quantity:  is positive for a long position and negative for a short)3ß4
position.

It will be convenient to define a (nonstandard) term to denote the
holdings of the  of a portfolio, that is, all assets except therisky portion
risk-free asset.

Definition A  for the time interval  is a randomrisky holding Ò> ß > Ó3" 3

vector
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@ ) )3 3ß# 3ß8
risky œ Ð ßá ß Ñ

on  where  is the quantity of the risky asset  acquired at timeH ) = š3ß4 5 4Ð Ñ
> Ò> ß > Ó3" 3" 3 5 and held during the interval  assuming state . Moreover,=
) c3ß4 3" is required to be -measurable.

Portfolio Rebalancing

The use of portfolios in a discrete-time model is a dynamic process that
proceeds as follows. At the initial time  the investor acquires the first>!
portfolio

@ ) )" "ß" "ß8œ Ð ßá ß Ñ

which is held through the time interval . Note that the randomÒ> ß > Ó! "

variables  are -measurable, that is, constant.) c"ß4 !

At time  the investor  liquidate the portfolio  and acquire a new>" "must @
portfolio . Of course, there is nothing to prevent the investor from@#

simply  the portfolio, by which we mean that . Evenrolling over @ @# "œ
in this case, however, for reasons of consistency it is simpler to think in
terms of liquidation followed by acquisition. This does no harm since the
model is assumed to be commission free.

In general, at time  the portfolio  is liquidated and a new>3" 3"@
portfolio  is acquired. This process is referred to as@ ) )3 3ß" 3ß8œ Ð ßá ß Ñ
portfolio rebalancing.

The sequence  of portfolios obtained through portfolioF @ @œ Ð ßá ß Ñ" X

rebalancing has a name.

Definition trading strategy A  for a model  is a sequence of portfoliosŒ

F @ @œ Ð ßá ß Ñ" X

where  is a portfolio for the time interval . @3 3" 3Ò> ß > Ó

We can isolate an individual asset from a trading strategy to obtain a
stochastic process that describes the evolution of that asset's holdings. In
particular, f  is the stochasticor each asset , the š4 asset holding process
process

F ) )4 "ß4 X ß4œ Ð ßá ß Ñ
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A trading strategy can be represented by a matrix of random variables

F
@

@ ) ) )

) ) )
œ œã ã ã ã

â

â

Î Ñ Î Ñ
Ï Ò Ï Ò

"

X X ß" X ß# X ß8

"ß" "ß# "ß8

where the rows correspond to the times (the first row corresponding to
time ) and the columns correspond to the assets. In fact, the th column> 4!

is the asset pricing process for asset .š4

Let us also give a (nonstandard) name to the risky portion of a trading
strategy.

Definition risky substrategy A  for a model  is a sequence of riskyŒ
holdings

F @ @risky risky riskyœ Ð ßá ß Ñ" X

where  is a risky holding for the time interval . @3 3" 3
risky Ò> ß > Ó

In terms of matrices, the risky portion of a trading strategy  is theF
matrix consisting of all columns of the matrix except the first column

F
@ ) )

@ ) )

risky

risky

risky
œ œã

â
ã ã

â

Î ÑÐ Ó
Ï Ò

Î Ñ
Ï Ò

"

X

"ß# "ß8

X ß# X ß8

Recall that a random process  is  to a filtration— œ Ð\ Ñ5 adapted
… Y Yœ Ð Ñ \ 55 5 5 if  is -measurable for each . This corresponds to the
idea that  is known at time , when  is known.\ >5 5 5Y

On the other hand, an asset holding process  has theF ) )4 "ß4 X ß4œ Ð ßá ß Ñ
property that  is -measurable. This corresponds to the fact that) Y5ß4 5"

) Y5ß4 5" 5" is known at the previous time , when  is known. There are>
many situations in which such knowledge is common. For example,
when placing bets in a game of chance, the player knows the amount \5

of the time-  bet before the outcome of the game at time . In this often> >5 5

modeled by saying that  is known at time .\ >5 5"

Definition A stochastic process

— œ Ð\ ßá ß\ Ñ" X
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is  or  with respect to the filtrationpredictable previewable

… c c cœ Ð ¡ ¡ â ¡ Ñ! " X

if  is -measurable for all .\ 33 3"c

With this new language, we can say that an asset holding process is just
another name for a . Also, a tradingpredictable stochastic process
strategy is just a predicable stochastic process of random vectors.

The Valuation of Portfolios

If  is a trading strategy then since the portfolio F @ @ @œ Ð ßá ß Ñ" X 3

exists only during the time interval , it makes sense to assign aÒ> ß > Ó3" 3

value to  only at the acquisition time  and the liquidation time .@3 3" 3> >

The  or  of the portfolio  is definedacquisition value acquisition price @3

by

i @ @ )3" 3 3 3" 3ß4 3"ß4

4œ"

8

Ð Ñ œ † W œ W"
and the  or of  is defined byliquidation value liquidation price @3

i @ @ )3 3 3 3 3ß4 3ß4

4œ"

8

Ð Ñ œ † W œ W"
We can also discount the portfolio values

i @ @ ) )3" 3 3 3" 3ß4 3"ß4 3ß4 3"ß4

4œ" 4œ"

8 8

3"ß"
Ð Ñ œ † W œ W œ W

"

W
" "

and

i @ @ ) )3 3 3 3 3ß4 3ß4 3ß4 3ß4

4œ" 4œ"

8 8

3ß"
Ð Ñ œ † W œ W œ W

"

W
" "

Note that the discounted value can be computed directly using the
discounted price or indirectly by first computing the nondiscounted price
and then discounting the result. This is because a value is computed at a
single time.
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Self-Financing Trading Strategies

For a trading strategy  if the acquisition price of F @ @ @œ Ð ßá ß Ñ" X 3"

is equal to the liquidation price of , then no money is taken out or put@3

into the model during the time-  rebalancing process.>3

Definition self-financing A trading strategy  is  if forF @ @œ Ð ßá ß Ñ" X

any time  (for ) the acquisition price of  is equal to the> 3 Á !ß X3 3"@
liquidation price of , that is,@3

i @ i @3 3" 3 3Ð Ñ œ Ð Ñ

The set of all self-financing trading strategies is denoted by . g

Thus, a self-financing trading strategy is initially purchased for the
acquisition value  of the first portfolio and is liquidated at timei @! "Ð Ñ
> Ð ÑX X X, producing a payoff of . No other money is added to ori @
removed from the model during its lifetime.

The set  of all  trading strategies is a vector space underg self-financing
the operations of coordinate-wise addition

Ð ßá ß Ñ  Ð ßá ß Ñ œ Ð  ßá ß  Ñ@ @ @ @ @ @ @ @"ß" "ßX #ß" #ßX "ß" #ß" "ßX #ßX

and scalar multiplication

+Ð ßá ß Ñ œ Ð+ ßá ß + Ñ@ @ @ @" X " X

Demonstration of this is left to the reader.

We can extend the use of the symbol  to  tradingi3 self-financing
strategies by defining the time-  value of  to be the common value of>3 F
the liquidation price of  and the acquisition price of . In symbols@ @3 3"

i F i @ i @3 3 3 3 3"Ð Ñ œ Ð Ñ œ Ð Ñ

It is worth emphasizing that this extension applies only to self-financing
trading strategies.

We will refer to  as the  of the trading strategy  and toi F F!Ð Ñ initial cost
i F FX Ð Ñ as the  of . The following theorem gives some keypayoff
properties of the valuation functions .i3

Theorem 1
1) For the valuation function defined on portfolios
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 a) The -th valuation function3

i H H3
8À Ð Ñ Ä Ð ÑRV RV

is a linear transformation, that is, for portfolios
@ @ H ‘" #

8ß − Ð Ñ +ß , −RV  and real numbers  we have

i @ @ i @ i @3 " # 3 " 3 #Ð+  , Ñ œ + Ð Ñ  , Ð Ñ

 b) The acquisition random variable  is -measurable. Ini @ c3 3" 3Ð Ñ
other words, at time  we know the purchase price of .>3 3"@

2) The -th valuation function defined on trading strategies3

i g H3À Ä Ð ÑRV

is a linear transformation on , that is, for  and g F F g ‘" #ß − +ß , −
we have

i F F i F i F3 " # 3 " 3 #Ð+  , Ñ œ + Ð Ñ  , Ð Ñ

Proof. Left to the reader. 

Discounted Gains

For self-financing trading strategies we can make the following
definitions regarding the  in price or value.change

Definition discounted Let  be a  trading strategy. The F self-financing
change in price from time  to time  is> >3" 3

? ? ?W3 3 3" 3ß" 3ß8œ W  W œ Ð W ßá ß W Ñ

The  from time  to time  isdiscounted change in value > >3" 3

?i F i F i F

@ ?

@

)

3 3 3"

3 3

3 3 3"

4œ"

8

3ß4 3ß4 3"ß4

Ð Ñ œ Ð Ñ  Ð Ñ

œ † W

œ † ÐW  W Ñ

œ ÐW  W Ñ"
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The   isdiscounted (cumulative) gain K5

K Ð Ñ œ Ð Ñ  Ð Ñ

œ Ò Ð Ñ  Ð ÑÓ

œ † W

5 5 !

3œ"

5

3 3"

3œ"

5

3 3

F i F i F

i F i F

@ ?

"
"

For  the   is5  j Kdiscounted gain 5ßj

K Ð Ñ œ Ð Ñ  Ð Ñ

œ Ò Ð Ñ  Ð ÑÓ

œ † W

5ßj j 5

3œ5"

j

3 3"

3œ5"

j

3 3

F i F i F

i F i F

@ ?

"
"

A key property of the risk-free asset is the following. Suppose that we
are given an initial value  for a self-financing trading strategyi F!Ð Ñ
F @ @ )œ Ð ßá ß Ñ" X 3ß4 and we are also given all of the quantities  of assets
(for all ) in   the quantities  of the risk-free asset.3 œ "ßá ß X F )except 3ß"

Then the self-financing condition implies that there one and only one
possibility for the quantities of the risk-free asset.

Intuitively speaking this is quite reasonable. To illustrate, suppose that
the initial value of  is $1000. If the risky assets of  account for $900F @"

then there is one and only one choice for the quantity  of risk-free)"ß"
asset, namely, the rest of the initial value . Now at time  the)"ß" "œ "!! >
portfolio  is liquidated. Suppose it yields $1100 (in time-  dollars). If@" ">
we are given the quantities and hence value of the risky assets in , say@#

$1050 then the quantity of risk-free asset must be such that its value is
$50. Hence, the quantity is .)#ß" "ß"œ &!ÎW

In general, if at time  we know the liquidation value  of  and> Ð Ñ5 5 5 5i @ @
we know the quantities and hence the value  of the  assets,i @5

‡
5"Ð Ñ risky

then the remaining value

i @ i @5 5 5"5
‡Ð Ñ  Ð Ñ

must be spent on the risk-free asset in order to preserve the self-financing
condition. Hence
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) i @ i @
i @ i @

5"ß" 5 5 5"
5 5 5"5

‡

5ß"
5
‡

œ œ Ð Ñ  Ð Ñ
Ð Ñ  Ð Ñ

W

It follows from this discussion that there is one and only one self-
financing trading strategy  for any givenF
1) Initial value , which is a -measurable random variable, that is, ai c! !

constant random variable
2) Risky substrategy

F @ @risky risky riskyœ Ð ßá ß Ñ" X

that is, set of asset holding processes  for the risky assetsF F# 7ßá ß
š š# 7ßá ß .

In matrix terms, we have shown that the initial value and the self-
financing condition uniquely determine the missing values in the matrix

F
@

@ ) )

) )
œ œã ã ã ã

â

â

Î Ñ Î Ñ
Ï Ò Ï Ò

"

X X ß# X ß8

"ß# "ß8?

?

Thus, all that is required to specify a self-financing trading strategy is the
initial value and  predictable processes (one for each risky asset).8  "

Locking In a Gain
Now suppose that we are given a self-financing trading strategy .F
Suppose further that at some intermediate time  we wish to “lock in”>5
the discounted gain  at that time. This can be done simply byK Ð Ñ5 F
liquidating the portfolio  at time  and using all proceeds to buy only@5 5>
the risk-free asset. In symbols

@ i @5" 5 5œ Ð Ð Ñß !ßá ß !Ñ

From this point forward, no changes are made to the quantities in the
trading strategy. The new trading strategy  is thusF @ @w w w

" Xœ Ð ßá ß Ñ
defined by

@
@

i @3
w 3

5 5
œ

3 Ÿ 5

Ð Ð Ñß !ßá ß !Ñ 3  5œ if 
if 

Since the discounted gain  from  to  is  because theK Ð Ñ > > !5ßX 5 XF
portoflios contain only the risk-free asset, we have

K Ð Ñ œ K Ð Ñ  K Ð Ñ œ K Ð ÑX 5 5ßX 5
wF F F F
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which expresses the fact that we have locked in the discounted gain
K Ð Ñ5

wF F. Let us refer to the trading strategy  as the trading strategy that
is obtained by  .locking in the discounted gain of  at timeF >5

Here is a summary of what we have been discussing.

Theorem 2
1) Discounted gains are additive, that is, for  we have4  5  j

K Ð Ñ œ K Ð Ñ  K Ð Ñ4ßj 4ß5 5ßjF F F

2) The discounted gain does not depend on the quantity of risk-free
asset in the trading strategy.

3) Given any constant random variable  and any risky substrategyZ!

F @ @risky risky riskyœ Ð ßá ß Ñ" X

that is, set of asset holding processes  for the risky assetsF F# 7ßá ß
š š# 7ßá ß , there is one and only one self-financing trading strategy
F i F with initial value  that has these risky asset holdings.! !Ð Ñ œ Z
Thus, all that is required to specify a self-financing trading strategy
is the initial value and  predictable processes (one for each8  "
risky asset).

4) Given a self-financing trading strategy  and a time , it is possibleF >5
to find a self-financing trading strategy  that locks in theFw

discounted gain at time , that is, for which>5

K Ð Ñ œ K Ð Ñ  K Ð Ñ œ K Ð ÑX 5 5ßX 5
wF F F F

Value Shifting

Let

F @ @œ Ð ßá ß Ñ" X

be a self-financing trading strategy. Let us consider what happens if we
change the quantity of the risk-free asset by an amount . In order to+ − ‘
maintain the self-financing condition, we roll over this asset at each
subsequent time. In symbols, the new portfolios are

@ ) ) ) @w
3 3ß" 3ß# 3ß8 3œ Ð  +" ß ßá ß Ñ œ  +Ð" ß !ßá ß !ÑH H

for .3 œ "ßá ß X
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Let us take a moment to examine the rolling over procedure. If, for
example the initial portfolio contains  units of the risk-free asset, then"!!
at time  the portfolio is liquidated, which realizes  from that> "!!/"

< Ð> > Ñ" " !

asset. This money is immediately used to purchase  units of the risk-"!!
free asset again, so that the portfolio  also contains exactly  units@# "!!
of the risk-free asset.

On the other hand, if the initial portfolio contains  units of the risk-"!!
free asset (a short position) then the investor has sold  units of the"!!
risk-free asset and the value of this asset is . (The investor is “on"!!
the hook” for  units.) At time , the portfolio is liquidated and the"!! >"
risk-free asset must be  at a  of  units. The risk-redeemed cost "!!/< Ð> > Ñ" " !

free asset is then immediately sold for its time-  value of > "!!/"
< Ð> > Ñ" " !

units. Hence,  also has a short position of  units of the risk-free@# "!!
asset.

The self-financing condition for  isFw

i @ i @3 3
w w
3 3"Ð Ñ œ Ð Ñ

which is easily verified formally and we leave the details as an exercise.

Comparing values for the trading strategies  and  givesF Fw

i F i F3 3 3ß"
wÐ Ñ œ Ð Ñ  +W

which shows that the shift in the initial value of a trading strategy by an
amount  using the risk-free asset will ripple through the model,+
producing a shift in value at time  for all states by the amount . On> +W3 3ß"

the other hand, the  values are changed by a constant amountdiscounted

i F i F3 3
wÐ Ñ œ Ð Ñ  +1H

and the discounted gains are not affected.

Theorem 3 Let  be a trading strategy and let . Let  be theF ‘ F+ − w

trading strategy obtained from  by adjusting the initial quantity of theF
risk-free asset by , that is,+

@ @w
3 3œ  +Ð" ß !ßá ß !ÑH

for .3 œ "ßá ß X
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1) The time-  value of  is>3
wF

i F i F3 3 3ß"
wÐ Ñ œ Ð Ñ  +W

In particular, the initial value is changed by a constant random
variable

i F i F! !
wÐ Ñ œ Ð Ñ  +"H

and

i F i FX X X ß"
wÐ Ñ œ Ð Ñ  +W

2) In discounted units

i F i F3 3
wÐ Ñ œ Ð Ñ  +"H

It follows that the discounted gain is not affected by value shifting

K Ð Ñ œ K Ð Ñ8 8
wF F

3) In particular, taking  to be the constant value of  we get+  Ð Ñi F!

i F!
wÐ Ñ œ !

and

i F i F i FX X !
wÐ Ñ œ Ð Ñ  Ð Ñ

Thus, if  is a self-financing trading strategy with  then thereF i F!Ð Ñ Á !
is another self-financing trading strategy with the same discountedFw

gain but with zero initial value.

The Pricing Problem: Alternatives and Replication
Our goal is to price assets that are derivatives of the basic assets. By
price we mean determine an initial price for the derivative under the
assumption that the market is free of arbitrage.

To effectively price a derivative at time , we need to have some!
information about the possible payoffs of the derivative at time . ForX
stock options, this is not a problem, as we have seen. For example, in a
two-state economy, suppose  is a stock with initial cost  and finalš# "!!
payoff vector . Then a call with strike price  has final payoffÐ"#!ß *!Ñ *&
vector .Ð#&ß !Ñ
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Consider an arbitrary derivative  of one (or more) of the assets in theW
model. This derivative is not initially part of the model, but we want to
add it to the model in such a way that the no arbitrage opportunities will
result. The only thing we know about the derivative is its final payoff ,\
which is a random variable on .H

Now, from the point of view of pricing the derivative, all that matters is
its payoff random variable—the precise nature of the derivative (call,
put, strike price, etc.) is no longer important. Thus, we are really
interested in pricing  in a manner that is consistent withrandom variables
the absence of arbitrage. In this context, random variables have a special
name.

Definition alternative A random variable  is called an , or\À ÄH ‘
contingent claim. 

Note that some authors require nonnegativity in this definition, the idea
being that a claim based on an option will not have negative payoffs. In
such cases the “claim” will simply expire. However, we do not make this
additional restriction.

Thus, the pricing problem is the problem of pricing . Perhapsalternatives
the simplest and most intuitive method for pricing an alternative  is to\
find a   whose payoff vector is equal to trading strategy F \

i FX Ð Ñ œ \

and set the initial price of  equal to the initial price of . Indeed, any\ F
other choice will lead to arbitrage. For if the initial price  of  is notT \!

equal to  then an investor could buy the cheaper of  and  andi F F!Ð Ñ \
sell the more expensive one. This produces an immediate profit and at
the end, the investor liquidates his long position and uses the proceeds to
exactly pay off the short position.

This prompts the following definition.

Definition replicating trading Let  be an alternative. A \À ÄH ‘
strategy replicating strategy hedging strategy (or  or ) for  is a \ self-
financing trading strategy  whose payoff is equal to ,F @ @œ Ð ßá ß Ñ \" X

that is

i F i @X X XÐ Ñ œ Ð Ñ œ \
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An alternative  that has at least one replicating strategy is said to be\
attainable complete. A model is said to be  if every alternative is
attainable. 

The set  of all attainable alternatives is a subspace of the vector space`
RV  of all random variables on . We leave verification of this to theÐ ÑH H
reader.

The strategy of pricing an alternative  by first finding a replicating\
trading strategy  for  and then setting the initial price of  equal toF \ \
the initial value of  is the . WeF replicating trading strategy procedure
will deal with the issues involved in employing this strategy as soon as
we look at an example of finding replicating trading strategies.

EXAMPLE 1 Let us consider an example of computing the replicating
trading strategy for an attainable alternative. This is not hard, but does
involve solving systems of linear equations, which is generally best done
by computer these days.

Figure 4 shows a state tree with stock prices for a two-asset model. For
convenience in doing hand computation, we assume that the risk-free
rates are .!

B0,1

B1,1

B1,2

80

85

78

90

80

80

75

ω2

ω1

ω3

ω4

Figure 4

We will see later that this model is complete, so that all alternatives are
attainable. Let us compute a self-financing trading strategy F @ @œ Ð ß Ñ" #

that replicates the alternative

\Ð Ñ œ "!!ß\Ð Ñ œ *!ß\Ð Ñ œ )!ß\Ð Ñ œ (!= = = =" # $ %
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that is, for which , or equivalently,i @# #Ð Ñ œ \

i @ =

i @ =

i @ =

i @ =

# # "

# # #

# # $

# # %

Ð ÑÐ Ñ œ "!!

Ð ÑÐ Ñ œ *!

Ð ÑÐ Ñ œ )!

Ð ÑÐ Ñ œ (!

Writing out these equations gives

W Ð Ñ Ð Ñ  W Ð Ñ Ð Ñ œ "!!

W Ð Ñ Ð Ñ  W Ð Ñ Ð Ñ œ *!

W Ð Ñ Ð Ñ  W Ð Ñ Ð Ñ œ )!

W Ð Ñ Ð Ñ  W

#ß" " #ß" " #ß# " #ß# "

#ß" # #ß" # #ß# # #ß# #

#ß" $ #ß" $ #ß# $ #ß# $

#ß" % #ß" % #

= ) = = ) =

= ) = = ) =

= ) = = ) =

= ) = ß# % #ß# %Ð Ñ Ð Ñ œ (!= ) =

Substituting the actual prices gives

) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß# "

#ß" # #ß# #

#ß" $ #ß# $

#ß" % #ß# %

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  )! Ð Ñ œ *!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  (& Ð Ñ œ (!

The condition that  be -measurable is@ c# "

) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß" #

#ß" $ #ß" %

#ß# " #ß# #

#ß# $ #ß# %

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

and so the previous system can be written using only  and  as= =" $

) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß# "

#ß" " #ß# "

#ß" $ #ß# $

#ß" $ #ß# $

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  )! Ð Ñ œ *!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  (& Ð Ñ œ (!

The first two equations have a unique solution and so do the second two
equations, giving

@ = @ =

@ = @ =
# " # #

# $ # %

Ð Ñ œ Ð Ñ œ Ð"!ß "Ñ

Ð Ñ œ Ð Ñ œ Ð)!ß #Ñ

Working backwards in time, we next compute the acquisition values for
@#
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i @ =

i @ =
" # "

" # $

Ð ÑÐ Ñ œ "!  )& † " œ *&

Ð ÑÐ Ñ œ )!  () † # œ ('

The self-financing condition requires that these are also the liquidation
values of  and so@"

i @ =

i @ =
" " "

" " $

Ð ÑÐ Ñ œ *&

Ð ÑÐ Ñ œ ('

Writing these out and substituting the actual prices gives the system

) = ) =

) = ) =
"ß" " "ß# "

"ß" $ "ß# $

Ð Ñ  )& Ð Ñ œ *&

Ð Ñ  () Ð Ñ œ ('

But  is -measurable, that is, constant on , and so for any @ c H = H" ! −

) = ) =

) = ) =
"ß" "ß#

"ß" "ß#

Ð Ñ  )& Ð Ñ œ *&

Ð Ñ  () Ð Ñ œ ('

This system has solution

@ ="Ð Ñ œ  ß
*&! "*

( (
Œ 

which is a portfolio consisting of a short position (sale) of *&!( ¸ "$&Þ("

bonds and a purchase of  shares of stock, for an initial cost of"*
( ¸ #Þ("

  )! † œ ¸ )"Þ%$
*&! "* &(!

( ( (

Thus, for a cost of  we can acquire a portfolio that is guaranteed to)"Þ%$
pay the following

\Ð Ñ œ "!!ß\Ð Ñ œ *!ß\Ð Ñ œ )!ß\Ð Ñ œ (!= = = =" # $ %

Note that in some states we have a profit; in others a loss. This is
expected in a model with no arbitrage. (We will prove that the model has
no arbitrage later.) 

The Law of One Price and the Initial Pricing Functional

It is clear that the replicating strategy procedure can only be used to price
attainable alternatives. However, there is still one potential problem, and
that is the problem of multiple replicating strategies for a given
alternative having different initial values. The solution is to require the
Law of One Price.
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Theorem 4 The following are equivalent.
1) ( ) For all trading strategies  and Law of One Price  F F" #

i F i F i F i FX " X # ! " ! #Ð Ñ œ Ð Ñ Ê Ð Ñ œ Ð Ñ

2) For all trading strategies F

i F i FX !Ð Ñ œ ! Ê Ð Ñ œ !

Proof. Left to the reader. 

The Law of One Price ensures that the following initial pricing
functional is well-defined.

Definition initial pricing functional The   is defined on the\ ` ‘À Ä
vector space  of all  alternatives by` attainable

\ i F FÐ\Ñ œ Ð Ñ \!  for  trading strategy  replicating any

The existence of an initial pricing functional is the key to pricing
attainable alternatives in a discrete-time model. For if  is an attainable\
alternative, that is, if there is a trading strategy  such thatF

i FX Ð Ñ œ \

then  can be unambiguously priced at  In addition, we\ Ð\Ñ œ Ð ÑÞ\ i F!

can price  at any time  by setting\ >5

\ i F F5 5Ð\Ñ œ Ð Ñ \ for  trading strategy  replicating any

Note that any other pricing will lead to arbitrage. For if at time  we>5
have  then an investor can enter the market at this time\ i F5 5Ð\Ñ Á Ð Ñ
buying the cheaper of  and  and selling the more expensive one. ThisF \
produces a profit at time  and at the end, the investor can liquidate his>5
long position and use the proceeds to exactly pay off the short position.

Arbitrage Trading Strategies
It is now time to formally consider the notion of arbitrage in a discrete-
time model. The idea is simple: arbitrage is a situation in which there is
no possibility of loss but there is a possibility of a gain. However, one
must be careful to measure loss and gain relative to the “natural”
guaranteed gain of the risk-free asset. For example, suppose that the
simple annual risk-free rate is 10%. Then an investment of $100 that
produces $105 in one year could hardly be considered a true gain, for the
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same $100 investment in the risk-free asset would have produced a risk-
free $110! Thus, the first investment is a  relative to the guaranteedloss
risk-free investment.

It may seem natural to define an arbitrage trading strategy  to be oneF
whose  final gain is strictly positive, that is,discounted

K Ð Ñ  !X F

While this definition is used by some authors, the following definition
seems a bit more common. It requires that the initial value be  as well,!
in which case the issue of discounting is moot. It is important to point out
that while the definitions are not the same, they are equivalent in a sense
we will make precise as soon as we have given the formal definition that
we will adopt.

Definition arbitrage trading A  trading strategy  is an self-financing F
strategy arbitrage opportunity (or ) if

i F i F! XÐ Ñ œ ! Ð Ñ  ! and 

or, equivalently in terms of gain,

i F F! XÐ Ñ œ ! K Ð Ñ  ! and 

This says in words that  has zero initial cost, is guaranteed never toF
result in a loss at time  and under at least one final state, will result in>X
a positive payoff at time .>X

Let us show the equivalence of the two definitions of arbitrage
mentioned earlier. We also show that a strictly positive discounted gain
at any time will imply an arbitrage opportunity. After all, we have
already seen that we can lock in any such gain until the model expires.

Theorem 5 The following are equivalent for a model .Œ
1)  has an arbitrage opportunity , that isŒ F

i F F! XÐ Ñ œ ! K Ð Ñ  ! and 

2)  has a self-financing trading strategy  with strictly positiveŒ F
discounted final gain, that is

K Ð Ñ  !X F
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3)  has a self-financing trading strategy  with strictly positiveŒ F
discounted gain at some time , that is, for some > " Ÿ 5 Ÿ X5

K Ð Ñ  !5 F

Proof. Obviously 1) implies 2) and a simple value-shift shows that 2)
implies 1). (See the last statement of Theorem 3.) Clearly 2) implies 3).
Finally, if 3) holds then we may lock in the discounted gain to get a
trading strategy satisfying 2).

Admissible Arbitrage Trading Strategies
Some authors require that arbitrage trading strategies never assume a
negative value, as described by the following definition.

Definition admissible A self-financing trading strategy  is  if its valueF
at all times is nonnegative, that is,

i F3Ð Ñ   !

for all .3 œ !ßá ß X

Thus, an admissible self-financing  trading strategy  satisfiesarbitrage F

1) i F!Ð Ñ œ !
2)  all i F3Ð Ñ   ! 3
3) i FX Ð Ñ  !

In terms of gain this is

1) i F!Ð Ñ œ !
2)  all K Ð Ñ   ! 33 F
3) K Ð Ñ  !X F

The next result shows that requiring admissibility for arbitrage strategies
is not an important distinction.

Theorem 6 A model has an arbitrage opportunity if and only if it has an
admissible arbitrage opportunity.
Proof. Since an admissible arbitrage strategy is an arbitrage strategy, we
only need to show the converse, namely, that a model that has an
arbitrage strategy
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F @ @œ Ð ßá ß Ñ" X

also has an admissible arbitrage strategy.

Of course, if  is admissible, then we are done, so let us assume it is not.F
Let  be the  time for which the value of  is negative for some>5 latest F
state . Since  is constant on  we can writeF − Ð Ñ F5ß? 5 5 5" 5ß?c i @

+ œ Ð ÑÐ Ñ œ Ð ÑÐ Ñ  !i @ = i @ =5 5 5 5"

for any .= − F5ß?

Now the plan is actually quite simple: We want to isolate the holdings
that produce the negative value by setting all other unrelated values to !
and then do a value shift to bring this value to . The devil is in the!
notational details.

The first step is to do nothing before time , that is>5

>3 œ ! 3 Ÿ 5 for 

From time  forward, we follow the strategy   the state of>5 F if and only if
the economy is in , where  has negative value for the last time. ForF5Þ? F
other states of the economy we do nothing. Thus,  is defined by>

>
@3

F 3
œ

! 3 Ÿ 5
" 3   5  "œ for 

for 
5ß?

To examine the values, we consider two cases. For  the= Â F5ß?

acquisition and liquidation values are always , that is,!

i > = i > =3 3 3 3"Ð ÑÐ Ñ œ Ð ÑÐ Ñ œ !

for all . For  the values are  up to and including the 3 − F != 5ß? liquidation
value acquisition value at time . However, the  at time  is negative> >5 5

(equal to ). Subsequently, all values are nonnegative. Hence, for+
= − F5ß? we can write the sequence of values in the suggestive form

!ßá ß !ß Ò Ð ÑÐ Ñ œ !ß Ð ÑÐ Ñ œ +  !Óß   !ßá ß   !i > = i > =5 5 5 5"

Now we are close to our goal. It is just a matter of adjusting the trading
strategy to restore the self-financing condition at time  (and not destroy>5
it at subsequent times). This is done by adding the quantity +ÎW  !5ß"

of risk-free asset to the acquisition portfolio  at time  under the@5" 5>
states in  only and rolling this quantity over.F5ß?
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In particular, set

>
@3

w

F 3 F 5ß"
œ

! 3 Ÿ 5
"  Ð+" ÎW ß !ßá ß !Ñ 3   5  "œ for 

for 
5ß? 5ß?

For  we still have= Â F5ß?

i > = i > =3 33 3"
w wÐ ÑÐ Ñ œ Ð ÑÐ Ñ œ !

for all  but for , the values are now3 − F= 5ß?

!ßá ß !ß Ò Ð ÑÐ Ñ œ !ß Ð ÑÐ Ñ œ !Óß   +  !ßá ß   +  !i > = i > =5 5 5"5
w

Thus,  is a self-financing admissible arbitrage tradingÐ ßá ß Ñ> >" X
w w

strategy, as desired.

Characterizing Arbitrage
We now come to the issue of characterizing arbitrage in a way that can
be used to price alternatives. The key concept here is the martingale
measure.

Definition Let  be a discrete-time model. A probability distribution Œ C
on  is a  (or  orH martingale measure equivalent martingale measure
risk-neutral probability measure) for  ifŒ
1) The probability measure  is strongly positive, that isC

 =CÐ Ñ  !

for all = H−
2) For each asset , the discounted price process  is anš4 !ß4 X ß4ÐW ßá ß W Ñ

…-martingale, that is, for all 5   !

X cCÐW ± Ñ œ W5"ß4 5 5ß4

or equivalently, for any 3ß 5   !

X cCÐW ± Ñ œ W53ß4 5 5ß4

The next theorem characterizes martingale measures in terms of
valuations and gains.

Theorem 7 For a model  the following are equivalent for a stronglyŒ
positive probability measure.
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1)  is a martingale measure, that is, the discounted price process forC
any asset is a martingale. In particular, for all 5   !

X cCÐW ± Ñ œ W5"ß4 5 5ß4

or equivalently, for any 3ß 5   !

X cCÐW ± Ñ œ W53ß4 5 5ß4

2) The discounted valuation process of any self-financingi F5Ð Ñ
trading strategy  is a martingale under . In particular, for allF C
5   ! 

X i F c i FCÐ Ð Ñ ± Ñ œ Ð Ñ5" 5 5

or, equivalently, for all  3ß 5   !

X i F c i FCÐ Ð Ñ ± Ñ œ Ð Ñ53 5 5

3) At any time, the expected discounted value under  of any self-C
financing trading strategy  is equal to the initial value of , that is,F F
for any  5   !

X i F i FCÐ Ð ÑÑ œ Ð Ñ5 !

or equivalently, the expected discounted gain under  is , that isC !

X FCÐK Ð ÑÑ œ !5

4) The expected discounted final payoff under  of any self-financingC
trading strategy  is equal to the initial value of , that is, F F

X i F i FCÐ Ð ÑÑ œ Ð ÑX !

or equivalently, the expected discounted final gain under  is , thatC !
is

X FCÐK Ð ÑÑ œ !X

Moreover, if any of these conditions holds, then for all 5   !

XCÐW Ñ œ W5ß4 !ß4

that is, the initial price of asset  is the discounted expected price of .š š4 4

Proof. Assume that 1) holds and let  be a self-F @ @œ Ð ßá ß Ñ" X

financing trading strategy on . Multiplying both sides of the martingaleŒ
condition by  gives)5"ß4
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) X c )5"ß4 5"ß4 5 5"ß4 5ß4CÐW ± Ñ œ W

Since  is -measurable, it follows from the properties of) c5"ß4 5

conditional expectation that we may move  under the expectation)5"ß4

operator to get

X ) c )CÐ W ± Ñ œ W5"ß4 5"ß4 5 5"ß4 5ß4

Summing on  and using the linearity of the conditional expectation4
gives

X ) c )CÐ W ± Ñ œ W" "
4œ" 4œ"

8 8

5"ß4 5"ß4 5 5"ß4 5ß4

that is

X i @ c i @CÐ Ð Ñ ± Ñ œ Ð Ñ5" 5" 5 5 5"

or, equivalently

X i F c i FCÐ Ð Ñ ± Ñ œ Ð Ñ5" 5 5

which is the desired martingale condition for  and so 2) holds.i F5Ð Ñ

If 2) holds then 

X i F c i FCÐ Ð Ñ ± Ñ œ Ð Ñ53 5 5

Taking  gives 5 œ !

X i F c i FCÐ Ð Ñ ± Ñ œ Ð Ñ3 ! !

or 

X i F i FCÐ Ð ÑÑ œ Ð Ñ3 !

or in terms of gain  

X F X i F i FC CÐK Ð ÑÑ œ Ð Ð Ñ  Ð ÑÑ œ !3 3 !

which proves 3). Of course, 3) implies 4) since the latter is just a special
case of the former.

Suppose now that 4) holds. Thus,

X FCÐK Ð ÑÑ œ !X
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for all self-financing trading strategies . Consider the following tradingF
strategy. Fix a block  of the time-  partition . Also fix an asset .F >5ß? 5 5 4c š

For time prior to  acquire nothing, that is, if  then> 5   "5

@ @ @" # 5œ œ â œ œ !

At time  acquire the portfolio consisting of exactly one unit of asset >5 4š
if and only if the state is in  and in order to maintain the self-F5ß?

financing condition, acquire  units of the risk-free asset asW "5ß4 F5ß?

well. Thus,

@5" 5ß4 F Fœ ÐW " ß !ßá ß !ß " ß !ßá ß !Ñ
5ß? 5ß?

The acquisition value of this is

i @ i @5 5" 5ß4 F 5ß" F 5ß4 5 5Ð Ñ œ ÐW " ÑW  " W œ ! œ Ð Ñ
5ß? 5ß?

and so the self-financing condition does indeed obtain at time .>5

At time  liquidate  and invest only in the risk-free asset. Then>5" 5"@
roll over this asset until the end of the model. Thus, @ @5# Xßá ß
contain only the risk-free asset and so there is no discounted gain from
time  forward.>5"

It follows that the only discounted gain takes place during the interval
Ò> ß > Ó5 5" . Thus, the discounted gain of the self-financing trading strategy

F @ @œ Ð ßá ß Ñ" X

is

K Ð Ñ œ K Ð Ñ  K Ð Ñ  K Ð Ñ

œ K Ð Ñ

œ Ð Ñ  Ð Ñ

œ Ð Ñ

œ ÐW " ÑW  " W

œ W "  " W

X !ß5 5ß5" 5"ßX

5ß5"

5" 5" 5 5

5" 5"

5ß4 F 5"ß" F 5"ß4

5ß4 F F 5"ß4

F F F F

F

i @ i @

i @

5ß? 5ß?

5ß? 5ß?

Now, by assumption, the expected value of this is , so we have!

XCÐW "  W " Ñ œ !5ß4 F 5"ß4 F5ß? 5ß?

or



173

X XC CÐW " Ñ œ ÐW " Ñ5"ß4 F 5ß4 F5ß? 5ß?

Dividing by the probability of  givesF5ß?

X XC CÐW ± F Ñ œ ÐW ± F Ñ5"ß4 5ß? 5ß4 5ß?

and since this works equally well for any  we have?

X c X cC CÐW ± Ñ œ ÐW ± Ñ5"ß4 5 5ß4 5

But  is -measurable and so this isW5ß4 5c

X cCÐW ± Ñ œ W5"ß4 5 5ß4

which is precisely the martingale condition for the discounted asset
pricing process. Hence,  is a martingale measure and 1) holds. ThisC
completes the proof.

The First Fundamental Theorem of Asset Pricing

The preceeding theorem shows clearly that martingale measures are
highly desirable. The First Fundamental Theorem of Asset Pricing tells
us precisely when such probability measures exist.

Theorem 8 The First Fundamental Theorem of Asset Pricing ( ) For a
discrete-time model  the following are equivalent.Œ
1) There are no arbitrage trading strategies.
2) There is a martingale measure  on .C Œ
Proof. The key to the proof of this theorem are the characterizations of
arbitrage in Theorem 5 and of martingale measures in Theorem 7, along
with one fact from convexity theory to connect them.

If there is a martingale measure  for  then by Theorem 7C Œ

X FCÐK Ð ÑÑ œ !X

for all self-financing trading strategies . This certainly implies thatF
there are no self-financing trading strategies  for whichF

K Ð Ñ  !X F

because such strategies must have positive expectation under a strongly
positive probability measure. Hence, by Theorem 5 there are no arbitrage
opportunities. This proves one-half of the First Fundamental Theorem.
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For the converse, the absence of arbitrage implies by Theorem 5 that all
discounted gains satisfy

K Ð Ñ y !X F

We must show that there is a strongly positive probability measure C
under which all  discounted gains are actually .expected !

In order to give the proof a more geometric flavor, we wish to view a
random variable not as a function, but as a vector. This is possible
because the sample space  is . In particular, if we fix the order ofH finite
the elements of , say , then any random variableH H = =œ Ð ßá ß Ñ" 7

\À ÄH ‘ can be identified with its vector of values

\ œ Ð\Ð Ñßá ß\Ð ÑÑÄ
" 7= =

It is also clear that a random variable  is nonnegative, strictly positive\
or strongly positive if and only if the corresponding vector has this
property.

Let us now consider the set  of all cumulative gain vectorsZ

Z F F ‘œ ÖK Ð Ñ ± × ©X
Ä 7 is a trading strategy

Since the valuations  and  are linear transformations, so is  andi iX ! XK
so , being the image of  is a subspace of .Z ‘KX

7

The absence of arbitrage condition

K Ð Ñ y !X F

is equivalent to the condition that  is a vector space that does notZ
intersect the nonnegative orthant in ,‘8

‘8
 " 8 3œ ÖÐB ßá ß B Ñ ± B   !×

except at the origin, that is,

Z ‘ œ Ö!×8


It follows from Theorem 5 of the Appendix that  contains a stronglyZ¼

positive vector . In other words, for any self-financingC 1 1œ Ð ßá ß Ñ" 7

trading strategy  we haveF

K Ð Ñ † œ !X
ÄF C

But the left-hand side is just the expected value we seek
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K Ð Ñ † œ K Ð ÑÐ Ñ œ ÐK Ð ÑÑX X 3 3 X
Ä

3œ"

7

F C F = 1 X F" C

and so

X FCÐK Ð ÑÑ œ !X

This completes the proof.

The Second Fundamental Theorem of Asset Pricing

Let us now turn our attention to the Second Fundamental Theorem of
Asset Pricing. Recall that a model  is  if every alternative inŒ complete
‘ ‘7 7 is attainable, that is, if for every  there is a self-financing\ −
trading strategy  such thatF

i FX Ð Ñ œ \

We will have use of the following fact from linear algebra. Any strongly
positive probability distribution  on , where> # # Hœ Ð ßá ß Ñ" 7

 = # ‘>Ð Ñ œ5 5
7 defines an inner product on the vector space  by

Ø\ß ] Ù œ B C> "
3œ"

7

3 3 3#

We leave it to the reader to verify that this has the properties of an inner
product, which are
1) (Bilinearity)

Ø+\  ,] ß ^Ù œ +Ø\ß^Ù  ,Ø] ß ^Ù

Ø\ß +]  ,^Ù œ +Ø\ß ] Ù  ,Ø\ß^Ù
> > >

> > >

2) (Symmetry)

Ø\ß ] Ù œ Ø] ß\Ù> >

3) (Positive definiteness)

Ø\ß\Ù   !>

with equality if and only if .\ œ !
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Observe also that if  then for any vector (random variable)" œ Ð"ßá ß "Ñ
\

Ø\ß Ù œ B œ Ð\Ñ" > >"
3œ"

7

3 3# X

Now we can turn to the theorem at hand.

Theorem 9 The Second Fundamental Theorem of Asset Pricing ( ) Let
Œ be a model with no arbitrage opportunities. Then there is a unique
martingale measure on  if and only if the model  is complete.Œ Œ
Proof. We first show that the completeness of  implies the uniquenessŒ
of the martingale measure on . Suppose that  and  are martingaleŒ C C" #

measures on a complete model . We want to show that .Œ C C" #œ

Since  is a martingale measure, Theorem 7 implies thatC"

X i F i FC"Ð Ð ÑÑ œ Ð ÑX !

and similarly,

X i F i FC#Ð Ð ÑÑ œ Ð ÑX !

Hence,

X i F X i FC C" #Ð Ð ÑÑ œ Ð Ð ÑÑX X

Since the discounting periods are the same, we have

X i F X i FC C" #Ð Ð ÑÑ œ Ð Ð ÑÑX X

But since  is complete, all random variables on  have the form Œ H i FX Ð Ñ
for some self-financing trading strategy. Hence

X XC C" #Ð\Ñ œ Ð\Ñ

for all random variables  on . Taking  for  gives\ \ œ " −H = HÖ ×=

 =  =C C" #
Ð Ñ œ Ð Ñ

which implies that . Thus, the martingale measure on  isC C Œ" #œ
unique.

For the converse, suppose that  is a martingale measure on  and thatC Œ
the market is not complete. We want to find a different martingale
measure  on . As with the proof of the First Fundamental Theorem,C Œ‡
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we wish to fix the order of the elements of  and thinkH = =œ Ð ßá ß Ñ" 7

of a random variable on  as a vector in .H ‘7

Since  is not complete, there is a vector that is not attainable. PutŒ
another way, the vector space  of all attainable vectors is a ` proper
subspace of .‘7

Let us consider the inner product defined on  by the martingale‘7

measure C

Ø\ß ] Ù œ B CC "
3œ"

7

3 3 31

It is a simple fact of linear algebra that if a subspace, such as , is not`
all of  then there is a vector  that is orthogonal to‘7

" 7^ œ ÐD ßá ß D Ñ
every vector in the subspace. Thus, for any attainable vector
\ œ ÐB ßá ß B Ñ" 7  we have

Ø\ß ^Ù œ B D œ !C "
3œ"

7

3 3 31

Moreover, since the vector  is attainable (just buy " œ Ð"ßá ß "Ñ "ÎWXß"

units of the risk-free asset and roll it over), we have

! œ Ø ^Ù œ D œ Ð^Ñ"ß C C"
3œ"

7

3 31 X

Now let us attempt to define a different martingale measure
C 1 1 Œ‡ ‡ ‡

" 7œ Ð ßá ß Ñ on . This probability measure must be strongly
positive, it must satisfy the martingale condition and it must be different
from .C

Of course, it must first be a probability measure. Noting that

"
3œ"

7

3 3D œ !1

we could try something of the form

1 1 13
‡

3 3 3œ  -D

where  is a constant. At least this is a probability measure-
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" " " "
3œ" 3œ" 3œ" 3œ"

7 7 7 7

3
‡

3 3 3 31 1 1 1œ  - D œ œ "

In addition, since , for any  vector  we have^ ¼ \ −` `attainable

X 1

1 1

1 1

X

X

C

C C

C

‡Ð\Ñ œ B

œ B Ð  -D Ñ

œ B  - B D

œ Ð\Ñ  Ø\ß^Ù

œ Ð\Ñ

"
"
" "

3œ"

7

3 3
‡

3œ"

7

3 3 3 3

3œ" 3œ"

7 7

3 3 3 3 3

Hence, for any self-financing trading strategy  we haveF

X i F X i FC C‡Ð Ð ÑÑ œ Ð Ð ÑÑX X

and since  is a martingale measure, Theorem 7 implies thatC

X i F X i F i FC C‡Ð Ð ÑÑ œ Ð Ð ÑÑ œ Ð ÑX X !

But this same theorem then tells us that  is also a martingale measure,C‡

that is, provided that is strongly positive. So all we need to do toC‡

complete the proof is choose the constant  so that is strongly- C‡

positive, that is

1 1 13
‡

3 3 3œ  -D  !

or equivalently

"  -D  !3

for all . To this end, let . Then3 Q œ Ö D ×max
3

3k k
Q Ÿ D Ÿ Q3

and so

" Ÿ Ÿ "
D

Q
3

Dividing by  gives and adding  gives# "
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" D $

# #Q #
Ÿ "  Ÿ

3

and so we can take

- œ
"

#Q

This completes the proof.

Computing Martingale Measures
We now want to consider the issue of computing a martingale measure

C 1 1œ Ð ßá ß Ñ" 7

for a model . The technique is quite simple, although writing down theŒ
details is a bit messy.

First, note that any final outcome  lies in a sequence of blocks,= H< −
one from each partition , sayc5

Ö × œ F © F © â © F œ= H< X ß3 X"ß3 !ß3X X" !

Then  is just a product of conditional probabilities1  =< <œ Ð ÑC

1  =

 = 

 =  

 = 

< <

< X"ß3 X"ß3

< X"ß3 X"ß3 X#ß3 X#ß3

< X"ß3 X"ß3 X#

œ Ð Ñ

œ Ð ± F Ñ ÐF Ñ

œ Ð ± F Ñ ÐF ± F Ñ ÐF Ñ

œ â

œ Ð ± F Ñ ÐF ± F

C

C C

C C C

C C

X" X"

X" X" X# X#

X" X" ß3 "ß3 !ß3X# " !Ñâ ÐF ± F ÑC

Thus, we can compute the probabilities in  if we can compute theC
conditional probabilities

CÐF ± F Ñ5"ß? 5ß@ (1)

for all pairs of blocks .F © F5"ß@ 5ß?

The state information tree gives a very intuitive picture of the
conditional probabilities and how they are combined to get the
martingale measure probabilities. Figure 5 shows a path from the initial
block  to a final block . The conditional probabilities areF œ F!ß" < %ß3=

%

used to label the edges of the path.
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B0,1

B1,i 1

B2,i
2

B3,i 3 ωr=B4,i 4

P(B1,i |B0,1) P(B2,i |B1,i )

P(B3,i |B2,i ) P(B4,i |B3,i )

1 2

3 4

1

2 3

Figure 5 – A path probability

Moreover, the martingale probability  is just the product of1  =< <œ Ð ÑC

the conditional probabilites that label the edges of the path from  toF!ß"

=<. For this reason, we may refer to the martingale probabilities as path
probabilities.

To actually compute the conditional probabilities in (1), we do not look
at paths but rather at individual blocks and their immediate successors, as
shown in Figure 6. This forms a submodel of the entire model .Œ

Bk,v

Bk+1,1

Bk+1,c

.

.

.

Bk+1,2

Sk,j(on Bk,v)

Sk+1,j(on Bk+1,1)

Sk+1,j(on Bk+1,2)

Sk+1,j(on Bk+1,c)

P(Bk+1,1|Bk,v)

P(Bk+1,c|Bk,v)

P(Bk+1,2|Bk,v)

Figure 6 – The submodel starting at F5ß@

Fix a block . Suppose that the blocks emanating from  areF F5ß@ 5ß@

U œ ÖF ßá ßF ×5"ß" 5"ß-

Then for each asset , the martingale condition isš4
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W œ ÐW ± Ñ5ß4 5"ß4 5X cC

The random variable  is -measurable, that is, it isX c cCÐW ± Ñ5"ß4 5 5

constant on the blocks of  so we may suggestively writec5

W Ð F Ñ œ ÐW ± ÑÐ F Ñ5ß4 5ß@ 5"ß4 5 5ß@on on X cC

or equivalently

W Ð F Ñ œ ÐW ± F Ñ5ß4 5ß@ 5"ß4 5ß@on XC

Since  is constant on the blocks of  we haveW5"ß4 5"c

W Ð F Ñ œ ÐW ± F Ñ

œ Ð" W Ñ
"

ÐF Ñ

œ Ò" W ÓÐ F Ñ ÐF Ñ
"

ÐF Ñ

œ W Ð F Ñ

5ß4 5ß@ 5"ß4 5ß@

5ß@
F 5"ß4

5ß@ 3œ"

-

F 5"ß4 5"ß3 5"ß3

3œ"

-

5"ß4 5"ß3

on 

on 

on 

X


X






C

C
C

C
C

C

5ß@

5ß@
"

" ÐF ± F Ñ5"ß3 5ß@

The equations (one for each )4 œ "ßá ß7

W Ð F Ñ œ W Ð F Ñ ÐF ± F Ñ5ß4 5ß@ 5"ß4 5"ß3 5"ß3 5ß@

3œ"

-

on on " C

along with

"
3œ"

-

5"ß3 5ß@CÐF ± F Ñ œ "

which follow from the fact that the blocks  for an partition of ,F F5"ß3 5ß@

provide the means to compute the conditional probabilities.

Theorem 10 Let  be a martingale measure for .C 1 1 Œœ Ð ßá ß Ñ" 7

Each  is contained in the unique chain of blocks= H< −

F ª F ª â ª F œ Ö ×!ß" "ß3 X ß3 <" X =

Then the martingale probability  is just a product of1  =< <œ Ð ÑC

conditional probabilities
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1  =   < < "ß3 !ß" #ß3 "ß3 X ß3 X"ß3œ Ð Ñ œ ÐF ± F Ñ ÐF ± F Ñâ ÐF ± F ÑC C C C" # " X X"

To compute the conditional probabilities , suppose that theCÐ † ± F Ñ5ß@

blocks emanating from  areF5ß@

U œ ÖF ßá ßF ×5"ß" 5"ß-

Then we have the system of equations (one for each )4 œ "ßá ß7

W Ð F Ñ œ W Ð F Ñ ÐF ± F Ñ5ß4 5ß@ 5"ß4 5"ß3 5"ß3 5ß@

3œ"

-

on on (1)" C

along with

"
3œ"

-

5"ß3 5ß@CÐF ± F Ñ œ " (2)

Let us illustrate the computation of a martingale measure.

EXAMPLE 2 The left half of Figure 7 shows the state tree of Example
1. Recall that risk-free rates are assumed to be .!

B0,1

B1,1

B1,2

80

85

78

90

80

80

75

ρ1,1,1

ρ0,1,1

ρ0,1,2

ρ1,1,2

ρ1,2,1

ρ1,2,2

B0,1

B1,1

B1,2

80

85

78

90

80

80

75

2/7

5/7
3/5

2/5

1/2

1/2 ω2

ω1

ω3

ω4

ω2

ω1

ω3

ω4

Figure 7 – Computing martingale probabilities

We can compute the conditional probabilities starting with each block of
the penultimate partition . For the block  equations (2) and (3)c" "ß"F
give

*! ÐF ± F Ñ  )! ÐF ± F Ñ œ )&

ÐF ± F Ñ  ÐF ± F Ñ œ "

 

 
C C

C C

#ß" "ß" #ß# "ß"

#ß" "ß" #ß# "ß"

Solving this system gives
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 C CÐF ± F Ñ œ ÐF ± F Ñ œ
"

#
#ß" "ß" #ß# "ß"

as shown on the right in Figure 7. Similarly, for block  we getF"ß#

)! ÐF ± F Ñ  (& ÐF ± F Ñ œ ()

ÐF ± F Ñ  ÐF ± F Ñ œ "

 

 
C C

C C

#ß$ "ß# #ß% "ß#

#ß$ "ß# #ß% "ß#

with solution

 C CÐF ± F Ñ œ ß ÐF ± F Ñ œ
$ #

& &
#ß$ "ß# #ß% "ß#

Finally, for the block  we haveF!ß"

)& ÐF ± F Ñ  () ÐF ± F Ñ œ )!

ÐF ± F Ñ  ÐF ± F Ñ œ "

 

 
C C

C C

"ß" !ß" "ß# !ß"

"ß" !ß" "ß# !ß"

with solution

 C CÐF ± F Ñ œ ß ÐF ± F Ñ œ
# &

( (
"ß" !ß" "ß# !ß"

The right half of Figure 7 shows the conditional probabilities. We can
now compute the martingale measure  simply by taking the productsC
along each path from the starting state to the final states

 =

 =

 =

 =

C

C

C

C

Ð Ñ œ † œ
# " #

( # "%

Ð Ñ œ † œ
# " #

( # "%

Ð Ñ œ † œ
& $ $

( & (

Ð Ñ œ † œ
& # #

( & (

"

#

$

%

Let us now consider once again the alternative

\Ð Ñ œ "!!ß\Ð Ñ œ *!ß\Ð Ñ œ )!ß\Ð Ñ œ (!= = = =" # $ %

The payoffs for a replicating self-financing trading strategy
F @ @œ Ð ß Ñ" #  are
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i @ =

i @ =

i @ =

i @ =

# # "

# # #

# # $

# # %

Ð ÑÐ Ñ œ "!!

Ð ÑÐ Ñ œ *!

Ð ÑÐ Ñ œ )!

Ð ÑÐ Ñ œ (!

At this point, we can use Theorem 7, which tells us that  

i F X i F! XÐ Ñ œ Ð Ð ÑÑC

Hence,  

i F!Ð Ñ œ "!! †  *! †  )! †  (! † œ ¸ )"Þ%$
# # $ # &(!

"% "% ( ( (

just as we found in Example 1. 

Exercises
1. For the state tree in Figure 4, compute a self-financing trading

strategy  that replicates the alternativeF @ @œ Ð ß Ñ" #

\Ð Ñ œ *&ß\Ð Ñ œ *!ß\Ð Ñ œ )&ß\Ð Ñ œ (&= = = =" # $ %

Assume that the risk-free rates are .!
2. For the state tree shown below

B0,1

B1,1

B1,2

80

85

78

90

80

80

75

B2,1

B2,2

B2,3

B2,4

ω2

ω1

ω5

ω4

ω3

ω6

100

95

95

90

90

80

 replicate the alternative

Ð"!!ß "!!ß *&ß *!ß *!ß )&Ñ

Assume that the risk-free rates are . : there is more than one! Hint
possible answer.

3. Consider the following game. Three fair coins are flipped. The
player wins if three heads occur, otherwise the casino wins. For
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every $0.25 the player wagers, the casino must put up $2.00, making
the wager fair. Imagine now that the casino wants to hedge its
position against a player who wishes to wager $1 million dollars.
(The casino is at risk for $8 million.) Accordingly, the casino finds a
“market maker” in coin-tossing bets and done the following: before
the first toss, it bets $1 million dollars on heads at even money;
before the second toss (if there is one), it bets $2 million dollars on
heads at even money and before the third toss (if there is one), it bets
$4 million dollars on heads at even money. Track the value of the
casino's and the player's portfolio during the game. Justify the
statement that the casino has entered into a self-financing, replicating
complete hedge.

4. Prove that the set  of all  trading strategies is a vectorg self-financing
space under the operations of coordinate-wise addition

Ð ßá ß Ñ  Ð ßá ß Ñ œ Ð  ßá ß  Ñ@ @ @ @ @ @ @ @"ß" "ßX #ß" #ßX "ß" #ß" "ßX #ßX

and scalar multiplication

+Ð ßá ß Ñ œ Ð+ ßá ß + Ñ@ @ @ @" X " X

5. Consider the self-financing trading strategy

F @ @œ Ð ßá ß Ñ" X

where

@ ) )3 3ß" 3ß8œ Ð ßá ß Ñ  

For any nonzero real number , let+

F @ @w w w
" Xœ Ð ßá ß Ñ

where

@ ) )w
3 3ß" 3ß8œ Ð  +" ßá ß ÑH

Show that  is self-financing.Fw

6. Prove that the set  of all attainable alternatives is a subspace of the`
vector space RV  of all random variables on .Ð ÑH H

7. Prove Theorem 4.
8. Consider a model  with two assets: the risk-free asset and a stock.Œ

If the risk-free rates  are large enough, will there always be an<3
arbitrage opportunity? Explain your answer. Does this apply to
models with more than one risky asset?
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9. Consider the following game. A set of 3 coins exists. The first coin is
fair, the second coin has probability of heads equal to  and the!Þ&&
third coin has probability of heads . Draw a state tree indicating!Þ%&
the possible outcomes along with their probabilities. Find the path-
weight probability distribution.

10. Show that the replicating relation defined by  if and only ifF F" #´
F F" # replicates  is an  on the set of self-equivalence relation
financing trading strategies, that is, the relation satisfies the
following conditions:

 a) ( ) reflexivity F F" "´
 b) ( )  implies symmetry F F F F" # # "´ ´
 c) ( )  and  implies transitivity F F F F F F" # # $ " $´ ´ ´
11. Prove that if any  alternative is attainable then thestrictly positive

market is complete.

A Single-Period Two-Asset, Two-State Model

Consider a simple single-period, two-asset, two-state model . TheŒ
model has two assets  where  is the risk-free bond at rate T š š šœ Ð ß Ñ <" # "

and  is an underlying stock with initial price  and final price . Theš# ! XW W
model has only two states of the economy .H = =œ Ð ß Ñ" 2  It is customary
to express the final stock price in terms of the initial price. In state  the="

stock price is multiplied by a factor  so that?

W œ W ?X !

and in state  the price is multiplied by a factor  so that=# .

W œ W .X !

We will assume that . The following exercises pertain to this. Ÿ ?
model.

12. Show that  is complete if and only if .Œ .  ?
13. Consider an option with payoff  given by\

\Ð Ñ œ 0

\Ð Ñ œ 0

=

=
" ?

# .

Find a replicating portfolio for .\
14. Find the initial price of .\
15. Set

1 œ
/  .

?  .

<X
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and show that the price of the derivative is

/ Ò 0  Ð"  Ñ0 Ó<X
? .1 1

What does this tell you about ?Ð ß "  Ñ1 1
16. Show that there is no arbitrage in this model if and only if

.  /  ?<X .
17. A day trader is interested in a particular stock currently priced at

$ . His assessment is that by the end of the day, the stock will"!!
either be selling for $  or $ . A European call is available at a"!" **
strike price of $ . How should it be priced? Assume that**Þ&!
< œ %%.

18. a) Suppose a certain security is currently selling for 160. At time X
the security will sell for either 200 or 140. Price a European put
on this asset with strike price 180, assuming no arbitrage and
interest rate .< œ !

 b) Suppose you are fortunate enough to acquire the put described
above for only 20. Describe the various portfolios that include
the put that will guarantee a profit.

A Single-Period Two-Asset, Three-State Model

Consider now a single-period, two-asset model with three states. Assume
a risk-free rate of . Suppose that!

W œ #&!ß#

and

W Ð Ñ œ %!ß W Ð Ñ œ $!ß W Ð Ñ œ #!"ß# " "ß# # "ß# $= = =

19. Show that the model is not complete.
20. Find all martingale measures for this model.
21. Show that the following are martingale measures

C

C

"

#

œ Ð ß ß Ñ
" % (

"# "# "#

œ Ð ß ß Ñ
" " %

' ' '

22. Find a replicating trading strategy (portfolio) and price a call option
with strike price  using the two martingale measures of the#!
previous exercise.
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Chapter 7

The Cox-Ross-Rubinstein Model
In this chapter, we discuss a specific discrete-time model known as the
Cox-Ross-Rubinstein model because it was first described by these
gentlemen in 1979. We will abbreviate Cox-Ross-Rubinstein by CRR.
The CRR model is also referred to in the literature as the binomial
model for reasons that will become apparent as we proceed.

In a later chapter, we will use this model to derive the famous Black-
Scholes option pricing formula.

The Model

Times

The Cox-Ross-Rubinstein model is a , in that it has adiscrete model
finite number of times times

>  >  â  >! " X

Moreover, the time intervals  have equal length , that isÒ> ß > Ó >3 3" ?

>  > œ >3 3" ?

Thus, the entire lifetime of the model is

P œ >  > œ X >X ! ?

Assets

The CRR model has only two assets: the risk-free asset  and a riskyš"
asset .š#

The States of the Model

Figure 1 shows a portion of the state tree for the CRR model.
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U

D

UU

UD

DU

DD

UUU
UUD

UDU
UDD

DUU
DUD

DDU
DDD

t0 t1 t2 t3

Figure 1–State tree for Cox-Ross-Rubinstein model

The CRR model assumes that during each time interval  the stateÒ> ß > Ó3 3"

of the economy changes in one of two ways: it goes up or it goes down.
Also, the direction of change in the economy is independent of past
changes.

If we denote an up-tick in the economy by  and a down-tick by  thenY H
a final state of the economy is a  of 's and 's of length . Let usstring Y H X
denote the set of all strings of 's and 's of length  by . ForY H 5 ÖY ßH×5

instance,

ÖY ßH× œ ÖYY ßYHßHYßHH×#

Thus, the final state space is

H œ ÖY ßH×X

Note that  has size , in particular,  has size .ÖY ßH× # #5 5 XH

Since we will be dealing regularly with strings of 's and 's, let usY H
establish a bit of notation. For any  we denote the prefix of= − ÖY ßH×X

= = = of length  by . Thus, if  then3 Ò Ó œ / â/3 " X

[ ]= 3 " 3œ / â/

for any . We also set3 Ÿ X

R Ð Ñ œ Y

R Ð Ñ œ H
Y

H

= =

= =

number of 's in 
number of 's in 

The intermediate states of the model are defined as follows. There is one
time-  intermediate state for each string in . In particular, for> ÖY ßH×5

5
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$ cœ / â/ − ÖY ßH× F −" 5 5
5  the intermediate state  is the set of all$

final states having  prefix $

F œ Ö − ± Ò Ó œ ×$ = H = $3

Thus,  has exactly  blocks (intermediate states).c5
5#

For example, if  then  consists of the two intermediate statesX œ % c"

F œ ÖYYYYßYYYHßYYHYßYYHHß

YHYYßYHYHßYHHYßYHHH×

F œ ÖHYYYßHYYHßHYHYßHYHHß

HHYYßHHYHßHHHYßHHHH×

Y

H

The partition  consists of the four intermediate statesc#

F œ ÖYYYYßYYYHßYYHYßYYHH×

F œ ÖYHYYßYHYHßYHHYßYHHH×

F œ ÖHYYYßHYYHßHYHYßHYHH×

F œ ÖHHYYßHHYHßHHHYßHHHH×

YY

YH

HY

HH

At time  there is only one (initial) state . This corresponds to> F œ! % H
the empty string , which is a prefix of all strings.%

It is clear that each block  of  gives rise to exactly  blocks ofF #/ â/ 5" 5
c

the next partition , namelyc5"

F F/ â/ Y / â/ H" "5 5
 and 

Put another way, each node of the state tree has exactly two edges
emanating from it.

Natural Probabilities

We also need to consider the natural probability that the economy takes
an upturn at any given time. Let us denote this probability by . We:
should emphasize that the natural probability is estimated by economic,
not mathematical means.

The Price Functions

To simplify the notation a bit, let us denote the time-  price of the risk->5
free asset by  and the time-  price of the risky asset, which we mayF >5 5

think of as a stock for concreteness by .W5
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The CRR model specifies that the stock price is determined by a pair of
real numbers  and  satisfying? .

!  .  ?

If during the time interval  the economy goes up then the stockÒ> ß > Ó5 5"

price goes up from  to  and if the economy goes down then theW W ?5 5

stock price also goes down from  to . Note that  and  areW W . ? .5 5

constants, that is, they do not depend on time.

It follows that the time-  stock price function  is given by> W5 5

W Ð Ñ œ W ? .5 !
R ÐÒ Ó Ñ R ÐÒ Ó Ñ= Y H5 5= =

for any final state . In particular, the final price is= − ÖY ßH×X

W Ð Ñ œ W ? .X !
R Ð Ñ R Ð Ñ= Y H= =

The fact that  is -measurable is reflected in the fact that the valueW5 5c
W Ð Ñ Ò Ó5 5= = = depends only on the   of  and thus only on what hasprefix
happened up to time . Note also that the price of the stock at time > >5 5

depends only on the  of 's and 's in the state up to that time,number Y H
and not on their order. This is a key feature of the CRR model that is not
possessed by discrete-time models in general (and is probably not very
realistic as well).

Note that the stock price functions also satisfy a recurrence relation

W Ð Ñ œ W ? .5 5"
I Ð Ñ "I Ð Ñ= 5 5= =

The price of the risk-free asset is, as always, given by the risk-free rate.
In the CRR model, we assume that this rate  is constant throughout the<
lifetime of the model. Thus, for all final states , the price of the risk-free=
asset at time  is>5

/<Ð> > Ñ5 !

(Of course, the units must match. For example, if  is an annual rate then<
the times  must be measured in year.)>5

Martingale Measures in the CRR model
Suppose that  is a martingale measure for a CRR model . TheoremC Œ
10 of Chapter 6 tells us how to compute the conditional probabilities that
are used to compute .C
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Consider a block

F œ Ö − ± Ò Ó œ ×$ = H = $3

of . The blocks of  that are contained in  arec c5 5" F$

F œ Ö − ± Ò Ó œ Y×$Y 3"= H = $

and

F œ Ö − ± Ò Ó œ H×$H 3"= H = $

Figure 2 shows the block  and its successors.F$

BδSk(on Bδ)

Sk+1(on BδU)
P(BδU|Bδ)

BδU

BδD Sk+1(on BδD)
P(BδD|Bδ)

=uSk(on Bδ)

=dSk(on Bδ)

Figure 2 – The block  and its successorsF$

Let us denote the conditional probabilities by

3 

3 
$ C $ $

$ C $ $

ßY Y

ßH H

œ ÐF ± F Ñ

œ ÐF ± F Ñ

The CRR model dictates that

W Ð F Ñ œ ?W Ð F Ñ

W Ð F Ñ œ .W Ð F Ñ
5" Y 5

5" H 5

on on 
on on 

$ $

$ $

or in discounted form (multiplying both sides by )/Ð5"Ñ< >?

W Ð F Ñ œ / ?W Ð F Ñ

W Ð F Ñ œ / .W Ð F Ñ

5" Y 5
< >

5" H 5
< >

on on 
on on 

$ $
?

$ $
?

Theorem 10 of Chapter 6 then gives

W Ð F Ñ œ / W Ð F ÑÒ?  . Ó5 5 ßY ßH
< >on on $ $ $ $

? 3 3

or

/ œ ?  .< >
ßY ßH

?
$ $3 3
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It follows that  and  are independent of  and we may write3 3 $$ $ßY ßH

1 3Y ßYœ $

Making the substitution and solving for  gives3Y

1Y

< >

œ
/  .

?  .

?

and

"  œ
?  /

?  .
1Y

< >?

Now, the ordered pair  is a strongly positive probabilityÐ ß "  Ñ1 1Y Y

distribution if and only if . In this case, the conditional!   "1Y

probabilities depend only on ,  and  and are unique. This implies that? . <
the martingale measure is unique and so the model is complete.

The condition  is equivalent to!   "1Y

!  /  .  ?  .< >?

or

.  /  ?< >?

Assuming that this is the case, the resulting unique martingale measure C
is given, for any  by= − ÖY ßH×X

 = 1 1C
= =Ð Ñ œ Ð"  ÑY

R Ð Ñ
Y

XR Ð ÑY Y

We now have a very nice theorem describing martingale measures in the
CRR model.

Theorem 1 The Cox-Ross-Rubinstein model is complete and free of
arbitrage if and only if

.  /  ?< >?

In this case, the unique martingale measure  on  is defined, for anyC Œ
= − ÖY ßH×X  by

 = 1 1C
= =Ð Ñ œ Ð"  ÑY

R Ð Ñ
Y

XR Ð ÑY Y
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where

1Y

< >

œ
/  .

?  .

?

Pricing in the Cox-Ross-Rubinstein Model
Let us assume that  is a complete CRR model with no arbitrage. ThenŒ
the replicating strategy procedure can be used to price alternatives. In
particular, if  is an alternative then there is a replicating\ œ ÐB ß B Ñ" #

trading strategy  for  and the price of  isF \ \

\ i F

X i F

X

=  =

= 1 1

Ð\Ñ œ Ð Ñ

œ / Ð Ð ÑÑ

œ / Ð\Ñ

œ / \Ð Ñ Ð Ñ

œ / \Ð Ñ Ð"  Ñ

!

<P
X

<P

<P

−

<P XR Ð Ñ

−
Y
R Ð Ñ

Y

C

C

= H

C

= H

= =

"
" Y Y

EXAMPLE 1 A certain stock is currently selling for . The feeling is"!!
that for each month over the next  months, the stock's price will rise by#
"! "! "% or fall by %. Assuming a risk-free rate of %, calculate the price
of a European call with the various strike prices
O œ "!#ßO œ "!"ßO œ "!!ßO œ **ßO œ *) O œ *( and .
Solution The parameters of the CRR model are

> œ !ß > œ ß > œ
" "

"# '

> œ ß P œ ß X œ #
" "

"# '
? œ "Þ!"ß . œ !Þ**

! " #

?

and

1Y

< > Ð!Þ!"ÑÐ"Î"#Ñ

œ œ ¸ !Þ&%
/  . /  !Þ**

?  . !Þ!#

?

Figure 3 shows the state tree, with stock prices and local conditional
probabilities.
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100

101

99

102.01

99.99

99.99

98.01

0.54

0.46

0.54

0.54

0.46

0.46

Figure 3 – State tree with conditional probabilities

We quickly check that this model is complete and arbitrage free by
checking that , which is true since. Ÿ / Ÿ ?< >?

/ œ / ¸ "Þ!!!)$$')"< > Ð!Þ!"ÑÐ"Î"#Ñ?

The payoff for the call is

\Ð Ñ œ ÖW Ð Ñ  Oß !×

œ
ÖW ? Oß !× œ YY
ÖW ?. Oß !× œ YH HY

ÖW . Oß !× œ HH

œ
Ö"!#Þ!"  Oß !× œ YY
Ö**Þ**  Oß !× œ YH HY

= =

=
=

=

=
=

max
max
max
max
max
max
m

#

!
#

!

!
#

Ú
ÛÜÚ
ÛÜ

 or 

 or 
axÖ*)Þ!"  Oß !× œ HH=

so the discounted expected payoff is

W œ / \ÐYYÑ 

\ÐYHÑ Ð"  Ñ 

\ÐHYÑ Ð"  Ñ 

\ÐHHÑÐ"  Ñ

!
< > #

Y

Y Y

Y Y

Y
#

? Š

‹

1

1 1

1 1

1

Substituting the values and noting that  gives\ÐYHÑ œ \ÐHYÑ
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W œ / Ö"!#Þ!"  Oß !× 

# † Ö**Þ**  Oß !× Ð"  Ñ 

Ö*)Þ!"  Oß !×Ð"  Ñ

!
Ð!Þ!"ÑÐ"Î'Ñ #

Y

Y Y

Y
#

Š
‹

max

max

max

1

1 1

1

Thus, some calculation gives

O W
"!# !Þ!!#*
"!" !Þ#*&*
"!! !Þ&)))
** "Þ$(#&
*) #Þ"'$#
*( $Þ"'"&

!

Another Look at the CRR Model via Random Walks
Let us take a somewhat different perspective on the CRR model. During
each time interval  of length  the stock price takes either anÒ> ß > Ó >3 3" ?
up-tick or a down-tick. Thus, the individual price movements can be
modeled as a sequence  of independent Bernoulli random variablesI3

where





ÐI œ ?Ñ œ :

ÐI œ .Ñ œ "  :
3

3

that is

I œ
? :
. ; œ "  :3 œ with probability 

with probability 

where  is the natural probability of an up-tick in the economy. Hence:
the stock price at the final time  is given by>X

W œ W I âI œ W / œ W /X ! " X ! !
ÐI Ñ L!log 3 X

where

L œ œ ÐI Ñ
W

W
X 3

X

! 3œ"

X

log logŒ  "
is the  of the stock price. Next, we define thelogarithmic growth
constants  and  by. 5
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. X
? ?

5
? ?

œ Ð I Ñ œ Ð: ?  ; .Ñ
" "

> >

œ Ð I Ñ œ :;Ð ?  .Ñ
" "

> >

log log log

Var log log log

3

# #
3

The significance of these constants will be discussed later, but in any
case we can write (since )5 Á !

log
log

I œ >  > œ >  >\
I  >

>
3 3

3
.? 5 ? .? 5 ?

.?

5 ?
È È– —È

where the random variables

\ œ
I  >

>
3

3log .?

5 ?È
are independent Bernoulli random variables with

\ œ
:

;3

;
:;

:
:;

 È
È

with probability 
with probability 

Hence

XÐ\ Ñ œ !

Ð\ Ñ œ "
3

3Var

We now have

L œ ÐI Ñ

œ Ò >  >\ Ó

œ P  > \

X 3

3œ"

X

3œ"

X

3

3œ"

X

3

"
" È

È "

log

.? 5 ?

. 5 ?

that is

L œ P > \X 3

3œ"

X

. 5 ?È "
This formula expresses the logarithmic growth as a sum of a
deterministic part  which is a constant multiple of the lifetime  of.P P
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the model and a random part

5 ?È "> \
3œ"

X

3

which is a constant multiple of a sum of independent Bernoulli random
variables. Each term  describes the movement of the stock price\3

during a subinterval of the model. Finally, the stock price itself is given
by

W œ W / œ W /X ! !
L

P > \
X 3œ"

X

3. 5 ?È !

The constant  is called the  and the constant  is called the. 5drift
volatility of the stock price. These terms will be explained in a moment.

Note that the expression

= œ œ L
" W "

X W X
logŒ X

!
X

is referred to as the  by some authors. The reason is that thereturn
equation above is equivalent to

W œ W /X !
=X

which shows that the stock price grows at a continuously compounded
rate of . Thus,  is the .= = rate of return

Random Walks

The sequence  that describes the behavior of the stock price overÐ\ Ñ3
each subinterval is an example of a . To understand randomrandom walk
walks, imagine a flea who is constrained to jump along a straight line,
say the -axis. The flea starts at the point  at time  and duringB B œ ! > œ !
each interval of time (of length ) jumps randomly a distance  to the?> +
right or a distance  to the left. Assume that the probability of a jump to,
the right is . This is shown in Figure 4.:

0

Figure 4 - The random walk of a flea
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Each variable  in the sequence  describes a single step in the flea's\ Ð\ Ñ3 3

perambulations and the partial sums

Y œ \5 3

3œ"

5"
represent the position of the flea at time .>5

Figure 5 shows a couple of computer-generated random walks with
: œ ; œ "Î# + œ , and . (These are called .) Assymmetric random walks
is customary in order to see the path clearly, each position of the flea is
marked by a point in the plane, where the -axis represents time and theB
C-axis represents position.

Figure 5 - Random walks

There are many formulations of the random walk scenario, involving for
example, drunks who are walking randomly along a street or gambler's
playing a game of chance, or the price of a stock. Indeed, entire books
have been written on the subject of random walks.

There are also many questions that can be asked about the behavior of a
random walk. For example, given integers  and  for which + , +  !  ,
is it necessarily true that the flea must eventually arrive at one of these
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“boundary points” or can the flea oscillate back and forth forever, never
reaching either boundary?

Since the answer to the previous question is that the flea must eventually
reach one of the boundary points, we can ask about the probability of
reaching each of the boundary points and the expected time to reach a
boundary. We might also inquire about whether the flea must return to
the origin at some time in the future.

In any case, this is not a book on random walks, so let us return to the
situation at hand, namely

L œ P > \X 3

3œ"

X

. 5 ?È "
The deterministic term  is a constant multiple of the lifetime of the.P
model and accounts for a steady change (drift) in the stock's price (if
. Á !). It is akin to the behavior of the risk-free asset with interest rate
.. The random term is a constant multiple of the position of the random
walk.

Let us summarize what we have learned about the CRR model. In a later
chapter, we will use this model to derive the famous Black-Scholes
option pricing formula.

Theorem 2 For a CRR model with probability of up-tick equal to  and:
down-tick equal to , lifetime  and time increments  the; œ "  : P >?
stock price is given by

W œ W /X !

P > \. 5 ?È !
3œ"

X

3

where the  and  are defined bydrift volatility

.
?

5
?

œ Ð: ?  ; .Ñ
"

>

œ :;Ð ?  .Ñ
"

>

log log

log log# #È
The random walk portion of the stock movement is given by
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] œ \X 3

3œ"

X"
where the random variables  are independent and\3

\ œ
:

;3

;
:;

:
:;

 È
È

with probability 
with probability 

Exercises
1. A certain stock is currently selling for . The feeling is that for each&!

month over the next  months, the stock's price will rise by % or# "!
fall by 10%. Assuming a risk-free rate of %, calculate the price of a"
European call with strike price  given byO

 a)  b)  c)  &# &" &!
 d)  e)  f) %* %) %(
 What about a European put with the same strike price and expiration

date?
2. A certain stock is currently selling for . The feeling is that for each"!

month over the next  months, the stock's price will rise by % or# &
fall by 10%. Assuming a risk-free rate of %, calculate the price of a"
European call with strike price  given byO

 a)  b)  c)   d) "" "! * )
 What about a European put with the same strike price and expiration

date?
3. Referring to Example 1 explain why there is a  in all statesloss

except the first, that is, there is a loss with probability .$Î%
4. Show that  has size . : use mathematical induction orÖY ßH× #5 5 Hint

the fundamental counting principle (also known as the multiplication
rule).

5. Show that

\ œ
:

;3

;
:;

:
:;

 È
È

with probability 
with probability 

6. Show that the two values of a Bernoulli random variable  with\
: œ Ð\Ñ „ Ð\Ñ"

#  are given by .X ÈVar
7. An alternative  that depends on the final state only through the\

number of 's in the state is called a .Y path-independent alternative
In particular, if  is the partition of  whose blocks are the subsetsc H
K 5 Y5  of  that contain exactly  'sH
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K œ Ö − ± R Ð Ñ œ 5×5 Y= H =

then  is path-independent if and only if there are constants  for\ \5

which

\ œ \Ð − K Ñ5 5any =

for .5 œ !ßá ß X
 a) Show that

k k Œ K œ
X

5
5

 b) Show that the probability (under the martingale measure) of any
= − K5  is

1 1 1 1Y
R Ð Ñ

Y Y
XR Ð Ñ 5 X5

Y
Y Y= =Ð"  Ñ œ Ð"  Ñ

 c) Show that the probability of  isK5

 1 1CÐK Ñ œ Ð"  Ñ
X

5
5 YY

5 X5Œ 
 d) Show that if  is a path-independent alternative then\

\ 1 1Ð\Ñ œ / \ Ð"  Ñ
X

5
<P 5 X5

5œ!

X

5 YY" Œ 
8. Write a computer program or an Excel spreadsheet to compute the

price of a European call under the CRR model where .X œ #
9. Verify that

X: 3

: 3
#

Ð I Ñ œ : ?  ; .

Ð I Ñ œ :;Ð ?  .Ñ

log log log
Var log log log

10. In a general discrete-time model, knowledge of the state of the
economy at a given time implies knowledge of the asset prices at that
time. Why? Is the converse necessarily true? What if at time  we>5
know all previous states and asset prices? Support your answer.
What happens in the case of the CRR model?
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Chapter 8

Probability III: Continuous Probability
In this chapter we discuss some concepts of the general theory of
probability, without restriction to finite or discrete sample spaces. This is
in preparation for our discussion of the Black-Scholes derivative pricing
model.

Since this is not a book in probability and since a detailed discussion of
probability would take us too far from our main goals, we will need to be
a bit “sketchy” in our discussion. For a more complete treatment of
probability, please consult the references at the end of the book.

General Probability Spaces
Let us recall the definition of a finite probability space.

Definition A  is a pair  consisting of afinite probability space Ð ß ÑH 
finite nonempty set , called the  and a real-valuedH sample space
function  defined on the set of all subsets of , called a  H probability
measure on . Furthermore, the function  must satisfy the followingH 
properties.
1) (Range) For all E © H

! Ÿ ÐEÑ Ÿ "

2) (Probability of  )H

 HÐ Ñ œ "

3) (Additivity property) If  and  are  thenE F disjoint

  ÐE  FÑ œ ÐEÑ  ÐFÑ

In this context, subsets of  are called . H events

We have also seen that the additivity property of  is equivalent to the
finite additivity property, that is, if

E ßE ßá ßE" # 8

is a finite sequence of  events thenpairwise disjoint

  ÐE âE Ñ œ ÐE Ñ â ÐE Ñ" 8 " 8
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Now, we would like to generalize this definition to sample spaces of
arbitrary size, while preserving as much of the spirit of the current
definition as possible. In particular, it is essential that  not only satisfy
the three properties above but also that  be , that is, if countably additive

E ßE ßá" #

is a  of  events thensequence pairwise disjoint

  . "
3œ" 3œ"

_ _

3 3E œ ÐE Ñ

where the infinite sum on the right must converge. We must fit as much
of the previous definition as possible into the context of countable
additivity.

It turns out that this can be done by making only one compromise,
namely, not all subsets of the sample space can be considered events. Put
another way, it is not in general possible to define a countably additive
set function on all subsets of an infinite set . We would very much likeH
to give an example to support this statement, but such examples involve
more mathematical machinery than is appropriate for this book, so we
must ask the reader to take this point on faith.

Given this fact, we need to consider what types of collections of subsets
of the sample space can act as the collection of events of a probability
measure. This leads us to the concept of a -algebra.5

Definition Let  be a nonempty set. A nonempty collection  of subsetsH D
of  is a  ifH 5-algebra
1) H D−
2)  is closed under  unions, that is, if  is aD countable E ßE ßá" #

sequence of elements of  thenD

.
3œ"

_

3E − D

3)  is closed under complements, that is, if  then AD D DE − − Þ-

Note that . Also, DeMorgan's laws show that  is closedg œ −H D D-

under countable intersections. (We leave details as an exercise.)
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Definition A  is a pair  consisting of ameasurable space Ð ß ÑH D
nonempty set  and a -algebra  of subsets of .H 5 D H

Now we can define a general probability space.

Definition A  is a triple  consisting of aprobability space Ð ß ß ÑH D 
nonempty set , called the , a -algebra  of subsets of H 5 D Hsample space
whose elements are called  and a real-valued function  definedevents 
on  called a . The function  must satisfy theD probability measure
following properties.
1) (Range) For all E © H

! Ÿ ÐEÑ Ÿ "

2) (Probability of  )H

 HÐ Ñ œ "

3) (Countable additivity property)

E ßE ßá" #

is a sequence of  events thenpairwise disjoint

  . "
3œ" 3œ"

_ _

3 3E œ ÐE Ñ

A very useful property of probability measures is given in the following
theorem. A  of events is a sequence of eventsdecreasing sequence
satisfying

E ª E ª â" #

Similarly, an  of events is a sequence of eventsincreasing sequence
satisfying

E © E © â" #

Theorem 1 monotonically continuous Probability measures are  in the
following sense.
1) If  is a decreasing sequence of events thenE ª E ª â" #  

lim
3Ä_

3 3

3œ"

_

 ÐE Ñ œ E ,
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2) If  is an sequence of events thenE © E © â" # increasing 

lim
3Ä_

3 3

3œ"

_

 ÐE Ñ œ E .
Proof. For part 1), suppose that . Then the sequenceE ª E ª â" #

ÐE Ñ3  of probabilities is a nonincreasing sequence of real numbers
bounded below by . It is a theorem of elementary real analysis that such!
a sequence must converge, so the limit in question does exist.

For convenience, let . We first consider the eventsE œ E+
3œ"

_

3

E Ï E ßE Ï E ßá" # # $

These events are disjoint, since if  then  and so 3  4 3  " Ÿ 4 E © E4 3"

hence if

+ − ÐE Ï E Ñ  ÐE Ï E Ñ3 3" 4 4"

then  would be in  but not in the superset . Also, each of these+ E E4 3"

events is disjoint from the intersection . Thus,  is the  unionE E" disjoint

E œ ÐE Ï E Ñ  E" 3 3"

3œ"

_ .
For if  then if  then we can let  be the first index for+ − E + Â E 3  ""

which . It follows that .+ Â E + − E Ï E3" 3 3"
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Now we can apply countable additivity to get

  

 

 

 

 

a b a b .
" a b

" a b
 . a b

a b

E œ ÐE Ï E Ñ  E

œ ÐE Ï E Ñ  E

œ ÐE Ï E Ñ  E

œ ÐE Ï E Ñ  E

œ ÐE Ï E Ñ  E

œ

" 3 3"

3œ"

_

3œ"

_

3 3"

8Ä_
3œ"

8

3 3"

8Ä_
3œ"

8

3 3"

8Ä_
" 8"

lim

lim

lim

lim

lim
8Ä_

" 8"

" 8"
8Ä_

Ò ÐE Ñ  ÐE ÑÓ  E

œ ÐE Ñ  ÐE Ñ  E

  

  

a b
a b

Thus

lim lim
8Ä_ 8Ä_

8 8"  ÐE Ñ œ ÐE Ñ œ ÐEÑ

as desired. We leave proof of part 2) as an exercise.

Probability Measures on ‘
The most important sample space from the point of view of both theory
and applications is the real line . In fact, the only nonfinite probability‘
space that we will need to consider in this book is .‘

The most important -algebra on  is the so-called .5 ‘ UBorel -algebra 5
A formal definition of the Borel -algebra is simple to state, if not quite5
as simple to comprehend.

Definition Borel -algebra The   on  is the smallest -algebra on 5 U ‘ 5 ‘
that contains all open intervals  where . Ð+ß ,Ñ +ß , − ‘

Let us examine this definition. First, we must show that there  such a -is 5
algebra. After all, just because we use a phrase such as “the smallest set
...” doesn't mean that there is such a set.

The usual procedure for showing that there is a  set with somesmallest
property is to show two things: first, that there is at least one set with the
desired property and second that the intersection of any collection of sets
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with the desired property also has the desired property. It follows that the
intersection of all sets with the desired property exists and is the smallest
set with that property.

For the case at hand, it is easy to see that there is at least one -algebra5
on  containing the open intervals: it is the collection of all subsets of .‘ ‘
Second, it is not hard to see that the intersection of -algebras is also a -5 5
algebra. We leave the details to the reader. Hence, the Borel -algebra5
does indeed exist and is the intersection of all -algebras that contain the5
open intervals.

Note that while we have established the existence of the Borel -algebra,5
its description as the intersection of all -algebras that contain the open5
intervals is not very practical. From a practical perspective, it is more
useful to consider some examples of elements of , that is, of .U Borel sets

Theorem 2
1) All open, closed and half-open intervals are Borel sets.
2) All rays , ,  and  are Borel sets.Ð_ß ,Ó Ð_ß ,Ñ Ò+ß_Ñ Ð+ß_Ñ
3) All open sets and all closed sets are Borel sets.
Proof. We sketch the proof. For 1), to see that the half-open interval
Ð+ß ,Ó is a Borel set observe that

Ð+ß ,Ó œ Ð+ß ,  Ñ
"

8
,
8œ"

_

and so  is the countable union of open intervals and is therefore inÐ+ß ,Ó
U.

For 3) let us briefly discuss open sets in . A subset  of  is  if for‘ ‘E open
every  there is an open interval  for whichB − E Ð+ß ,Ñ

B − Ð+ß ,Ñ © E

A set is  if its complement is open. Let  be an open set in .closed E ‘
Then  is the union of all open intervals contained within . In fact,  isE E E
the union of all maximal open intervals in . An open interval  in  isE M E
maximal in  if no open interval containing  as a proper subset is alsoE M
in .E

Now, we claim that any two maximal open intervals are disjoint and that
there are at most a countable number of maximal open intervals. As to
the former, any two distinct maximal open intervals contained in  mustE
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be disjoint, for otherwise their union would be a strictly larger open
interval contained in . As a result, each maximal open interval in E E
contains a  rational number and since there are only a countabledistinct
number of rational numbers, there are at most a countable number of
maximal open intervals containing .E

Hence,  is the union of at most a countable number of open intervalsE
and is therefore a Borel set.

Finally, since all open sets are Borel sets and since a closed set is the
complement of an open set, all closed sets are also Borel sets.

At first, the more one thinks about Borel sets, the more one comes to feel
that all subsets of  are Borel sets. However, this is not the case.‘
However, it is true that most “nonpathological” sets are Borel sets. Put
another way, it is very hard (but not impossible) to describe a set that is
not a Borel set. We must reluctantly ask the reader to take it on faith that
there exist subsets of  that are not Borel sets.‘

From now on, the phrase “let  be a probability measure on ” will carry ‘
with it the tacit understanding that the -algebra involved is the Borel -5 5
algebra.

Theorem 3 A probability measure on  is uniquely determined by its‘
values on the rays . That is, if  and  are probability measuresÐ_ß >Ó  
on  and‘

 ÐÐ_ß >ÓÑ œ ÐÐ_ß >ÓÑ

for all  then .> − œ‘  
Proof. Since for = Ÿ >

Ð=ß >Ó œ Ð_ß >Ó Ï Ð_ß =Ó

we deduce that

 ÐÐ=ß >ÓÑ œ ÐÐ=ß >ÓÑ

Since any open interval  is the union of an increasing sequence ofÐ=ß >Ñ
half-open intervals

Ð=ß >Ñ œ Ð=ß >  Ó
"

8
.
8œ"

_
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the monotone continuity of probability measures implies that

   ÐÐ=ß >ÑÑ œ Ð=ß >  Ó œ Ð=ß >  Ó œ ÐÐ=ß >ÑÑ
" "

8 8
lim lim
8Ä_ 8Ä_

Œ  Œ 
Thus,  and  agree on open intervals. Now, it is possible to show that if 
  and  agree on open intervals then they agree on all Borel sets.
However, we will omit this part of the proof, since it requires additional
concepts (such as monotone classes) that would lead us too far from our
goals.

Distribution Functions
For finite (or discrete) probability spaces, probability measures are most
easily described via their mass functions

0Ð Ñ œ ÐÖ ×Ñ=  =

However, the concept of a mass function is not general enough to
describe all possible probability measures on the real line, let alone on
arbitrary sample spaces. For this, we need the concept of a probability
distribution function.

Definition probability distribution function A ( )  is the function
J À Ä‘ ‘ with the following properties.
1)  is nondecreasing, that is,J

=  > Ê JÐ=Ñ Ÿ JÐ>Ñ

(Note that some authors use the term  for this property.)increasing
3)  is right-continuous, that is, the right-hand limit exists everywhereJ

and

lim
>Ä+

J Ð>Ñ œ JÐ+Ñ

4)  satisfiesJ

lim

lim
>Ä_

>Ä_

JÐ>Ñ œ !

JÐ>Ñ œ "

Figure 1 shows the graph of a probability distribution function. Note that
the function is nondecreasing, right continuous (but not continuous) and
has the appropriate limits at .„_
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1

Figure 1 - A probability distribution function

The extreme importance of probability distribution functions is given in
the next theorem. Basically, it implies that there is a one-to-one
correspondence between probability measures on  and probability‘
distribution functions. Thus, knowing one uniquely determines the other
and so the two concepts are essentially equivalent. We will omit the
proof of this theorem.

Theorem 4
1) Let  be a probability measure on . The function  ‘ ‘ ‘J À Ä

defined by

J Ð>Ñ œ ÐÐ_ß >ÓÑ 

is a probability distribution function, called the distribution
function of .

2) Let  be a distribution function. Then there is a uniqueJ À Ä‘ ‘
probability measure  on  whose distribution function is , that ‘J J
is

J ÐÐ_ß >ÓÑ œ JÐ>Ñ

Suppose we begin with a probability measure , take its distribution
function  and then form the probability measure  of . AccordingJ J 
to the definitions,

 ÐÐ_ß >ÓÑ œ J Ð>Ñ œ ÐÐ_ß >ÓÑ

and so  and  agree on the rays . We have seen that this implies  Ð_ß >Ó
that . Consequently, the correspondence œ

 Ä J

from probability measures to distribution functions and the
correspondence
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J Ä J

from distribution functions to probability measures are one-to-one and
are inverses of one another. This establishes the fact that the notions of
probability measure and distribution function are equivalent.

EXAMPLE 1 Perhaps the simplest probability measures on  are those‘
that convey the notion of “equal likelihood” or “uniform probability”
over an interval  of . For example, consider the closed unit intervalÒ+ß ,Ó ‘
Ò!ß "Ó.

How do we convey the notion that each outcome in  is somehowÒ!ß "Ó
equally likely? In the finite case, say of a sample space , weÖ"ßá ß 8×
simply assign the same probability  to each elementary event ."Î8 Ö5×
However, unlike the finite case, it is not possible to assign a positive real
number  to each elementary event  for all  because there: Ö<× < − Ò!ß "Ó
are an infinite number of elementary events and so the sum of their
probabilities is not finite, let alone equal to . We must accept the fact"
that the probability of each elementary event is  and turn to more!
complex Borel sets.

First we observe that if  is a Borel set then that portion of  that liesF F
outside of the interval  should not contribute anything to theÒ!ß "Ó
probability. In other words,

ÐF  Ò!ß "Ó Ñ œ !-

As for the rest of , that is, the set , the notion of uniformF F  Ò!ß "Ó
probability suggests that  should be proportional to theÐF  Ò!ß "ÓÑ
“length” of , whatever that means.F  Ò!ß "Ó

For intervals, the concept of length is well defined

lenÐÒ+ß ,ÓÑ œ ,  +

Thus, it seems reasonable to define

 ÐÐ_ß >ÓÑ œ ÐÒ!ß >ÓÑ œ
! >  !
> ! Ÿ > Ÿ "
" >  "

Ú
ÛÜ

This is the  . Figure 2 shows theuniform distribution function on Ò!ß "Ó
graph of this distribution function.
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1

1
(1,1)

Figure 2 – The uniform distribution function for Ò!ß "Ó

EXAMPLE 2 The most important of all probability distributions is the
normal distribution, whose distribution function is

9
15

. 5ß
# _

>
Ð>Ñ œ / .B

"

#È ( ÐB Ñ#

# #
.

5

This is quite a complicated function, but there is not much we can do
about it. Nature does not always make our lives easy with simple
formulas. Figure 3 shows the normal distribution function.

0.5

Figure 3 – The normal distribution function

The parameters  and  are called the mean (expected value) and. 5#

variance, respectively. The  is the normalstandard normal distribution
distribution with mean  and variance  and thus has distribution! "
function

9
1

!ß"
_

>
Ð>Ñ œ / .B

"

#È ( B#

#

The reason that the normal distribution is considered the most important
goes beyond the fact that it appears often in applications. Actually, it is
the  why it appears so often in applications that is the key. Thisreason
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reason is expressed mathematically by the most famous theorem in
probability—the . We will discuss this theorem latercentral limit theorem
in the chapter.

Note that the uniform and the normal distribution functions are both
continuous not just right-continuous. Put another way, their graphs have
no jumps. A jump in the distribution function indicates a point at which
the probability is not . Let us illustrate with an example.!

EXAMPLE 3 A public drug manufacturing company has a new drug
that is awaiting FDA approval. If the drug is approved, the company
estimates that its stock will end trading that day somewhere in the range
Ò"!ß "&Ó, with each price being equally likely. However, if the drug is not
approved, the stock price will likely be . Let us assume that the&
probability of approval is .!Þ(&

We could model this situation with the sample space H œ Ö&×  Ò"!ß "&Ó
but it may be simpler to use the sample space  and simply assign a ‘ !
probability outside of the set . The distribution function for thisH
probability measure is

JÐ>Ñ œ

! >  &
!Þ#& & Ÿ >  "!

!Þ#&  !Þ(& "! Ÿ >  "&

" >   "&

ÚÝÝÛÝÝÜ ˆ ‰>"!
&

The graph is shown in Figure 4. Note the jump at .> œ &

0.25

5 10 15

1

Figure 4 – A distribution function with a jump

Density Functions
The distribution function of a probability measure is extremely
important, but it is not always the simplest way to describe a probability
measure. Many probability measures that occur in applications have the
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property that their distribution functions are differentiable and that the
derivatives are very “well-behavied”.

By well-behavied, we mean that the derivative of the distribution
function  can be integrated and the integral is again equal to . (ThereJ J
are functions that have derivatives that are integrable, but the integral of
the derivative is not the original function.) This can be expressed in
symbols as follows

JÐ>Ñ œ J ÐBÑ .B(
_

>
w

The function  is called a  for . Let us have0ÐBÑ œ J ÐBÑw density function 
a formal definition.

Definition A probability measure  or equivalently a distribution
function  is  if it has a , whichJ absolutely continuous density function
is a nonnegative function  for which0À Ä‘ ‘

J Ð>Ñ œ 0ÐBÑ .B (
_

>

From this definition, it follows that

ÐÐ+ß ,ÓÑ œ 0ÐBÑ .B(
+

,

In other words, the probability of the interval  is the Ð+ß ,Ó area under
graph of the density function from  to .+ ,

Note that a density function must be nonnegative and satisfy

(
_

_

0ÐBÑ .B œ "

that is, the area under the entire graph of  over the entire -axis must be0 B
equal to . In fact, any nonnegative function  with this property is a" 0
density function for some probability measure.

Probability measures that have density functions, that is, absolutely
continuous probability measures, are special. For example, their
distribution functions are continuous (not just right-continuous). Thus,
there are no points that have positive probability, as happened in a
previous example.
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EXAMPLE 4 The uniform distribution function on  is absolutelyÒ!ß "Ó
continuous, with density function

0ÐBÑ œ
! B Â Ò!ß "Ó
" B − Ò!ß "Óœ

The graph of  is shown in Figure 5.0

1

1

Figure 5 – The uniform density function on Ò!ß "Ó

EXAMPLE 5 The normal distribution is absolutely continuous, with
density function

0ÐBÑ œ /
"

#È 15#

ÐB Ñ#

# #
.

5

The density of the standard normal distribution is

0ÐBÑ œ /
"

#È 1

B#

#

This is pictured in Figure 6. The graph of the normal density function is
the oft-spoken-of .bell shaped curve

1/ (2π)1/2

Figure 6 – The standard normal density function
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Types of Probability Measures on ‘
Probability measures on  can be classified into the following groups:‘
finite, discrete, absolutely continuous, singular continuous and mixed.
Let us take a quick look at each of these groups.

Finite Probability Measures

A probability measure  on  is  if there are a finite number of real ‘ finite
numbers  for whichÖ< ßá ß < ×" 8

"
3œ"

8

3Ð< Ñ œ "

Put another way, all of the probability is concentrated in a finite number
of points. A finite probability measure can be described by its
probability mass function, which is  everywhere except at the points!
of positive probability

0ÐBÑ œ
Ð< Ñ B œ <

!œ 3 3

otherwise

This is also referred to as the  of . The distributiondensity function 
function of a finite probability measure has a finite number of jumps and
is constant everywhere else. Figure 7 illustrates.

1

Figure 7 – The distribution function of a finite probability measure

Discrete Probability Measures

A probability measure  on  is  if there are a countable number ‘ discrete
of real numbers  for whichÖ< ß < ßá×" #

"
3œ"

_

3Ð< Ñ œ "

Put another way, all of the probability is concentrated in a countable
number of points. (By  we mean finite or countably infinite.countable
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Hence, a finite probability measure is a discrete probability measure.) As
with finite probability measures, a general discrete probability measure
can be described by a probability mass function, although the term
density function is more common in this case

0ÐBÑ œ
Ð< Ñ B œ <

!œ 3 3

otherwise

The distribution function of a discrete probability measure can actually
be quite complex. While it is true that the function has only a countable
number of jumps, these jumps can occur at sets, such as the the set of all
rational numbers, that are spread “uniformly” throughout the real line.

Absolutely Continuous Probability Measures

As we have seen, a probability measure  on  is  ‘ absolutely continuous
if it has a density function, that is, a nonnegative function  for0À Ä‘ ‘
which

J Ð>Ñ œ 0ÐBÑ .B (
_

>

Singular Continuous Probability Measures

Singular continuous probability measures are definitely pathological in
nature. A  (or just ) probability measure issingular continuous singular
one whose distribution function is differentiable (and hence continuous)
but whose derivative is  on “almost” the entire real line (all except a set!
of probability ). Fortunately, we do not need to deal with such!
pathological probability measures in this book.

Mixed Probability Measures

It is a fact that any probability measure  on  can be decomposed (in a ‘
unique way) into a linear combination of a discrete (including finite), an
absolutely continuous and a singular continuous probability measure, in
symbols

 !  !  ! œ  . . + + = =

where the coefficients ,  and  are nonnegative and satisfy! ! !. + =

! ! !. + =  œ ". Thus, all probability measures are either discrete,
absolutely continuous, singular continuous or a (convex) combination of
these types.
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Random Variables
Just as the issue of events is more complex in the nonfinite case, so is the
notion of random variable. In particular, not all functions are random
variables.

Definition Let  be a measurable space. A function  isÐ ß Ñ \À ÄH D H ‘
D D-  if the inverse image of every open interval is in , inmeasurable
symbols

\ ÐÐ+ß ,ÑÑ −" D

A  measurable function on  is also called a .Ð ß ÑH D random variable

This definition says that a random variable  has the property that the\
set  must be “measurable.”\ ÐÐ+ß ,ÑÑ"

Here are a few facts about random variables, whose proofs we omit.

Theorem 5
1) The sum and product of random variables are random variables, as

is any constant multiple of a random variable.
2) The composition of random variables is a random variable.
3) Continuous and piecewise continuous functions are random

variables.

The Distribution Function of a Random Variable

If  is an arbitrary sample space and  is a random variable onÐ ß ß Ñ \H D 
Ð ß Ñ \ JH D  then  defines a distribution function  and a corresponding\

probability measure  on  by ‘\

J Ð>Ñ œ ÐÐ_ß >ÓÑ œ Ð\ Ÿ >Ñ\ \ 

This can be proved by showing that the function  is aJÐ>Ñ œ Ð\ Ÿ >Ñ
distribution function. If  is finite, discrete or absolutely continuous\

then we say that the  is ,  or random variable finite discrete absolutely
continuous, respectively. Absolutely continuous random variables are
often simply called .continuous random variables

The -Algebra Generated by a Random Variable5

If  is a random variable then the inverse image of any\À Ð ß Ñ ÄH D ‘
Borel set is in . However, it is not required that all elements of  areD D
inverse images of . Those elements of  that are inverse images form\ D
another -algebra that is a 5 sub -algebra of .5 D
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Definition -algebra generated by The  a random variable5
\À Ð ß Ñ Ä Ð\ÑH D ‘ 5 5 is the -algebra  whose elements are the inverse
images of the  of the Borel sets in , that issubsets ‘

5 UÐ\Ñ œ Ö\ − F× ± F −e f
The -algebra  has a unique property, namely, it is the smallest -5 5 5Ð\Ñ
algebra of  under which  is measurable. In loose terms, it is just whatH \
is needed and no more to make  measurable. The following theorem is\
little more than the definition of measurability.

Theorem 6 Let  be a function and let  be a -algebra on .\À ÄH ‘ D 5 H
Then  is -measurable if and only if  contains .\ Ð\ÑH D 5

Independence of Random Variables

Here is the definition of independence of arbitrary random variables.

Definition independent Two random variables  and  on  are  if\ ] ‘

  Ð\ Ÿ >ß ] Ÿ =Ñ œ Ð\ Ÿ >Ñ Ð] Ÿ =Ñ

for all . More generally, a collection  of random=ß > − \ ßá ß\‘ " 8

variables is  ifindependent

 Ð\ Ÿ > ßá ß\ Ÿ > Ñ œ Ð\ Ÿ > Ñ" " 8 8 3 3

3œ"

8$
This definition expresses formally the feeling that if random variables are
independent then the value of one random variable does not effect the
value of another.

Expectation and Variance of a Random Variable

Recall that for a random variable  on a finite probability space \ Ð ß ÑH 
with , the expected value (or mean) is defined byH = =œ Ö ßá ß ×" 8

X =  =Ð\Ñ œ \Ð Ñ Ð Ñ"
3œ"

8

3 3

If  is a function then the expected value of the random variable1À Ä‘ ‘
1Ð\Ñ is
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X =  =Ð1Ð\ÑÑ œ 1Ð\Ð ÑÑ Ð Ñ"
3œ"

8

3 3

Also, the variance is defined by

VarÐ\Ñ œ ÐÐ\  Ñ ÑX . #

Let us now extend these concepts to absolutely continuous random
variables.

Definition Let  be an absolutely continuous random variable, with\
density function . The  or  of  is the improper0 \expected value mean
integral

XÐ\Ñ œ B0ÐBÑ .B(
_

_

which exists provided that

( k k
_

_

B 0ÐBÑ .B  _

The  of  isvariance \

VarÐ\Ñ œ ÐÐ\  Ñ ÑX . #

and the  is the positive square root of the variancestandard deviation

SDÐ\Ñ œ Ð\ÑÈVar

Also, if  is a measurable function then the random variable1À Ä‘ ‘
1Ð\Ñ has expected value

XÐ1Ð\ÑÑ œ 1ÐBÑ0ÐBÑ .B(
_

_

provided that

( k k
_

_

1ÐBÑ 0ÐBÑ .B  _

Here are some basic properties of expectation and variance.

Theorem 7
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1) The expected value operator is linear, that is,

X X XÐ+\  ,] Ñ œ + Ð\Ñ  , Ð] Ñ

2) If  are  random variables on  then\ ßá ß\" 8 independent ‘

X XÐ\ â\ Ñ œ Ð\ Ñ" 8 3

3œ"

8$
3) VarÐ\Ñ œ Ð\ Ñ  œ Ð\ Ñ  Ð\ÑX . X X# # # #

4) For any real number +

Var VarÐ+\Ñ œ + Ð\Ñ#

and

Var VarÐ\  +Ñ œ Ð\Ñ

5) If  are  random variables on  then\ ßá ß\" 8 independent ‘

Var VarÐ\ â\ Ñ œ Ð\ Ñ" 8 3

3œ"

8"
The Normal Distribution
Let us take another look at the normal distribution, whose density
function is

R ÐBÑ œ /
"

#
. 5ß

#

È 15

ÐB Ñ#

# #
.

5

We mentioned that the parameters  and  are the mean and variance,. 5#

respectively. To calculate the mean, we need only a bit of first-year
calculus. The definition is

X
15

œ B/ .B
"

#È (
# _

_
ÐB Ñ#

# #
.

5

Writing  and splitting the integral givesB œ ÐB  Ñ . .

X .
15 15

.
œ ÐB  Ñ/ .B  / .B

"

# #È È( (
# #_ _

_ _
 ÐB Ñ ÐB Ñ# #

# ## #
. .

5 5

The second integral is just  times the integral of  and since this. R. 5ß

integral is , we just get . As to the first integral, the substituting" .
C œ B  . gives
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(
_

_
C/ .C

C#

# #5

But the integrand  is an odd function, from which it follows thatC/
C#

# #5

the integral from  to  must be . (We leave elaboration of this as_ _ !
an exercise.) Hence, .X . .œ !  œ

Computation of the variance of the normal distribution requires the
beautiful but nontrivial integral formula

( È
_

_
# C / .C œ #

C#

# 1

From here, the rest is straightforward, especially using the formula

VarÐ\Ñ œ Ð\ Ñ  Ð\ÑX X# #

The upshot is that . We leave the details as an exercise.VarÐR Ñ œ. 5ß
#5

Suppose that  is a normal random variable with mean  and variancea .. 5ß

5#. Consider the random variable

^ œ
a .

5
. 5ß

In view of the properties of expectation and variance,

X X a . X a .
5 5

Ð^Ñ œ Ð  Ñ œ Ð Ð Ñ  Ñ œ !
" "

. 5 . 5ß ß

and

Var Var VarÐ^Ñ œ Ð  Ñ œ Ð Ñ œ "
" "

5 5
a . a

# #ß ß. 5 . 5

To compute the distribution of  we have^

 
a .

5
 a 5 .

15

Ð^ Ÿ >Ñ œ Ð Ÿ >Ñ


œ Ð Ÿ >  Ñ

œ / .B
"

#

. 5

. 5

5 .

ß

ß

# _

>
È ( ÐB Ñ#

# #
.

5

The substitution  givesC œ ÐB  ÑÎ. 5
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
1

Ð^ Ÿ >Ñ œ / .B
"

#È (
_

>
C#

#

and so  is a standard normal random variable. The process of^ œ a!ß"

going from  to  is called .\ ^ standardization

Theorem 8 If  is a normal random variable with mean  anda .. 5ß

variance  then5#

a
a .

5
!ß"

ß
œ

. 5

is a standard normal random variable. Similarly, if  is a standarda!ß"

normal random variable then

a 5a .7 5ß !ß"œ 

is a normal random variable with mean  and variance . . 5#

A distribution related to the normal distribution that we will have use for
is the  distribution. If a random variable  has the propertylognormal \
that its logarithm  is normally distributed, then the random variablelog\
\ \ is said to have a . (Note that  is lognormal iflognormal distribution
its logarithm is normal,  if it is the logarithm of a normal randomnot
variable. In other words, lognormal means “log normal” notis
“log normal”.)of

Proof of the following is left as an exercise.

Theorem 9 If  is lognormally distributed, say  is normal\ ] œ \log
with mean  and variance  then+ ,#

X XÐ\Ñ œ Ð/ Ñ œ /

Ð\Ñ œ Ð/ Ñ œ / Ð/  "Ñ

] + ,

] #+, ,

"
#

#

# #

Var Var

Convergence in Distribution
You may be familiar with the notion of pointwise convergence of a
sequence of functions. In any case, here is the definition.

Definition Let  be a sequence of functions from  to  and let f beÐ0 Ñ8 ‘ ‘
another such function. Then f   to  if for eachÐ Ñ 08 converges pointwise
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real number , the sequence of real numbers  converges to theB Ð0 ÐBÑÑ8

real number .0ÐBÑ

If you are familiar with convergence of ordinary sequences of real
numbers, then you are essentially familiar with pointwise convergence of
functions. There is very little new here.

Now consider a sequence  of random variables. Of course, theseÐ\ Ñ8
random variables are functions, albeit special kinds of functions. Let \
be another random variable. It turns out that there are several useful ways
in which the notion of  of the sequence  to  can beconvergence Ð\ Ñ \8

defined (only one of which is pointwise convergence). However, we are
interested in one particular form of convergence. Here is the definition.

Definition Let  be a sequence of random variables, where we allowÐ\ Ñ8
the possibility that each random variable may be defined on a different
probability space . Let  be a random variable on a probabilityÐ ß Ñ \H 8 8

space . Then   to , writtenÐ ß Ñ Ð\ Ñ \H  8 converges in distribution

\ \8 Ò
dist

if the distribution functions  converge pointwise to the distributionÐJ Ñ\8

function  at all points where  is continuous. Thus, if  isJ J J\ \ \

continuous at  then we must have=

lim
8Ä_

\ \J Ð=Ñ œ J Ð=Ñ8

that is

lim
8Ä_

8 8 Ð\ Ÿ =Ñ œ Ð\ Ÿ =Ñ

Convergence in distribution is also called .weak convergence

We need the following results about weak convergence.

Theorem 10 Let  be a sequence of random variables where  isÐ\ Ñ \8 8

defined on . Let  be a random variable defined on .Ð ß Ñ \ Ð ß ÑH  H 8 8

1) We have  if and only if\ \8 Ò
dist

X X 8Ð1Ð\ ÑÑ Ä Ð1Ð\ÑÑ8
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for all  continuous functions . In particular,bounded 1À Ä‘ ‘

X X 8
Ð\ Ñ Ä Ð\Ñ8

2) For all continuous functions 0À Ä‘ ‘

0Ð\ Ñ 0Ð\Ñ8 Ò
dist

Proof. We will omit the proof of part 1). As to part 2), let  be0
continuous. Then for any bounded continuous function  the composition1
1 ‰ 0  is also bounded and continuous. Hence, by part 1),

X X X XÐ1Ð0Ð\ ÑÑÑ œ ÐÐ1 ‰ 0ÑÐ\ ÑÑ Ä ÐÐ1 ‰ 0ÑÐ\ÑÑ œ Ð1Ð0Ð\ÑÑÑ8 8

Part 1) then implies that

0Ð\ Ñ 0Ð\Ñ8 Ò
dist

as desired.

Theorem 11  Let  be a sequence of random variables withÐ\ Ñ8

\ \8 Ò
dist

where  is a random variable whose distribution function is continuous.\
If  and  are sequences of real numbers for whichÐ+ Ñ Ð, Ñ8 8

+ Ä +ß , Ä ,8 8

then

+ \  , +\  ,8 8 8 Ò
dist

In particular, if  and X  where  is a standard normal+ Á ! 8 !ß" !ß"Òa a
dist

random variable then

+ \  ,8 8 8 +ß,Òa
dist

where  is a normal random variable with mean  and variance .a+ß,
#+ ,

Proof. The following proof requires the concepts of uniform
convergence. The reader may omit this proof if these concepts are not
familiar. Let  and  denote the distribution functions of  and ,J J \ \\ \ 88

respectively.

The first step is to show that for any  there is an interval= − ‘
Ð=  ß =  Ñ J J- -  in which  converges to  . For this, we use\ \8 uniformly
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the fact that distribution functions are . So let  benondecreasing %  !
given and write

J Ð>Ñ  J Ð>Ñ Ÿ J Ð=  Ñ  J Ð=  Ñ

œ ÒJ Ð=  Ñ  J Ð=  ÑÓ  ÒJ Ð=  Ñ  J Ð=  ÑÓ
\ \ \ \

\ \ \ \

8 8

8

! !

! ! ! !

Since  converges pointwise to  we can choose an  for whichJ J\ \ "8 !

J Ð=  Ñ  J Ð=  Ñ  Î#\ " \ "8
! ! %

Moreover, because  is continuous at  we can choose  such thatJ =\ #!

J Ð=  Ñ  J Ð=  Ñ  Î#\ # \ #! ! %

Hence, taking  to be the minimum of the two previous choices gives!

J Ð>Ñ  J Ð>Ñ \ \8
%

for all . In the other direction, we also have> − Ð=  ß =  Ñ! !

J Ð>Ñ  J Ð>Ñ   J Ð=  Ñ  J Ð=  Ñ

œ ÒJ Ð=  Ñ  J Ð=  ÑÓ  ÒJ Ð=  Ñ  J Ð=  ÑÓ
\ \ \ \

\ \ \ \

8 8

8

" "

" " " "

It is clear that we can choose a  for which""

J Ð=  Ñ  J Ð=  Ñ   Î#\ " \ "8 " " %

and  such that"#

J Ð=  Ñ  J Ð=  Ñ   Î#\ # \ #" " %

Hence, taking  to be the minimum of  and  gives" " "" #

  J Ð>Ñ  J Ð>Ñ% \ \8

for all . Finally, taking  to be the smallest of  and > − Ð=  ß =  Ñ! ! - ! "
we get

  J Ð>Ñ  J Ð>Ñ % %\ \8

for all . This proves the uniform convergence of > − Ð=  ß =  Ñ J- - \8

to  on .J Ð=  ß =  Ñ\ - -

Now we can address the issue at hand. Let  and choose a  such> − ‘ -
that  converges uniformly to  in the intervalJ J\ \8

M œ Ð  ß  Ñ
>  , >  ,

+ +
- -
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For any , there is an  such that%  ! R  !"

8  R Ê J Ð=Ñ  J Ð=Ñ 
#

" \ \k k8

%

for all . Also, there is an  such that= − M R  !#

8  R Ê − M
>  ,

+
#

8

8

It follows that

8  ÖR ßR × Ê J Ð Ñ  J Ð Ñ 
>  , >  ,

+ + #
max " # \ \

8 8

8 8
º º8

%

Also, the continuity of  implies that there is an  for whichJ R  !\ $

8  R Ê J Ð Ñ  J Ð Ñ 
>  , >  ,

+ + #
$ \ \

8

8
º º %

Hence,

8  ÖR ßR ßR × Ê J Ð Ñ  J Ð Ñ   œ
>  , >  ,

+ + # #
max " # $ \ \

8

8
º º8

% %
%

But

J Ð Ñ œ Ð\ Ÿ Ñ œ Ð+ \  , Ÿ >Ñ
>  , >  ,

+ +
\ 8 8 8 8

8 8

8 8
8  

and

J Ð Ñ œ Ð\ Ÿ Ñ œ Ð+\  , Ÿ >Ñ
>  , >  ,

+ +
\  

and so we have shown that

 Ð+ \  , Ÿ >Ñ Ä Ð+\  , Ÿ >Ñ8 8 8

that is

+ \  , +\  ,8 8 8 Ò
dist

The second part follows from the fact that .+  , œa a!ß" +ß,

The Central Limit Theorem
The Central Limit Theorem is the most famous theorem in probability
and with good cause. Actually, there are several versions of the Central
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Limit Theorem. We will state the most commonly seen version first and
later discuss a different version that we will use in the next chapter.

Speaking intuitively, if  is a random variable then it is the distribution\
function of  that describes its probabilistic “behavior” or\
“characteristics”. More precisely, if  and  are random variables with\ ]
the same distribution function then

 Ð+ Ÿ \ Ÿ ,Ñ œ Ð+ Ÿ ] Ÿ ,Ñ

for all real numbers  and . (Note that the   and  need not+ , \ ]functions
be the same. In fact, they need not even be defined on the same sample
space.) When two or more random variables have the same distribution
function, they are said to be .identically distributed

Informally speaking, the Central Limit Theorem says that if  is theW8

sum of  random variables that are8

1) mutually independent
2) identically distributed

and if we standardize  then the resulting random variable  has veryW W8 8
‡

special characteristics. In particular, the distribution function of W8
‡

approximates the standard normal distribution regardless of the type of
distribution of the original random variables. Moreover, the
approximation gets better and better as  gets larger and larger.8

Thus, the process of summing and standardizing “washes out” the
original characteristics of the individual random variables and replaces
them with the characteristics of the standard normal random variable.

Here is a formal statement of the Central Limit Theorem.

Theorem 12 (Central Limit Theorem) Let  be a sequence of\ ß\ ßá" #

independent, identically distributed random variables with finite mean .
and finite variance . Let5#  !

W œ \8 3

3œ"

8"
be the sum of the first  random variables. Thus,  and8 ÐWÑ œ 8X .
VarÐWÑ œ 85#.  Consider the standardized random variable
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W œ œ
W  ÐW Ñ W  8

ÐW Ñ 88
‡ 8 8

8

X .

5È ÈVar

The sequence of standardized random variables  converges inW8
‡

distribution to a standard normal random variable , that isa!ß"

lim
8Ä_

W !ß"J Ð>Ñ œ Ð>Ñ
8
‡ 9

Put another way

TÐW  >Ñ ¸ / .B
"

#
8
‡ 

_

>

È (
1

B#

#

where the error in the approximation tends to  as  tends to .! 8 _

As you might expect, the proof of the Central Limit Theorem is a bit
involved and we will not go into it in this book. However, the reader is
advised to pause a while to consider the somewhat surprising nature of
this theorem. It certainly accounts for the extreme importance of the
normal distribution.

As mentioned earlier, we need a different version of the Central Limit
Theorem for our work on the Black-Scholes formula. On the one hand,
we need only to consider Bernoulli random variables with mean  and!
variance , which are among the simplest of useful random variables. On"
the other hand, we need to make things more complex because our
Bernoulli random variables are not identically distributed!

In particular, we want to consider not just a simple sequence of random
variables but a  of random variablestriangular array

F
F F
F F F
ã ã ã ä

"ß"

#ß" #ß#

$ß" $ß# $ß$

For each row, the random variables are independent, identically
distributed Bernoulli random variables with mean  and variance . In! "
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particular,  is a Bernoulli random variable withF8ß3





ÐF œ Ñ œ :
;

: ;

ÐF œ Ñ œ ;
:

: ;

8ß3 8
8

8 8

8ß3 8
8

8 8

È
È

where . However, random variables from  rows need; œ "  :8 8 different
not be independent, nor are they necessarily identically distributed. In
fact, . Thisthey need not even be defined on the same probability space
will turn out to be very important to us later on.

We must also assume that the probabilities  are “well-behavied" in the:8
sense that they do not get close to  or . In fact, we will assume that! "
there is a  satisfying  for which: !  :  "

: Ä :8

It follows also that

; Ä ; œ "  : − Ð!ß "Ñ8

Now, there is a version of the Central Limit Theorem that addresses just
this situation (even when the random variables are not Bernoulli random
variables).

We begin by “standardizing” each random variable in such as way that
its mean is  and that the  of the variances in each row is . Since! "sum

XÐF Ñ œ !

ÐF Ñ œ "
8ß3

8ß3Var

the new array is simply

F

F Ð: Ñ F Ð: Ñ

F Ð: Ñ F Ð: Ñ F Ð: Ñ

ã ã ã ä

"ß"

# ##ß" # #ß# #

$ $ $$ß" $ $ß" $ $ß" $

1 1

1 1 1
È È
È È È

Now, the version of the Central Limit Theorem that covers this situation
says that under a certain condition the distribution of the row sums
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W œ F

W œ ÐF  F Ñ
"

#

W œ ÐF  F F Ñ
"

$

" "ß"

# #ß" #ß#

$ $ß" $ß# $ß$

È
È

converges pointwise to the distribution  of a standard normal random9!ß"

variable.

The certain condition is a bit messy. Intuitively speaking, it says that
each term in the sum  is “negligible” with respect to the entire sum. InW8

the case of the Bernoulli random variables in which we are interested, the
possible values of the standardized Bernoulli random variables F Ð: Ñ8ß3

‡
8

that appear in the sums  areW8

; :

8: ; 8: ;
8 8

8 8 8 8È È and 

Now, as  tends to , we have8 _

; ;

: ; :;
Ä

: ;

: ; :;
Ä

8

8 8

8

8 8

È È
È È

and since  these limits are finite. Hence, the possible values:ß ;  !
satisfy

;

8: ;
Ä !

:

8: ;
Ä !

8

8 8

8

8 8

È
È

This turns out to be a sufficient condition for the Central Limit Theorem
to apply. We have finally arrived at the theorem that we need.

Theorem 13 Consider a triangular array of random variables

F
F F
F F F
ã ã ã ä

"ß"

#ß" #ß#

$ß" $ß# $ß$
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where for each row  and , the  are independent,8 " Ÿ 3 Ÿ 8 F8ß3

identically distributed Bernoulli random variables with





ÐF œ Ñ œ :
;

: ;

ÐF œ Ñ œ ;
:

: ;

8ß3 8
8

8 8

8ß3 8
8

8 8

È
È

However, the random variables in different rows need not be
independent or identically distributed, or even defined on the same
probability space. Suppose also that . Then the random: Ä : − Ð!ß "Ñ8

variables

W œ F
"

8
8 8ß

œ"

8

È "
3

3

converge in distribution to a standard normal random variable. More
specifically, if  is a standard normal random variable on any^
probability space then  converges in distribution to .W ^8

As mentioned earlier, we will use this theorem in the next chapter to help
derive the Black-Scholes option pricing formula.

Exercises
1. Let  be a  probability density function with the0Ð>Ñ piecewise linear

following properties:  for  and , . Sketch0Ð>Ñ œ ! > Ÿ ! >   # 0Ð"Ñ œ +
the graph and find . Sketch the corresponding distribution function.+

2. Let  have distribution function  given by\ J

JÐ>Ñ œ > ! Ÿ > Ÿ #

! >  !

" >  #

Ú
ÛÜ

"
#

Let . Find] œ \#

 a) Ð! Ÿ \ Ÿ "Ñ
 b) ( " Ÿ \ Ÿ $Ñ
 c) Ð] Ÿ \Ñ
 d) ( \  ] Ÿ Ñ$%
 e) the distribution function of the random variable È\
3. Let  and let  be the uniform probability measureH = = = œ Ö ß ß ×" # $

on , that is, (  for . Consider the followingH  =3Ñ œ "Î$ 3 œ "ß #ß $
random variables
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\Ð Ñ œ "ß\Ð Ñ œ #ß\Ð Ñ œ $

] Ð Ñ œ #ß ] Ð Ñ œ $ß ] Ð Ñ œ "

^Ð Ñ œ $ß ^Ð Ñ œ "ß ^Ð Ñ œ #

= = =

= = =

= = =

" # $

" # $

" # $

Are these functions the same? What about their distribution
functions?

4. Show that a -algebra is closed under countable intersections.5
5. Show that all rays are Borel sets.
6. Show that all closed intervals are Borel sets.
7. Prove that

   ÐE  FÑ  ÐE  FÑ œ ÐEÑ  ÐFÑ

for any events  and . This is called the E F Principle of Inclusion-
Exclusion (for two events).

8. Prove that a probability measure is , that is,subadditive

  ÐE  FÑ Ÿ ÐEÑ  ÐFÑ

for any events  and .E F
9. Find and graph the uniform distribution function on the interval

Ò+ß ,Ó.
10. Show that the most general Bernoulli random variable  with meanF

! " and variance  is given by





ÐF œ Ñ œ :
;

:;

ÐF œ Ñ œ ;
:

:;

È
È

where .; œ "  :
11. Fill in the details to show that the normal distribution has mean ..
12. Compute the variance of the normal distribution using the integral

formula in the text.
13. Prove that if  is an sequence of events, eachE © E © â" # increasing 

contained in the next event, then  exists andlim
3Ä_

3ÐE Ñ

lim
3Ä_

3 3

3œ"

_

 ÐE Ñ œ E .
14. Let  be a random variable on . Prove that the function\ ‘

0Ð>Ñ œ Ð\ Ÿ >Ñ



235

is a probability distribution function. : make heavy use ofHint
monotone continuity.

15. For a probability measure  with distribution function  verify that J
 a) ÐÐ+ß ,ÓÑ œ JÐ,Ñ  JÐ+Ñ
 b) ÐÐ+ß ,ÑÑ œ JÐ,Ñ  JÐ+Ñ
 c) ÐÒ+ß ,ÑÑ œ JÐ,Ñ  JÐ+Ñ
 d) ÐÒ+ß ,ÓÑ œ JÐ,Ñ  JÐ+Ñ
 where the negative sign means limit from below.
16. If  show that for any real numbers  and \ \ + Á ! ,8 Ò

dist

+\  , +\  ,8 Ò
dist
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Chapter 9

The Black-Scholes Option Pricing Formula
The models that we have been studying are  models,discrete-time
because changes take place only at discrete points in time. On the other
hand, in  models, changes can take place (at leastcontinuous-time
theoretically) at any real time during the life of the model.

The most famous continuous-time derivative pricing model culminates in
the Black-Scholes option pricing formula, which gives the price of a
European put or call based on five quantities

ì  The  of the underlying stock, which is known.initial price
ì  The strike price of the option, which is known.
ì  The time to expiration, which is known.
ì  The risk-free rate during the lifetime of the option, which is assumed

to be constant and can only be estimated.
ì  The so-called  of the stock price, a constant that provides avolatility

measure of the fluctuation in the stock's price and thus is a measure
of the risk involved in the stock. This quantity can only be estimated
as well.

Our goal in this chapter is to describe this continuous-time model and to
derive the Black-Scholes option pricing formula. We will derive the
continuous-time model as a limiting case of the Cox-Ross-Rubinstein
model.

Stock Prices and Brownian Motion
In 1827, just 35 years after the New York Stock Exchange was founded,
an English botanist named Robert Brown studied the motion of small
pollen grains immersed in a liquid medium. Brown wrote that pollen
grains exhibited a “continuous swarming motion” when viewed under
the microscope.

The first scientific explanation of this phenomenon was given by Albert
Einstein in 1905. He showed that this swarming motion, which is now
called Brownian motion, could be explained as the consequence of the
continual bombardment of the particle by the molecules of the liquid. A
formal mathematical description of Brownian motion and its properties
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was first given by the great mathematician Norbert Wiener beginning in
1918.

It is especially interesting for us to note that the phenomenon now known
as Brownian motion was used in 1900 by the French mathematician
Bachelier to model the movement of stock prices, for his doctoral
dissertation!

Brownian Motion

Let us look a little more closely at Brownian motion. We have defined a
finite stochastic process as a sequence  of random variables\ ßá ß\" R

defined on a sample space . A  on anH continuous stochastic process
interval  of the real line is a collection  of randomM © Ö\ ± > − M×‘ >

variables on  indexed by a variable  that ranges over the interval . ForH > M
us, we will generally take  to be the interval . Often the variable M Ò!ß_Ñ >
represents time and so the value of the process at time  is the value of>
the random variable .\>

Definition Brownian A continuous stochastic process  is a Ö[ ± >   !×>

motion process Wiener process volatility or a  with   if5
1) W! œ !
2)  is normally distributed with mean  and variance [ ! >>

#5
3) The process  has or , theÖ[ × =  >> stationary increments, that is, f

increment  depends only on the value .[ [ >  = [ [> = > = Thus 
(which has the same distribution as ) is normally[ [ œ [>= ! >=

distributed with mean  and variance .! Ð>  =Ñ5#

4) The process  has for anyÖ[ ×> independent increments, that is, 
times , the nonoverlapping increments> Ÿ > Ÿ â Ÿ >" # 8

[ [ ß[ [ ßá ß[ [> > > > > ># " $ # 8 8"

are  random variables. independent

Brownian Motion with Drift

It is also possible to define Brownian motion with drift. This is a
stochastic process of the form  where  is a constantÖ > [ ± >   !×. .>

and  is Brownian motion. Here is a formal definition.Ö[ ×>

Definition Brownian A continuous stochastic process  is a Ö[ ± >   !×>

motion process Wiener process volatility drift or a  with   and   if5 .
1) W! œ !
2)  is normally distributed with mean  and variance [ > >>

#. 5
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3)  has stationary increments. Thus,  is normallyÖ[ × [ [> > =

distributed with mean  and variance .. 5Ð>  =Ñ Ð>  =Ñ#

4)  has stationary and independent increments.Ö[ ×>

Sample Paths

Figure 1 shows three simulated  for Brownian motion withsample paths
drift  and volatility  on the interval . The straight. 5œ !Þ!) œ !Þ#! Ò!ß "Ó
line shows the drift.

Figure 1–Brownian motion sample paths: . 5œ !Þ!)ß œ !Þ#!

More specifically, if we fix an outcome  then we can define a= H−
function

> Ä [ Ð Ñ> =

The graph of this function is called a .sample path

Figure 2 shows a discrete sample path for a Brownian motion process
that is the same as the previous one except that the volatility is only
5 œ !Þ!&. As you can see, volatility is aptly named.
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Figure 2–Brownian motion with small volatility

Brownian motion is one of the most important types of random processes
and has a great many applications. This should not be a surprise in view
of the Central Limit Theorem, which tells us that the normal distribution
is so important. (Brownian motion is a kind of “traveling normal
distribution.”)

In any case, Brownian motion has some very special properties. For
instance, the sample paths are always continuous functions. In other
words, the sample paths do not have any jumps. On the other hand, these
paths are also essentially nowhere differentiable, that is, it is not possible
to define a tangent line at any place on the curve. Thus, a sample path
has no jumps but is nonetheless very jerky, constantly changing direction
abruptly. (The previous figures do not do justice to this statement
because they are are not true sample paths.)

Standard Brownian Motion

A Brownian motion process  with  and  is calledÖ[ ± >   !× œ ! œ "> . 5
standard Brownian motion. In this case  has mean  and variance .[ ! >>

If  is Brownian motion with drift  and variance  then weÖ[ ± >   !×>
#. 5

can write
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[ œ >  ^> >. 5

where  is standard Brownian motion.Ö^ ± >   !×>

Geometric Brownian Motion and Stock Prices

How does Brownian motion with drift relate to stock prices? One
possibility is to think of a stock's price as a “particle” that is subject to
constant bombardment by “smaller particles” in the form of stock trades,
or other local events. As further support of this viewpoint, we can note
that the normal distribution seems like a reasonable choice to model a
stock's price if we think of the vicissitudes of that price as being the
result of a large number of more-or-less independent (and similarly
distributed) factors.

However, there are some obvious problems with the Brownian motion
viewpoint for stock prices themselves. First, a Brownian motion process
can be negative whereas stock prices are never negative. Second, in a
Brownian motion process, the increments

[ [> =

have distributions that depend only on . Thus, if a stock's price were>  =
to behave as a Brownian motion process  then the expected change[>

X .Ð[ [ Ñ Ð>  =Ñ> =  in the stock's price over a period of time would be ,
which does not depend on the initial price . This is not very realistic.[=

For instance, imagine a length of time  for which the change in price>  =
is $ .  A $10 expected price change might be quite.Ð>  =Ñ œ "!
reasonable if the stock is initially priced at $  but not nearly as[ œ "!!=

reasonable if the stock is initially priced at $ .[ œ "=

To resolve these issues, it would seem to make more sense to model the
rate of return of the stock price as a Brownian motion process, for this
quantity seems more reasonably independent of the initial price. For
example, to say that a stock's rate of return is 10% is to say that the price
may grow from $100 to $110 or from $1 to $1.10.

This can be handled by assuming that the stock price  at time  is givenW >>

by

W œ W /> !
L>

where  is the initial price and  is a Brownian motion process. TheW L! >

exponent  represents a  rate of return of theL> continuously compounded
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stock price over the period of time . Note also that , which weÒ!ß >Ó L>

will refer to as the logarithmic growth of the stock price, satisfies

L œ
W

W
>

>

!
logŒ 

Definition A stochastic process of the form  whereÖ/ ± >   !×[>

Ö[ ± >   !×>  is a Brownian motion process is called a geometric
Brownian motion process.

Figure 3 shows a simulated sample path from a geometric Brownian
motion process with the same drift ( ) as before but with an. œ !Þ!)
unnaturally large volatility in order to demonstrate the exponential nature
of the growth.

Figure 3–Geometric Brownian motion

If we assume that  follows a Brownian motion process with drift thenL>

we can write

L œ œ >  [
W

W
> >

>

!
logŒ  . 5

where  is standard Brownian motion. Therefore,  has a normalÖ[ × L> >

distribution with
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X .

5

ÐL Ñ œ >

ÐL Ñ œ >

>

>
#Var

If a random variable  has the property that its logarithm  is\ \log
normally distributed, then the random variable  is said to have a\
lognormal distribution. (Note that  is lognormal if its logarithm is\
normal,  if it is the logarithm of a normal random variable. In othernot
words, lognormal means “log normal” not “log normal”.)is of

Accordingly,  is lognormally distributed. Figure 4 shows a typicalW ÎW> !

lognormal density function.

1

0.75

0.50

0.25

1 2 3 4
Figure 4–A lognormal density function

According to Theorem 9 of Chapter 8

XÐW Ñ œ W /

ÐW Ñ œ ÐW / Ñ Ð/  "Ñ

> !
Ð  Ñ>

> !
Ð  Ñ> # >

. 5

. 5 5

"
#

#

"
#

# #

Var

This value of  is quite interesting, for it tells us that the expectedXÐW Ñ>
stock price depends not only on the drift  of  but also on the. L>

volatility . This should not necessarily be surprising from a5
mathematical point of view, for there is no law that the mean of a
function of a random variable should be a function  of the mean ofonly
the random variable.

A Different Approach to the Model

As mentioned earlier, our approach to the continuous-time model is as a
limiting case of the Cox-Ross-Rubinstein model. We will endeavor to be
as mathematically rigorous as possible in this approach, which is often



243

handled rather informally. However, we should take a few minutes to
discuss what is generally considered to be a more rigorous approach to
the model. Since a formal discussion would require considerably more
mathematical machinery than we have at hand, we will proceed
informally.

Let us begin by taking a closer look at the notion of  on arate of return
stock price. This term has more than one meaning. We have already
considered the continuously compounded rate of return  over the timeL>

period , which satisfies the equationÒ!ß >Ó

W œ W /> !
L>

The  of the stock price over a short period of timesimple rate of return
Ò>ß >  >Ó?  is given by

?W W  W

W W
œ

> >

> >

> >?

In the limit as , the ?> Ä ! simple rate of return can be thought of as a
rate of return over an infinitesimal time period . This is more.>
appropriately called the  of the stockinstantaneous percentage return
price and is denoted by

.W

W
>

>

Now, the most common approach to the continuous-time model of stock
prices assumes that the instantaneous percentage return is a Brownian
motion process, more specifically

.W

W
œ .>  .[

>

>
! ! >. 5

where  is standard Brownian motion and  and  areÖ[ ± >   !×> ! !. 5
constants. This equation must remain somewhat vague for us, because
the meaning of the differentials  and  are rather involved..W .[> >

However, we can say that the stochastic process

œ .W

W
>   !

>

>
¹

(whatever that really is) is assumed to follow a Brownian motion process
with drift  and volatility .. 5! !
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The previous formula can be written

.W œ W .>  W .[> > > >. 5! !

This is an instance of what is known as a stochastic differential equation,
whose formal solution requires some rather sophisticated mathematical
machinery known as . Fortunately, our plan ofstochastic calculus
approach, through the CRR model, will lead us to an expression for the
stock price itself without having to solve this differential equation.

The CRR Model in the Limit: Brownian Motion
At the end of Chapter 7 we took a look at the Cox-Ross-Rubinstein
model from the point of view of the logarithmic growth in the stock
price. Let us recall the pertinent results.

Recap of the CRR Model

We specify the model times

> œ !  >  â  >  > œ >! " X" X

Thus, the lifetime of the model is . Note that we are using  insteadÒ!ß >Ó >
of  because we want to think of  as a variable. Each of the  intervalsP > X
has equal length

>  > œ > œ
>

X
5" 5 ?

During each subinterval, the stock price may rise by a factor of  or fall?
by a factor of . The sample space for this model is the state space.

HX
Xœ ÖY ßH×

of all sequences of 's and 's of length .Y H X

We will be dealing with two different probabilities on : the naturalHX

probability and the martingale measure. Let us denote the natural
probability of an up-tick by  (the Greek letter ) and the martingale/ nu
measure probability of an up-tick by  (dropping the subscript  used in1 Y
earlier chapters). Before dealing with these probabilities and their
interactions, however, it may help clarify the exposition to take another
look at the logarithmic price growth using an arbitrary probability  for:
the up-tick in the stock price. (Then  is the probability of a; œ "  :
down-tick.)
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Let  give the stock price movement over the interval , that is,I Ò> ß > Ó3 3 3"

for any final state  where  or  we set= Hœ / â/ − / œ Y H" X X 3

I Ð Ñ œ
? / œ Y >
. / œ H >3

3 3

3 3
= œ if  (up-tick at time )

if  (down-tick at time )

Hence the stock price at the final time  is given by>

W œ W I âI œ W / œ W /X ! " X ! !
ÐI Ñ L!log 3 X

where

L œ ÐI Ñ œ
W

W
X 3

3œ"

X
X

!

" Œ log log

is the logarithmic growth of the stock price. If the probability of an up-
tick in the stock is denoted by  then we define  and  by: . 5: :

. X
? ?

5
? ?

: : 3

:
# #

: 3

œ Ð I Ñ œ Ð: ?  ; .Ñ
" "

> >

œ Ð I Ñ œ :;Ð ?  .Ñ
" "

> >

log log log

Var log log log

Thus,  is the expected value and  is the variance of the logarithmic. 5: :
#

price change  .logI3 per unit of time

Some simple algebra gives

log
log

I œ >  > œ >  >\
I  >

>
3 : : : : :ß3

3 :

:

. ? 5 ? . ? 5 ?
. ?

5 ?
È È– —È

where

\ œ
I  >

>
:ß3

3 :

:

log . ?

5 ?È
After a bit more algebra, we see that

\ Ð Ñ œ
/ œ Y

/ œ H:ß3

;
:; 3

:
:; 3

=  È
È

if 
if 

It follows that
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L œ ÐI Ñ

œ Ò >  >\ Ó

œ >  > \

X 3

3œ"

X

3œ"

X

: : :ß3

: : :ß3

3œ"

X

"
" È

È "

log

. ? 5 ?

. 5 ?

Note that this formula

L œ >  > \X : : :ß3

3œ"

X

. 5 ?È "
is valid for any . The number  is called the  and the!  :  " .: drift
number  is called the  of the stock price. These quantities are5: volatility
with respect to the up-tick probability , as the subscript notation:
indicates. Note, however, that  itself does not depend on . It is just aL :X

function on the state space  and has a different expression in terms ofHX

each probability .: − Ð!ß "Ñ

More on the Probabilities

As mentioned,  is the probability of an up-tick in the stock price over a:
subinterval. Later, we will take  or  but we do not want to: œ : œ/ 1
make that restriction now.

The probability  defines a probability measure  on the state space :  H: X

for which

 =:
R Ð Ñ Ð ÑR Ð ÑÐ Ñ œ : ;Y Y= = =len

From the definition of  we get\:ß3

 

 

: :ß3 3

: :ß3 3

Ð\ œ Ñ œ Ð/ œ YÑ œ :
;

:;

Ð\ œ Ñ œ Ð/ œ HÑ œ ;
:

:;

È
È

and so the random variables  have this Bernoulli distribution under\:ß3

:.
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We can also compute expected values and variances with respect to this
probability measure

X: :ß3Ð\ Ñ œ :  ; œ
; :

:; :;È È !

and

Var: :ß3Ð\ Ñ œ "

(We leave verification of this as an exercise.)

The formula

L œ >  > \X : : :ß3

3œ"

X

. 5 ?È "
can now be seen as expressing the logarithmic growth  as the sum ofLX

two components: a   which is a constantdeterministic component .:>
times the time and thus grows at the fixed rate  just like a risk-free.:

asset and a random component

U œ > \: : :ß5 ?È "
3œ"

X

3

which is  times a sum of Bernoulli random variables. Since the5 ?:
È >

terms in the sum are independent, we also have

X

5

:

:

ÐU Ñ œ !

ÐU Ñ œ >

:

: :
#Var

Taking the Limit as ?> Ä !

In taking the limit as , or equivalently as  we want to beX Ä _ > Ä !?
careful to make it clear which quantities vary with . We also want toX
make it clear that some quantities depend on the lifetime , which we>
now think of as a variable. So let us change the notation as follows:

ì W L Let  denote the final stock price and  denote the logarithmic>ßX >ßX

growth. The initial stock price  does not depend on  so we do notW X!

need to change this notation.
ì ? . Let  and  denote the up-tick and down-tick factors for the stockX X

price.
ì : Let  denote the probability of an up-tick.X
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ì  Let  and  denote the drift and volatility.. 5: ßX : ßXX X

ì \ \ Let  denote the random variable .: ßX ß3 : ß3X X

With this notation at hand, the formula for  becomesL>

L œ >  > \>ßX : ßX : ßX : ßX ß3

3œ"

X

. 5 ?
X X X

È "
with deterministic part  and a random part.: ßXX >

U œ > \: : ßX : X ßX X XßX ß 3

3œ"

X

5 ?È "
for which

X

5

: :

: : :

X X

X X X

ÐU Ñ œ !

ÐU Ñ œ >

ßX

ßX ßX
#Var

We now want to apply the Central Limit Theorem to the random part. To
this end, consider the triangular array of Bernoulli random variables

\
\ \
\ \ \

ã ã ã ä

: ß"ß"

: ß#ß" : ß#ß#

: ß$ß" : ß$ß# : ß$ß$

"

# #

$ $ $

For each fixed , that is, for each row of the array, the random variablesX
are independent (by assumption of the CRR model) and satisfy





: : ßX ß3 X
X

X X

: : ßX ß3 X
X

X X

X X

X X

Ð\ œ Ñ œ :
"  :

: Ð"  : Ñ

Ð\ œ Ñ œ "  :
:

: Ð"  : Ñ

È
È

and so they are also identically distributed. Note, however, that  is\: ßX ß3X

a random variable on the probability space  and so for differentÐ ß ÑH X :X

values of  (that is, different rows of the array) the random variablesX
\: ßX ß3X  are defined on  probability spaces. This is precisely whydifferent
we need the Central Limit Theorem in the form of Theorem 13 of
Chapter 8, which applies provided that the probabilities  satisfy:X

Requirement 1:  for some : Ä : : − Ð!ß "ÑX
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Assuming that this requirement is met, we can conclude that the random
variables

] œ \ œ
" " "

X > >
: ßX : ßX ß3 : X ß :

3œ"

X

: ßX
X X X X

X
È È È" È "?> \ œ U

3œ"

X

ß 3 ßX
5

converge in distribution to a standard normal random variable, that is

U œ œ ^
U  ÐU Ñ U

ÐU Ñ >
:

: : : :

: : : ßX
X

X X X X

X X X

ßX
‡ ßX ßX ßX

ßX
>

X

5
ÒÈ ÈVar
dist

where  is any standard normal random variable on some probability^>

space. To be more specific, this means that for any real number =

lim
XÄ_

ßX
!ß" 9

5
:

:

: ßX
X

X

X

Ð  =Ñ œ Ð=Ñ
U

>È
where  is the standard normal distribution function. To emphasize the9!ß"

fact that the convergence involves the probability measures , we write:X

U

>
^

:

: ßX

:
X

X

XßX Ð Ñ
>

5
ÒÈ dist

We would now like to conclude that  itself converges in distributionL>ßX

to something. For this, let us recall Theorem 11 of Chapter 8, which says
that if

Requirement 2:  for real numbers  and . . 5 5 . 5: ßX : ßXX XÄ ß Ä Á !

then we have the following limit

L œ > >  >^
>

>ßX >. 5 Ò . 5
5

: ßX : ßX
: ßX

: ßX

Ð: Ñ

X X

X

X

X
> 

UÈ ÈÈ dist

As to the stock price itself, since  is a continuous function of W L>ßX >ßX

W œ W />ßX !
L>ßX

Theorem 10 of Chapter 8 tells us that as long as requirements 1 and 2 are
met we have

W W />ßX !
Ð Ñ > >^Ò

dist :X . 5È >



250

where  has a standard normal distribution. Setting^: ß>X

[ œ >^> >
È

gives

L L œ >  [>ßX > >
Ð: Ñ

Ò
dist X

. 5

and

W W œ W />ßX > !
Ð: Ñ > [Ò

dist X
>. 5

where

XÐ[ Ñ œ !

Ð[ Ñ œ >
>

>Var

Brownian and Geometric Brownian Motion

Although we have derived these formulas for a fixed total lifetime , as>
mentioned earlier, we want to think of  as a variable. Unfortunately, our>
derivation does not directly expose the very important relationship
between the different random variables  as  ranges over all[ >>

nonnegative real numbers.

We will not go into this issue formally. However, we can make a few
informal observations. First, it should be intuitively clear that our model
is “translation invariant” or “stationary” in the sense that we obtain
essentially the same model over the interval  as over the intervalÒ=ß >Ó
Ò!ß >  =Ó. Second, because we assume that the changes in each
subinterval are independent, we should be able to piece together models
from disjoint contiguous intervals into a model for one large interval.
Thus, it should not come as a surprise that as  varies, the stochastic>
process

Ö[ ± >   !×>

is actually a standard Brownian motion process. Hence,

ÖL ± >   !×>

is a Brownian motion process with mean  and variance , that is,. 5> >#

with drift  and volatility . Finally, the stock price process itself. 5
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ÖW ± >   !×>

is a geometric Brownian motion process with this drift and volatility.

We can now summarize our knowledge of the behavior of the stock price
in the limiting case of a CRR model.

Theorem 1 Let  be the final stock price for the CRR model withW>ßX

probability  of an up-tick, lifetime  and  equal-sized subintervals: Ò!ß >Ó XX

of length . Assume that?>
1)  for some : Ä : : − Ð!ß "ÑX

2)  for real numbers  and . . 5 5 . 5: ßX : ßXX XÄ ß Ä Á !
Let

L œ
W

W
>ßX

>ßX

!
logŒ 

be the logarithmic price growth. Then

L L œ >  [>ßX > >
Ð: Ñ

Ò
dist X

. 5

and

W W œ W />ßX > !
Ð: Ñ > [Ò

dist X
>. 5

where

Ö[ ± >   !×>

is a standard Brownian motion process. Hence, the logarithmic growth

ÖL ± >   !×>

is a Brownian motion process with mean , variance , drift  and. 5 .> >#

volatility . The stock price process itself5

ÖW ± >   !×>

is a geometric Brownian motion process with drift  and volatility .. 5
Note also that the stock price growth  is lognormally distributedW ÎW> !

with

XÐW Ñ œ W /

ÐW Ñ œ ÐW / Ñ Ð/  "Ñ

> !
Ð  Ñ>

> !
Ð  Ñ> # >

. 5

. 5 5

"
#

#

"
#

# #

Var
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The Natural CRR Model

We have done what we can for the general CRR model. Now it is time to
consider how we should structure the model to reflect the “real” world.
We will refer to the following model as the natural probability CRR
model CRR and denote it by ./

First, we will assume that there is a probability, called the natural
probability that reflects the true probability of an up-tick in the market.
Also, it is customary to make the following assumption about the natural
probability.

Assumption 1
The natural probability of an up-tick is constant with respect to X
throughout the lifetime of the model. We will denote this probability by
/.

It is also customary to make the following assumption.

Assumption 2
Under the natural probability, the drift and volatility

. / /
?

5 / /
?

/

/

œ Ð ?  Ð"  Ñ . Ñ
"

>

œ Ð"  ÑÐ ?  . Ñ
"

>

log log

log log

X X

# #
X X

are constant with respect to  (and ). Thus, we can drop the subscript?> X
X  and write  and . The number  is called the . 5 ./ / / instantaneous drift
and  is called the .5/ instantaneous volatility

It is important to emphasize that the second assumption has some
important consequences for the up-factor, down-factor and martingale
measure parameters of the model.

In the general CRR model the quantities ,  and  ( ) are? . : œX X X /
unrelated, whereas the drift and volatility are  in terms of thesedefined
quantities. However, specifying that  and  are specific . 5/ / constants
amounts to specifying a relationship between ,  and . To draw a? .X X /
simple analogy, suppose that  and  are arbitrary variables and that weB C
define the quantity  byE

E œ B  C
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As soon as we postulate that , for instance, we have drawn aE œ &
relationship between  and .B C

The relationship between ,  and  is obtained simply by solving the? .X X /
equations defining the drift and volatility to get

log

log

? œ >  >
" 

Ð"  Ñ

. œ >  >
Ð"  Ñ

/ / /

/ / /

ßX

ßX

. ? 5 ?
/

/ /

. ? 5 ?
/

/ /

È È
È È

The right-hand side depends on  through . Also, we writeX > œ >ÎX?
? ./ /ßX ßX and  to emphasize the dependence on  as well. Note that this/
dependence flows through to the martingale measure

1/
/

/ /
ßX

<X
ßX

ßX ßX
œ

/  .

?  .

In fact, we can express the martingale measure directly in terms of the
probability  and the drift and volatility. This also leads to an interesting/
limit.

Theorem 2
1) The martingale measure up-tick probability in the model CRR  is/

given by

1/

. ? 5 ?

5 ?
ßX

Ð< Ñ > >

>
œ

/  "

/  "

/ /
/

/ /

/ / /

È
È

Ð" Ñ

"
Ð" Ñ

È
È

2) The martingale probability  approaches the natural probability1/ßX
/ ? as  or equivalently as , that isX Ä _ > Ä !

lim
XÄ_

1 //ßX œ

Proof. For part 1), the martingale measure up-tick probability is given by

1/
/ /

/ / / /

?

ßX

<X < > "
ßX ßX

ßX ßX ßX ßX
"

œ œ
/  . / Ð. Ñ  "

?  . ? Ð. Ñ  "

The previous equations for  and  givelog log? ./ /ßX ßX
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? œ /

Ð. Ñ œ /

/
. ? 5 ?

/
. ? 5 ?

ßX
> >

ßX
"  > >

/ /
/

/ /

/ /
/

/ /

È
È

"
Ð" Ñ

Ð" Ñ

È
È

and so

/ Ð. Ñ œ< > "
ßX

?
/ /

Ð< Ñ > >. ? 5 ?/ /
/

/ /È Ð" Ñ
È

and

? Ð. Ñ œ // /
5 ?

ßX ßX
" >"

Ð" ÑÈ/ / /
È

Plugging these expressions into the right-hand side of the previous
expression for  gives the desired formula.1/ßX

Part 2) is a simple application of l'Hopital's rule to evaluate the limit

lim lim
XÄ_ >Ä!

Ð< Ñ > >

1/
5 ?

ßX
>

œ
"

/  "?

. ? 5 ?
/ / /

/
/ /

/ / /

È
È

Ð" Ñ

"
Ð" Ñ

È
È

We leave this to the reader.

The assumption that the instantaneous drift and volatility are constant is
perhaps a questionable one (as is the assumption of a constant natural
probability), but is based on practical considerations (as is often the case
with questionable assumptions). In fact, this assumption is usually
extended into the past. In particular, it is assumed that the drift and
volatility can be computed (or at least estimated) under the natural
probability by looking at the  of the price for the stock inpast history
question.

Specifically, for the natural probability, the instantaneous drift and
volatility can be estimated empirically as follows. First we choose a
small value for  (for example,  may correspond to one day). Then? ?> >
over a large number of these short periods of time, we compute the
logarithmic growth factors

log logI œ3 Œ Stock price at end of period
Stock price at start of period

The average of these sample values is an estimate of  and the. ?/ >
sample variance of these sample values is an estimate of . Of5 ?/

# >



255

course, the more samples we take, the better will be the estimates. Let us
consider an example.

EXAMPLE 1 The following portion of an Excel spreadsheet shows
closing stock prices over a 10-day period. Here we are taking  to be?>
one day, that is,  years. The initial price is $50."Î$'&

Day Price Growth Log Growth Average Sample Var
0 50 0.000359354 0.000677264
1 50.95 1.019 0.018821754 Per Unit Per Unit
2 49.74 0.976251 -0.024035321 0.131164046 0.247201227
3 49.46 0.994371 -0.005645176
4 49.83 1.007481 0.00745295
5 48.7 0.977323 -0.022938182
6 50.2 1.030801 0.030335997
7 49.57 0.98745 -0.012629215
8 51.78 1.044583 0.043618162
9 52.17 1.007532 0.007503643

10 50.18 0.961855 -0.038891076

The growth column contains the quotient of the stock price and the
previous stock price. For example,

&!Þ*&

&!
œ "Þ!"*

The average is simply the sum of the logarithmic growths divided by the
number of logarithmic growths. The sample variance is computed using
the formula

Sample var th value averageœ Ð3  Ñ
"

8  "
"
3œ"

8
#

(The reason for dividing by  instead of  has to due with obtaining8  " 8
an unbiased value.) Finally, the “per unit” values are obtained by
multiplying the average and variance by . It follows that"Î > œ $'&?
. 5/ /¸ !Þ"$ ¸ !Þ#& and  on an annual basis (that is, the units of time are#

measured in years).

With the aforementioned assumptions concerning the natural probability
in mind, the conditions of Theorem 1

1)  for some : Ä : : − Ð!ß "ÑX

2)  for real numbers  and . . 5 5 . 5: ßX : ßXX X
Ä ß Ä
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become evident. Since  for all , we have  and since: œ X : œX / /
. . 5 5 . . 5 5: ßX : ßXX X

œ œ X œ œ/ / / / and  for all , we have  and . Thus,
the conditions of Theorem 1 are satisfied for the natural probability and
we have the following.

Theorem 3 Let  be the final stock price for the natural model CRR .W>ßX /

Let

L œ
W

W
>ßX

>ßX

!
logŒ 

be the logarithmic price growth. Then

L L œ >  [>ßX > ß>
Ð Ñ

Ò . 5
dist /

/ / /

and

W W œ W />ßX > !
Ð Ñ > [Ò

dist / . 5/ / / ß>

where

Ö[ ± >   !×/ß>

is a standard Brownian motion process. Hence, the logarithmic growth

ÖL ± >   !×>

is a Brownian motion process with mean , variance , drift  and. 5 ./ //> >#

volatility . The stock price process itself5/

ÖW ± >   !×>

is a geometric Brownian motion process with the same drift and
volatility. Note also that the stock price growth  is lognormallyW ÎW> !

distributed with

XÐW Ñ œ W /

ÐW Ñ œ ÐW / Ñ Ð/  "Ñ

> !
Ð  Ñ>

> !
Ð  Ñ> # >

. 5

. 5 5

/ /

/ / /

"
#

#

"
#

# #

Var

The Martingale Measure CRR Model

Let us take a peek at our main goal to see what to do next. The payoff for
a European put (for example) with strike price  isO
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\ œ ÖO  W ß !×

œ ÖO  W / ß !×

max
max

>ßX

!
L>ßX

The absence of arbitrage implies that the initial price of the put must be

\ XÐ Ñ œ / Ð ÖO  W / ß !×ÑPut <> L
!CX

>ßXmax

where  is the martingale measure (with up-tick probability ).C 1X X

Taking limits as  tends to infinity givesX

T œ Ð Ñ œ / Ð ÖO  W / ß !×Ñ_ !
XÄ_ XÄ_

<> Llim lim max\ XPut CX
>ßX

where  denotes the limiting price random variable. SettingT_

1ÐBÑ œ ÖO  W / ß !×max !
B

which is bounded and continuous on  gives‘

T œ / Ð1ÐL ÑÑ_ >ßX
<>

XÄ_
lim XCX

Now, we would like to pass the limit inside the expectation to get

T œ / Ð1ÐL ÑÑ_ >
<>X

Let us recall Theorem 10 of Chapter 8, which says that if

\ \8
Ð Ñ

Ò
dist 1X

then

X XCX Ð1Ð\ ÑÑ Ä Ð1Ð\ÑÑ8

for all  continuous functions . This is just what webounded 1À Ä‘ ‘
need, but in order to apply this theorem, we need to know the weak
convergence of  probability, not theL>ßX  under the martingale measure
natural probability, as given in Theorem 3.

This tells us what to do next. In particular, we need a new CRR model to
do the following.

1) The probability of an up-tick should be the martingale measure up-
tick probability  so that Theorem 1 will give the weak limit of1/ßX
L>ßX  under the martingale measure.



258

2) At the same time, the model must preserve the “true” stock prices W5

from the natural model CRR , which is done by using the values/

? ./ /ßX ßX and  from that model.

Thus, we define a new CRR model with the following parameters.

1) The up-factor , down-factor  and martingale measure up-tick? ./ /ßX ßX

probability

1/
/

/ /
ßX

<X
ßX

ßX ßX
œ

/  .

?  .

are as in the natural probability model CRR . It follows that the/

stock prices  are the prices are the “natural” prices, as desired.W5

2) The probability of an up-tick is the martingale measure up-tick
probability, that is,

: œX ßX1/

Hence the drift and volatility are

. 1 1
?

5 1 1
?

1 / / / /

1 / / / /

/

/

ß

ßX

X ßX œ Ð ?  Ð"  Ñ . Ñ
"

>

œ Ð"  ÑÐ ?  . Ñ
"

>

ßX ßX ßX ßX

ßX
# #

ßX ßX ßX ßX

log log

log log

We will call this model the  and denotemartingale measure CRR model
it by .CRR1

The next theorem describes the relationship between the drift and
volatility of the model CRR  and the drift and volatility of the model1

CRR ./

Theorem 4 The following holds

. . 5
?

1 /

/ /

5 5
1 1

/ /

1 / /
/

1
/ /

/

/

ßX

ßX

ßX
ßX

ßX @
# # ßX ßX

œ 
" Ð  Ñ

> Ð"  Ñ

œ
Ð"  Ñ

Ð"  Ñ

È È

Proof. For the sake of readability, let us write  and1/ /ß ßXX œ 1, ? œ ?
. œ ./ßX . Then
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. .

5

1 1 / /

/ /

1 /

/ /

?

1 /

/

1 /

/

? ?

?

?

?

ßX 

œ
Ð ?  Ð"  Ñ .Ñ  Ð ?  Ð"  Ñ .Ñ

Ð"  ÑÐ ?  .Ñ

œ
Ð  ÑÐ ?  .Ñ

Ð"  ÑÐ ?  .Ñ

œ
" 

> Ð" 

" "
> >

"

>

"
>

"

>

log log log log
log log

log log
log log

È

È

È
È

È È /Ñ

From here we solve for  to get the desired result. The computation.1ßX
for  proceeds as follows51ßX

5

5

1 1

/ /

1 1

/ /

1 ?

?

ßX

@
#

"
>

#

"
>

#
œ

Ð"  ÑÐ ?  .Ñ

Ð"  ÑÐ ?  .Ñ

œ
Ð"  Ñ

Ð"  Ñ

log log
log log

as desired.

Now we can compute the required limits in order to use Theorem 1 in the
context of the model CRR .1

Theorem 5 The following limits hold.

lim

lim
XÄ_

ßX

#

XÄ_
ßX

.
5

5 5

1
/

1 /

/

/

ßX

ßX

œ < 
#

œ

where  is the risk-free rate.<
Proof. Theorem 4 gives

. . 5
?

1 /

/ /
1 / /

/
/ßX ßX

X
œ 

" Ð  Ñ

> Ð"  ÑÈ È ß

and so

lim
XÄ_

ßX @
@ ßX

>Ä!
. .

5 1 /

/ /
1

?

/
/ßX œ

Ð"  Ñ




>È Èlim  
?

Now we use the formula for  from Theorem 2 to evaluate the limit1/ßX
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lim
?

? ?

>Ä!

Ð< Ñ > >
" / 

È?
/

>

"

/  "

Î Ñ
Ï Ò

. 5

5 ?

@ @Ð" Ñ

"
Ð" Ñ @

/
/ /

/ /

È È
È È >

This is a bit messy. Either l'Hopital's rule and a strong constitution or a
symbolic algebra software package gives the limit

#Ð<  Ñ 

#

. 5

5
/ /

@ @

@

#È Ð"  Ñ

and so

lim
XÄ_

ßX @
@ @ @

@

@

. . / /
5 . 5

/ / 5

5

1/ßX œ Ð"  Ñ
Ð"  Ñ


#Ð<  Ñ 

#

œ < 
#

È ” •È#

#

as desired. For the limit of the sequence 51/ßX ßX  we begin with the
formula 

5 51
/ /

/ßX ßX @
# ß ß

œ # X XŒ 1 1

/ /

Ð"  Ñ

Ð"  Ñ

from Theorem 4. Since by Theorem 2 we have

lim
?>Ä!

1 //ßX œ

it follows that 

lim
?>Ä!

X X1 1

/ /
/ /ß ßÐ"  Ñ

Ð"  Ñ
œ "

and so

lim
?>Ä!

# #5 51 //ßX ßX œ

Taking square roots gives the desired result.

Now Theorem 1 will give us the desired weak limit.

Theorem 6 Let  be the final stock price for the CRR  model withW>ßX 1

martingale measure , lifetime  and  equal-up-tick probability 1/ßX Ò!ß >Ó X
sized subintervals of length . Let?>
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L œ
W

W
>ßX

>ßX

!
logŒ 

be the logarithmic price growth. Under the martingale measure we have

L >  [>ßX ß>Ò
5distÐ Ñ

>

#1 /
/

X
L œ < 

#
Œ  5 1

and

W W œ W />ßX > !
Ð Ñ < [

Ò
dist 1X

#

#Š ‹5/
/>5 1ß>

where

Ö[ ± >   !×1ß>

is a standard Brownian motion process. Hence, the logarithmic growth

ÖL ± >   !×1ß>

is a Brownian motion process with
1) mean Š ‹<  >5/

#

#

2) variance 5/#>
3) drift <  5/

#

#

4) volatility  5/
The stock price process itself

ÖW ± >   !×>

is a geometric Brownian motion process under the martingale measure
with this drift and volatility. Note also that the stock price growth W ÎW> !

is lognormally distributed with

XÐW Ñ œ W /

ÐW Ñ œ ÐW / Ñ Ð/  "Ñ

> !
<>

> !
<> # >Var 5/

#

More on the Model From a Different Perspective: It 's Lemmaô

Earlier in the chapter, we spoke of the usual approach to developing a
continuous-time model, namely, the assumption that stock prices behave
according to the stochastic differential equation

.W

W
œ .>  .[

>

>
! ! >. 5
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where  is standard Brownian motion and  and  areÖ[ ± >   !×> ! !. 5
constants (not to be confused with , ,  and ). We also. . 5 5/ 1 / 1X X

mentioned that the precise meaning of this equation must remain
somewhat vague for us, because it requires considerably more
mathematical machinery than we will develop here. While this is true, we
can “wave our hands” a bit to get some further insight into how this
equation is used to develop the model. This is at least worthwhile from
the perspective that the reader may encounter this equation when reading
the literature. However, the reader may feel free to skip this discussion
without loss of continuity.

The previous equation can be written

.W œ W .>  W .[> ! > ! > >. 5

which is a special case of the formula

.W œ +ÐW ß >Ñ .>  ,ÐW ß >Ñ .[> > > >

where  and  are functions of two variables. In our case+ÐBß >Ñ ,ÐBß >Ñ

+ÐW ß >Ñ œ W

,ÐW ß >Ñ œ W
> ! >

> ! >

.

5

A process  that obeys the preceding equation is sometimes called anÖW ×>
Itô process.

Now, if  is a function of two variables, then we may form the0ÐBß >Ñ
composition , which is a stochastic process since  is a0ÐW ß >Ñ ÖW ×> >

stochastic process. We are interested in finding a formula for . This is.0
done by applying a result from the stochastic calculus known as Itô's
lemma.

Theorem 7 ( ) Let  follow an Itô processItô's Lemma ÖW ×>

.W œ +ÐW ß >Ñ .>  ,ÐW ß >Ñ .[> > > >

where  is standard Brownian motion and x  and x  areÖ[ × +Ð ß >Ñ ,Ð ß >Ñ>

functions of two variables. Let  be a (sufficiently differentiable)0ÐBß >Ñ
function of two variables. Then

.0 œ +   , .>  , .[
`0 `0 " ` 0 `0

`B `> # `B `B
Œ #

#
#

>
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In the case at hand, we have

+ÐW ß >Ñ œ W

,ÐW ß >Ñ œ W
> ! >

> ! >

.

5

and so Itô's lemma becomes

.0 œ W   W .>  W .[
`0 `0 " ` 0 `0

`B `> # `B `B
Œ . 5 5! > ! > >

#

# ! >
# #

Let us now apply this formula to the function

0ÐBß >Ñ œ Blog

In this case

`0 "

`B W
ÐW ß >Ñ œ

`0

`>
ÐW ß >Ñ œ !

` 0 "

`B
ÐW ß >Ñ œ 

W

>
>

>

#

# >
>
#

and we get

.Ð W Ñ œ W  W .>  W .[
" " " "

W # WW

œ  .>  .[
#

log > ! > ! > >
> >>

# ! >
# #

! ! >
!
#

Œ 
Œ 

. 5 5

. 5
5

This says that  is normally distributed with mean .Ð W Ñ  .>log > ! #Š ‹.
5!
#

and variance . It follows that the change in  over a period5!
#

>.> Wlog
Ò!ß >Ó, that is

log logW  W> !

being the sum of independent normal random variables, is also normally
distributed with mean

"Œ  Œ . .
5 5

! !
! !
# #

 .> œ  >
# #

and variance
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"ˆ ‰5 5! !
# #.> œ >

Hence,

L œ œ W  W
W

W

œ  >  >^
#

> > !
>

!

! ! >
!
#

log log logŒ 
Œ  È. 5

5

where  is standard normal. Thus we see that (in general terms) the^>

stochastic differential equation leads to the same conclusion as that of
Theorem 6. (We have not dealt specifically here with the martingale
measure.)

Are the Assumptions Realistic?

We cannot continue without a short pause to comment on whether the
assumption that stock prices are lognormally distributed, or equivalently
that the logarithmic growth in the stock price is normally distributed, is a
crealistic one. There has been much statistical work done on this
question, resulting in evidence that growth rates exhibit a phenomenon
known as , which means two things:leptokurtosis

ì  the probability that the  is near the mean is greaterlogarithmic growth
than it would be for a normal distribution (higher peak)

ì  the probability that the  is far away from the meanlogarithmic growth
is greater than it would be for a normal distribution (fatter tails).

There is other statistical evidence that the assumption of normality is
perhaps not realistic. For a further discussion, with references, we refer
the reader to Chriss [1997]. Of course, this should not necessarily come
as a surprise. After all, the assumptions that lead to the formula

L œ <  >  [
#

> ß>

#Œ 5
5/
/ 1

are not very realistic. Nevertheless, the Black-Scholes formula, which
relies on this normal model, and to which we know turn, is the most
widely used formula for option pricing.
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The Black-Scholes Option Pricing Formula
We now have the tools necessary to derive the Black-Scholes option
pricing formula for a European option. Consider again the complete,
arbitrage-free CRR  model.1

The payoff for a European put with strike price  isO

\ œ ÖO  W ß !×

œ ÖO  W / ß !×

max
max

>ßX

!
L>ßX

The replicating pricing strategy implies that in order to avoid arbitrage,
the initial price of the put must be

\ XÐ Ñ œ / Ð ÖO  W / ß !×ÑPut <> L
!CX

>ßXmax

where  is the martingale measure, with up-tick probability . TakingC 1X X

limits as  tends to infinity givesX

T œ Ð Ñ œ / Ð ÖO  W / ß !×Ñ_ !
XÄ_ XÄ_

<> Llim lim max\ XPut CX
>ßX

where  denotes the limiting price random variable. This is a case forT_

part 2) of Theorem 10 of Chapter 8, where  is the function1

1ÐBÑ œ ÖO  W / ß !×max !
B

which is indeed bounded and continuous on . In this case, we have‘

T œ / Ð1ÐL ÑÑ_ >ßX
<>

XÄ_
lim XCX

and since

L >  >^>ßX ß>Ò
5distÐ Ñ

>

#1 /
/

X
L œ < 

#
Œ  5 È

1

Theorem 10 of Chapter 8 implies that

T œ / Ð1ÐL ÑÑ œ / Ð1ÐL ÑÑ_ >ßX >
<> <>

XÄ_
lim X X1X

Since  is normally distributed L> with mean

+ œ >Œ < 
#

5/
#

and variance
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, œ ># 5/
#

we have

T œ / Ð1ÐL ÑÑ œ 1ÐBÑ/ .B
/

# ,
_ >

<>
<>

# _

_
X

1È ( ÐB+Ñ#

#,#

(Here the  under the square root sign is just pi, not the martingale up-1
tick probability.)

All we need to do now is evaluate this integral. Making the substitution

C œ
B  +

,

gives

T œ 1Ð,C  +Ñ/ .C
/

#
_

<>

_

_
È (

1

C#

#

Now the function

1Ð,C  +Ñ œ ÖO  W / ß !×max !
,C+

is nonzero if and only if

O  W /  !!
,C+

that is, if and only if

,C  +  Ð Ñ
O

W
log

!

or finally

C  Ð Ñ  +
" O

, W
” •log

!

Let us denote the right-hand side of this by 2

2 œ Ð Ñ  +
" O

, W
” •log

!

We can write the integral as follows
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T œ ÐO  W / Ñ/ .C
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Splitting this into two integrals gives
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The first of these integrals is in pretty good shape because
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#
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where  is the standard normal distribution function. The second9!ß"ÐBÑ
integral could use some work
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Thus

T œ O/ Ð2Ñ  W / Ð2  ,Ñ_ !ß" ! !ß"
<> <> , +9 9

"
#

#

Now we have a pleasant surprise with respect to the exponent in the
second term

<>  ,  + œ <>  >  Ð#<  Ñ
" " >

# # #

œ <>  >  ><  > Ñ
" "

# #
œ !

# # #

# #

5 5

5 5

/ /

/ /

and so we arrive at our final destination
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T œ O/ Ð2Ñ  W Ð2  > Ñ_ !ß" ! !ß"
<>9 9 5È

/

where

2 œ Ð Ñ  + œ Ð Ñ  ><  >
" O " O "

, W W #>
” • ” •Èlog log

! !

#

5
5

/
/

This is the famous Black-Scholes formula for the value of a European
put.

We can use the put-call option parity formula to get the corresponding
price of a European call. Recall that this formula says that the price of a
call is given by

G œ T  W O/!
<>

Taking limits as  tends to  givesX _

G œ T  W O/

œ O/ Ð Ð2Ñ  "Ñ  W Ð Ð2  > Ñ  "Ñ

_ _ !
<>

<>
!ß" ! !ß"9 9 5È

/

Since

9 9!ß" !ß"Ð>Ñ œ "  Ð>Ñ

the price of the call is

G œ O/ Ð2Ñ  W Ð >  2Ñ_ !ß" ! !ß"
<>9 9 5È

/

By setting  and  as seems to be commonly done,. œ 2 . œ .  ># " # 5È
we get the formulas shown in the following theorem.

Theorem 8 (The Black-Scholes Option Pricing Formulas) For European
options with strike price  and expiration time  we haveO >

G œ W Ð. Ñ  O/ Ð. Ñ

T œ O/ Ð. Ñ  W Ð. Ñ

! !ß" " !ß" #
<>

<>
!ß" # ! !ß" "

9 9

9 9

where  is the initial price of the underlying stock,  is theW! 5
instantaneous volatility,  is the standard normal distribution function9!ß"

and
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. œ Ð Ñ  >Ð<  Ñ
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"
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! #

5
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log

log

where  is the risk-free rate.<

We note that these formulas do not involve the instantaneous drift. In
fact, the only “unknown” quantities are the instantaneous volatility 5/
and the risk-free rate .<

EXAMPLE 2 Consider a European call option on a stock that is
currently selling for $ . The option expires in  year at a strike price of"!! "
$ . Suppose that the risk-free rate is  and that the volatility is"!! !Þ!&
5 œ !Þ"& per year. Compute the value of the call.
Solution This is simply a matter of plugging into the formula. First, we
have

. œ !  !Þ!&  Ð!Þ"&Ñ ¸ !Þ#&)$
" "

!Þ"& #
#

#” •
and

. œ .  > ¸ !Þ#&)$  !Þ"& œ !Þ%!)$" # 5È
Hence, with the aid of a calculator or some other means of evaluating
values of , we get9!ß"

G œ "!! Ð!Þ%!)$Ñ  "!!/ Ð!Þ#&)$Ñ ¸ )Þ&*'9 9!ß" !ß"
!Þ!& $

How Black-Scholes is Used in Practice: Volatility Smiles and
Surfaces
The assumption that the volatility  is constant is a very unrealistic one,5
to say the least. This (among other things) raises questions about the
quality of the Black-Scholes option pricing formula. A great deal of
research has been done to determine how the Black-Scholes formula can
be used in light of the questionable assumptions about the parameters.
Our intention is to very briefly discuss one method that is used in
practice.
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The Volatility Smile

We have said that the volatility can be estimated using historical data.
However, in practice, the Black-Scholes formula is not used by simply
plugging in an estimate for the volatility and grinding out option prices.
Instead traders usually work with a quantity known as the implied
volatility. Loosely speaking, this is the volatility that must be used in the
Black-Scholes option pricing formula in order to make the formula
reflect the actual market price at a given moment in time.

Definition Consider a European option that has a particular market
price of . The  of this option is the volatility that isQ implied volatility
required in the Black-Scholes option pricing formula so that the formula
gives .Q

The implied volatility is, in effect, the market's opinion about the Black-
Scholes volatility of a stock. The implied volatility is a quantity that can
be computed from the Black-Scholes formula by numerical methods (that
is, educated guessing and reguessing).

As it happens, and as further evidence that the Black-Scholes formula is
not perfect, if one computes the implied volatility of otherwise identical
options at various strike prices, one gets different values. Figure 5 shows
a typical graph of implied volatility versus strike price. Because of the
shape of the graph, it is known as a .volatility smile

Implied
Volatility

Strike
Price

σ1

K1

Figure 5 – A volatility smile

Now, suppose that an historical estimate of volatility for a particular
stock is . Then the Black-Scholes formula gives an option price that5"

matches the market price for only one strike price, namely .O"
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For larger strike prices, which correspond to out-of-the-money calls and
in-the-money puts, the market price corresponds to a volatility that is
much less than . Now, the Black-Scholes formula gives prices that5"

vary directly with the volatility, so a smaller volatility produces a smaller
price. Hence the market price is below the Black-Scholes historical price.
Put another way, the Black-Scholes formula, when used with a constant
volatility based on historical data, tends to  out-of-the-moneyoverprice
calls and in-the-money puts relative to market prices.

For smaller strike prices, which correspond to in-the-money calls and
out-of-the-money puts, the market price corresponds to a volatility that is
much greater than . Hence the market price is above the Black-Scholes5"

historical price. Put another way, the Black-Scholes formula, when used
with a constant volatility based on historical data, tends to  in-underprice
the-money calls and out-of-the-money puts relative to market prices.

The Volatility Surface

To understand how the Black-Scholes formula may be used in practice,
condier Table 1, which shows data for a , that is, a set ofvolatility surface
implicit volatilities for various maturity dates as well as strike prices. The
columns represent different strike prices expressed as a percent of the
stock price. (The data in this table is for illustration only.)

90% 95% 100% 105% 110%
1 month 14 13 12 113 14.4
3 months 14.2 14.1 13.6 13.8 14.1
6 months 14.5 14.3 14.2 14.5 14.6
1 year 15.1 15 14.6 14.7 14.8
2 years 16.2 16.1 16 16.1 16.2

Table 1 – Data for a volatility surface

Now, a trader who wants to price an option that has a maturity and strike
price that is not in this table can interpolate from the table to get an
implied volatility. For example, consider an option that matures in 9
months at a strike price of 95% of stock price. A linear interpolation
between the 6 month and 1 year maturity implied volatilities gives a
volatility of . This volatility can be used in theÐ"%Þ$  "&ÑÎ# œ "%Þ'&
Black-Scholes formula to prodce a price for the option in question.
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How Dividends Effect the Use of Black-Scholes
The Black-Scholes option pricing formula assumes that the underlying
stock does not pay a dividend. We should briefly discuss how dividends
can be handled in this context.

First a bit of background on dividends. There are four dates that are
important with respect to dividends. The  is the date thatdeclaration date
the board of directors declares a dividend. The  is the daterecord date
that the registrar compiles a list of current shareholders, to whom the
dividend will be paid. The key point is that an investor must be on record
as owning the stock on the record date or else he will not receive a
dividend. The  is the date that the dividend will be paid.payment date

Now, normal stock purchases take 3 days to clear. This is referred to as
regular way settlement. Thus, an owner must have purchased the stock at
least 3 days prior to the record date in order to be considered an owner of
record on the record date and hence eligible for the dividend. The first
date after this date is called the . For example, if aex-dividend date
dividend is declared as payable to stockholders of record on a given
Friday then the New York Stock Exchange (who sets the ex-dividend
dates for NYSE stocks) would declare the stock “ex-dividend” as of the
opening of the market on the preceding Wednesday.

We note that when the stock goes ex-dividend, typically the stock price
will decline by an amount similar to the amount of the dividend. This
makes sense from the perspective that the dividends are known in
advance and are therefore built into the stock's price in some way.

Now, a European option on a stock that pays a dividend can be thought
of as composed of two separate processes: a risky process that represents
the stock price itself and a risk-free process that represents the cash
dividend payments. Thus, to price an option on such a stock, we first
discount all of the forthcoming dividend payments to the present. If this
amount is  then we can think of the components as a risky stock that has.
initial value  and a risk-free asset that has initial value . TheW  . .!

Black-Scholes formula can then be applied to the risky stock.

Exercises
1. A stock has the initial price of $50. Over a five-day period, the stock

price at day's end is given by $49.82, $50.02, $49.69, $49.34,
$50.10. Estimate the instantaneous drift and volatility.
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2. Consider a European call option on a stock that is currently selling
for $ . The option expires in  year at a strike price of $ . Suppose)! " )!
that the risk-free rate is  and that the volatility is  per!Þ!& œ !Þ"5
year. Compute the value of the call.

3. Consider a European put option on a stock that is currently selling
for $ . The option expires in  year at a strike price of $ . Suppose&! " &"
that the risk-free rate is  and that the volatility is  per!Þ!% œ !Þ"&5
year. Compute the value of the put.

4. Prove that

Var: :ßX ß3Ð\ Ñ œ "

5. Prove that

X 5
?

5

:

:

ÐU Ñ œ
> :  =

> =Ð"  =Ñ

ÐU Ñ œ >

= =

= =
#

È È
Var

:Ð"  :Ñ

=Ð"  =Ñ

6. Let  be a random variable with a lognormal distribution, that is,\
] œ \ + , Þlog  is normally distributed with mean  and variance #

Show that
 a) XÐ\Ñ œ /+ ,"#

#

 b) VarÐ\Ñ œ / Ð/  "Ñ#+, ,# #

 Apply this to the random variable  to deduce that\ œ W ÎW> !

 c) X1ÐW Ñ œ W /> !
<>

 d) Var1 5ÐW Ñ œ ÐW / Ñ Ð/  "Ñ> !
<> # >/

#

7. Show that the function  is continuous and0ÐBÑ œ ÖO  W / ß !×max !
B

bounded on .‘
8. Show that  for the standard normal9 9!ß" !ß"Ð>Ñ œ "  Ð>Ñ

distribution function. : draw a picture using the graph of theHint
standard normal density function.

9. Show using l'Hopital's rule that

lim lim
XÄ_

X
>Ä!

Ð< Ñ > >

1 œ œ :
/ 

?

. ? 5 ?Î Ñ
Ï Ò

:
:;È È

"

/  "
"
:;È 5 ?È >

   

 : write .Hint B œ Ð >Ñ? #

10. Suppose we assume that there is a martingale probability measure in
the limiting case when  and that the Fundamental TheoremX Ä _
of Asset pricing holds in this limiting case. If we denote this
martingale measure by  thenC
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W œ / ÐW Ñ œ / ÐW / Ñ! > !
<> <> > >^X XC C

. 5/ /
È

>

Evaluate the last expression to show that

. 5/ /œ < 
"

#

11. Let  be the random variable representing the  up-ticksRY number of
in stock price over the lifetime of the CRR model. Show that

W œ W />ßX !
R Ð ? .ÑX .Y log log log

and so

L œ R Ð ?  .Ñ  X .>ßX Y log log log  

Show that

X /

/ /

ÐL Ñ œ X Ð ?  .Ñ  X .

ÐL Ñ œ X Ð"  Ñ Ð ?  .Ñ

>ßX

>ßX
#

log log log
Var log log

12. Standardize the random variable  to show thatL>ßX

L œ R>ßX Y
‡ ‡

Hence, the random variables  are standardized binomial randomL>ßX
‡

variables.
13. Using the Black-Scholes formulas show that the value of a put and a

call increases as the volatility  increases. Looking at the profit5
curves for a long put and long call, explain why this makes sense.
Does the same effect obtain for the owner of a stock?

14. Show that the probability that a European call with strike price O
and expiration date  will expire in or at the money is>

9
5

5
!ß"

X
# ÈlogÐW ÎOÑ  >Ð<  Î#Ñ

>

/

where  is the standard normal distribution.9!ß"
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Chapter 10

Optimal Stopping and American Options
The models that we have created thus far, including the Black-Scholes
option pricing model, are designed to price European options, which are
options that can only be exercised at the expiration time. However, in the
real world, most stock options are of the American variety. In this
chapter, we want to take a look at the issue of pricing American options.

American options are far more complicated than European options,
because they give up nothing but add one major additional feature—they
can be exercised at any time between the purchase date and the
expiration date. This is clearly a significant interpolation, since there is
no way to look into the future to decide when to execute. An investor
cannot call his broker and say “If the stock price falls below $50 then sell
the stock  it falls.”before

The mathematics used to model American options has a significantly
different flavor and is a bit more sophisticated than we have thus far
encountered.

An Example
To aid the discussion, let us set up a simple example to which we will
refer in the sequel.

EXAMPLE 1 Figure 1 shows a CRR model state tree with stock prices
(and option payoffs).

B0,1

B1,1

B1,2

20/0

22/1

18/0

24.2/3.2

19.8/0

19.8/0

16.2/0

B2,1

B2,2

B2,3

B2,4

ω2

ω1 26.62/5.62

21.78/0.78

ω4

ω3 21.78/0.78

17.82/0

ω6

ω5

ω8

ω7 17.82/0

14.58/0

t0 t1 t2 t3

21.78/0.78

17.82/0

1.1

0.9
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Figure 1 – A CRR model state tree

We will assume that . Note that for this model< œ !

X œ $ß ? œ "Þ"ß . œ !Þ*

and the martingale measure probability is

1 œ œ œ
"  . !Þ" "

?  . !Þ# #

Finally, let  be an American call  with strike price .G G O œ #"

Before beginning, a bit of notation. For any random variable , it will be\
convenient to define the shorthand notation  asÒ\ − EÓ

Ò\ − EÓ œ Ö − ± \Ð Ñ − E×= H =

The Model
In general, our context will be a discrete-time model that is arbitrage-free
and thus has a martingale measure , as is the case for Example 1.C
Consider an investment in an American option (also called an American
claim). At any of the model's times

>  >  â  >! " X

the owner may exercise the option.

The Payoffs
The payoff of the option at any time  is a random variable . We will> ]5 5

assume that  is adapted to a filtration . For our example,Ð] Ñ œ Ð Ñ5 5… c
the payoffs of the American call  areG

] œ ÖW  #"ß !× œ
&Þ'# œ
!Þ() œ ß ß
!

$ $

"

# $ &max
Ú
ÛÜ

for 
for 
otherwise

= =
= = = =

] œ ÖW  #"ß !× œ
$Þ# − F
!# #

#ß"max œ for 
otherwise

=

] œ ÖW  #"ß !× œ
" − F
!" "

"ß"max œ for 
otherwise

=

and finally
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] œ !!

These payoffs are shown in Figure 1 as well.

Stopping Times
The decision about when to exercise can be modeled as a random
variable with special properties, called a . The idea is quitestopping time
simple: a stopping time is a rule, that is, a random variable that identifies,
for each time  the outcomes in  for which we should exercise at time>5 H
> >5 5. Let us refer to these outcomes as the  for time .stopping event

There is one slight flaw in this terminology, however. The stopping event
for the  time  is meant to include all outcomes for which we havefinal >X
not yet stopped (exercised). However, in some of these cases, we may
not actually exercise the option, but rather let the option expire
worthless. So the notion of an “exercise event” applies literally only to
the intermediate times  with .> 5  X5

The only requirement for a stopping time is an obvious one: we must be
able to tell which outcomes belong to the stopping event for time  >5 at
that time. This is an important issue. We cannot say that the exercise
event for time , for example, is based on what happens at time . This> ># $

is akin to asking our broker to sell the stock  its price drops belowbefore
50.

Definition (bounded) stopping time A   is a random variable

7 HÀ Ä Ö!ßá ß X×

whose range is the set of integers from  to . Moreover, it is required! X
that the  “stop at time ” defined bystopping event >5

Ò œ 5Ó œ Ö − ± Ð Ñ œ 5×7 = H 7 =

is in the algebra  generated by  for all . We willT c cÐ Ñ 5 œ !ßá ß X5 5

denote the set of all stopping times with range  by . TheseÖ5ßá ß X× f5ßX

are the stopping times that cannot stop before time .>5

Let us consider an important example of stopping times.

EXAMPLE 2 It would not be uncommon for an investor to tell his
broker to “sell the stock if the price reaches $50 or more” for example.
This rule is a stopping time. In fact, it is referred to mathematically as the
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first entry time of the stock price process  into the set .ÐW Ñ Ò&!ß_Ñ5

Formally, it is defined as follows

7 =Ð Ñ œ
Ö5 ± W   &!× Ö5 ± W   &!× Á g

Xœ min 5 5if 
otherwise

It is not hard to show that this is indeed a stopping time. For if 5  X
then we have

Ò œ 5Ó œ Ö ± W   &! W  &! 4  5×

œ ÒW  &!Ó â  ÒW  &!Ó  ÒW   &!Ó

7 = 5 4

! 5" 5

 but  for  

But since the price  is -measurable and since  is a filtration, weW Ð Ñ3 3 3c c
deduce that each of the events  and the event  are inÒW  &!Ó ÒW   &!Ó3 5

the largest algebra . This is the condition required of a stoppingT cÐ Ñ5
time. Finally, for  we have5 œ X

Ò œ X Ó œ ÒW  &!Ó â  ÒW  &!Ó − Ð Ñ7 T c! X" X

Thus,  is a stopping time. Note that the same argument will work for7
any value other than .&!

In fact, it is also possible to show that the first entry time inot any Borel
set  is a stopping time. For example, the setF

F œ Ð_ß "(Ñ  Ð#!ß_Ñ

corresponds to the first time that the stock price drops below  or rises"(
above . The shaded blocks in Figure 1 show the stopping events for#!
the first entry time into .F

Stopping the Payoff Process
Here is the scenario. Imagine that an investor has acquired an American
option at time . The investor sits down and looks at all possible>!
stopping times in the set . (This is possible at least in theory sincef!ßX

there are only a finite number of such stopping times.)

Suppose that the investor has decided upon a particular stopping time
7 f− !ßX  to use in determining when to exercise. We will discuss how
this decision is made a bit later. In fact, that is the main issue of the
chapter.

It may help to think of the investor as phoning his broker at time  and>!
giving him the stopping time rule . From this point on, the broker can7
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proceed without bothering the investor. In particular, at each time  the>5
broker checks to see if the current state of the economy is in the stopping
event  for that time. He can do this because  isÒ œ 5Ó Ò œ 5Ó − Ð Ñ7 7 T c5

just a union of the blocks of  and the broker knows which of thec5

blocks represents the current state at that time. If the current state is in
Ò œ 5Ó7 , then the broker exercises the option; otherwise he does not.

The Stopped Value of an American Option
In order to determine how to choose a stopping time, we must first
discuss the consequences of any choice of stopping time. Suppose that
the investor has decided upon a particular stopping time . Then7 f− !ßX

for any , the option will exercise at time  and give a payoff of= H− >7 =Ð Ñ

] Ð Ñ7 =Ð Ñ =

It is customary to denote this function by . Thus]7

Ò] ÓÐ Ñ œ ] Ð Ñ7 7 == =Ð Ñ

The random variable  is refered to as the  of the process]7 final value
Ð] Ñ5  under the stopping time .7

EXAMPLE 3 Referring to Example 1, consider the stopping time 7
shown in gray in Figure 1. This is the first entry time into

F œ Ð_ß "(Ñ  Ð#!ß_Ñ

The (discounted) final value  is]7

] Ð Ñ œ
" − Ö ß ß ß ×
!Þ() œ
! − Ö ß ß ×

7 =
= = = = =
= =
= = = =

Ú
ÛÜ

if 
if 
if 

" # $ %

&

' ( )

A Detail About Discounting
Now we must discuss a detail concerning discounting. If  is any\5

process and  is a stopping time then the final value is . To7 f− \!ßX 7

discount this value, we must discount each of the values
Ð\ ÑÐ Ñ œ \ Ð Ñ7 7 == =Ð Ñ  by the appropriate amount

\ Ð Ñ œ œ Ð Ñ
\ Ð Ñ

F Ð Ñ F

\
7 =

7 =

7 =

7

7
Ð Ñ

Ð Ñ

Ð Ñ
= =

=

=
Œ 

Thus, we set
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\ œ
\

F
7

7

7

Note that in Example 1 we assume that the risk-free rate is  and so the!
issue of discounting is not relevant.

The Initial Value of an American Option, or What to Do At
Time >!
At time  the possible choices for stopping times are the elements of the>!
set . If the investor stops the payoff process using a particularf!ßX

stopping time  then he will realize the final value . However,7 f− ]!ßX 7

there is a subtlety here, namely, for each  the payoff = H =− ] Ð Ñ7 =Ð Ñ

comes at time . In keeping with the spirit of self-financing trading>7 =Ð Ñ

strategies, we will assume that the investor does not remove the funds
from his brokerage account until the end of the model, at time  and so>X
the payoff at time  is allowed to grow at the risk-free rate. This>7 =Ð Ñ

results in a  offinal payoff

F

F
] Ð Ñ

X

Ð Ñ
Ð Ñ

7 =
7 = =

where  is the discounting factor.F œ /5
<5

Thus, the final time-  payoff resulting from the stopping time  is really>X 7

F

F
] œ F ]

X
X

7
7 7

where

] œ
]

F
7

7

7

Put another way, each stopping time turns an American option into a
guaranteed sequence of payoffs, where the time-  payoff is>5

] "5 Ò œ5Ó7

The final value of this payoff stream is

"
5œ!

X
X X

5
5 XÒ œ5Ó

F F

F F
] " œ ] œ F ]7

7
7 7
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The Initial Value of an American Option

Now let us consider what the investor should do to determine which
stopping time to employ at time . Keep in mind that the investor may>!
change his mind at time , but we will not worry about that problem yet.>"

In order to determine the best stopping time at time , as mentioned>!
earlier, the investor can look at all possible stopping times in the finite
set . At first, it seems logical that the investor should choose thef!ßX

stopping time that maximizes the final payoff

max
7 f

7
−

X
!ßX

ÖF ] ×

However, the payoffs  are functions (random variables) and thereF ]X 7

is no guarantee that there is a single stopping time that is best for all
states . Indeed, this is highly unlikely.= H−

So an alternative is needed. This involves computing the  ofinitial value
the final payoff. Assuming that the final payoff  is attainable, thereF ]X 7

is a self-financing trading strategy  for whichF

i FX XÐ Ñ œ F ] 7

and the arbitrage-free price of this final payoff is (according to the
martingale measure condition)

Z Ð Ñ œ ÐF ] Ñ

œ Ð Ñ

œ Ð Ð ÑÑ
F

F

œ ÐF ] Ñ
"

F

œ Ð] Ñ

! X

!

!

X
X

X
X

7 \

i F

X i F

X

X

7

C

C 7

C 7

The quantity  is the  of the American option under .Z Ð Ñ! 7 7initial value
We have shown that assuming that the owner of the option follows the
stopping time 7 , the non-arbitrage price of the claim must be .Z Ð Ñ! 7

Now, at time  the investor  choose a stopping time that maximizes>! can
the  of the option, since these values are constants. So let usinitial value
define
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Z œ Z Ð Ñ œ Ð] Ñ! !
− −
max max
7 f 7 f

C 7
!ßX !ßX

7 X

Then we can assume that the investor will choose a stopping time  with7‡

the property that

XC 7Ð] Ñ œ Z‡ !

This is the stopping time that maximizes the initial value of the option or,
equivalently, the  final payoff  under the martingaleexpected XC 7Ð] Ñ
measure. It is called an . With no vision into theoptimal stopping time
future, this is the best that can be done.

Let us look a bit more closely at this situation as it relates to arbitrage.
For a  option with attainable final payoffEuropean

i FX XÐ Ñ œ F ] 7‡

the non-arbitrage initial value of the option must be  for ifi F! !Ð Ñ œ Z
not, then an investor could buy the cheaper of  and the option and sellF
the more expensive of the two investments, realizing an immediate
positive return. Then, at the final time  the  option must still>X European
be open and must have payoff . Hence, the two ending positionsi FX Ð Ñ
(one long and one short) will cancel each other out, leaving the investor
with the future value of his initial profit.

However, for an American option, the situation is not as simple because
the seller of the option does not really know what the final payoff will
be. (The owner doesn't know either, but at least he has some control over
the value.)

We can say that if the option can be  for an amount  that ispurchased E
less than  then arbitrage is available to the investor who purchasesi F!Ð Ñ
the cheaper option and shorts the more expensive trading strategy . AsF
with the European option, there is an initial profit and offsetting
positions at the end, assuming that the owner does not exercise the option
until expiration.

However, if the option is offered for an amount  that is greater thanE
i F!Ð Ñ then the immediate profit is made by the  of the option (whoseller
also buys ). But the seller does not have control over the option andF
cannot be certain that the owner will not find a way to achieve a higher
payoff than that given by .F
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Thus, an arbitrage-free argument does lead to the inequality .E   Ð Ñi F!

On the other hand, who would be willing to pay more than  for thei F!Ð Ñ
American option when there is no guarantee that a payoff greater than
i FX !Ð Ñ >, obtained by following a time-  optimal stopping time, can be
arranged? Thus, we come to the conclusion that  is a fair pricei F!Ð Ñ
(more-or-less) for the American option.

EXAMPLE 4 Again referring to Example 1, we have seen that the final
payoff for the first entry time into

F œ Ð_ß "(Ñ  Ð#!ß_Ñ

is

] Ð Ñ œ
" − Ö ß ß ß ×
!Þ() œ
! − Ö ß ß ×

7 =
= = = = =
= =
= = = =

Ú
ÛÜ

if 
if 
if 

" # $ %

&

' ( )

Hence,

XC 7Ð] Ñ œ † "  † !Þ()  † ! œ !Þ&*(&
" " $

# ) )

Consider the stopping time  defined by5

5 =
= = = = =

Ð Ñ œ
# − Ö ß ß ß ×
$œ if 

otherwise
" # ( )

We leave it to the reader to show that this is a stopping time. In this case,
the (discounted) final value is

] Ð Ñ œ
$Þ# − Ö ß ×
!Þ() œ Ö ß ×
! − Ö ß ß ß ×

5 =
= = =
= = =
= = = = =

Ú
ÛÜ

if 
if 
if 

" #

$ &

% ' ( )

Hence,

XC 5Ð] Ñ œ † $Þ#  † !Þ() œ !Þ**&
" "

% %

Hence,  is a better stopping time than . In fact, as we will see,  is an5 7 5
optimal stopping time.
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What to Do At Time >5
Now suppose that at time  the investor has not yet exercised an>5
American option. Then the previous discussion is still valid mutatis
mutandis (that is, with the necessary changes). In particular, the choice of
stopping times must now be made from the set  since at time  thef5ßX 5>
investor cannot exercise at any earlier time.

If the investor stops the payoff process using a particular stopping time
7 f− ] >5ßX X then he will realize the value , whose final time-  value is7

F

F
] œ F ]

X
X

7
7 7

as before. Assuming that the final payoff  is attainable, there is aF ]X 7

self-financing trading strategy  for whichF

i FX XÐ Ñ œ F ] 7

and the arbitrage-free time-  price of this final payoff is>5

Z Ð Ñ œ ÐF ] Ñ

œ Ð Ñ

œ Ð Ð Ñ ± Ñ
F

F

œ ÐF ] ± Ñ

œ Ð] Ñ

5 5 X

5

5

X
X 5

5 5

7 \

i F

X i F Y

X Y

X

7

C

C 7

C 7

The quantity  is the  of the American option under .Z Ð Ñ5 7 7time-  value>5

Now, at time  we again assume that the investor makes the best>5
possible stopping decision, which in this case amounts to choosing a
stopping time  for which  is maximized. Accordingly, let us7 7‡ ‡

5Z Ð Ñ
define  byZ5

Z œ Z Ð Ñ œ ÐF ] ± Ñ5 5 5 5
− −
max max
7 f 7 f

C 7
5ßX 5ßX

7 X Y

and say that a stopping time  is  if7‡ optimal

X YC 7ÐF ] ± Ñ œ Z5 5 5‡

We call  the  of the American option.ÐZ Ñ5 value process
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Let us take a moment to compare the decision process at time , namely>!
to maximize according to

Z œ Z Ð Ñ œ Ð] Ñ! !
− −
max max
7 f 7 f

C 7
!ßX !ßX

7 X

and the time  decision process, namely, to maximize according to>5

Z œ Z Ð Ñ œ ÐF ] ± Ñ5 5 5 5
− −
max max
7 f 7 f

C 7
5ßX 5ßX

7 X Y

In the latter case, we are taking the maximum over a smaller set, since

f f5ßX !ßX©

so this would tend to make the maximum smaller. On the other hand, at
time  we are maximizing with more information, that is, we are>5
maximizing the  expectations , which wouldconditional X YC 7ÐF ] ± Ñ5 5

tend to make the maximum larger. Thus, we have two conflicting forces,
the result of which is that we cannot say anything about which is larger.

Definition For an American option with payoff process
Ð] ± 5 œ !ßá ß XÑ5  the arbitrage-free  isvalue process

Z œ ÐF ] ± Ñ5 5 5
−
max
7 f

C 7
5ßX

X Y

and the  isdiscounted value process

Z œ Ð] ± Ñ5 5
−
max
7 f

C 7
5ßX

X Y

The discounted value process  is called the  of theÐZ Ñ5 Snell envelop
discounted payoff process .Ð] Ñ5

Definition optimal A stopping time  is  for the interval  if it7‡ Ò5ß X Ó
maximizes the expected discounted payoff process , that isÐ] Ñ5

X Y X YC 7 C 7
7 f

Ð] ± Ñ œ Z œ Ð] ± Ñ‡

5ßX

5 5 5
−
max

that is, if  achieves the best expected discounted payoff.7‡

Optimal Stopping Times and the Snell Envelop
To simplify the notation, we will study Snell envelops in terms of
arbitrary nondiscounted processes. The only difference is whether or not
we need to include the overbar.
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Definition If  is a random process then the™ œ Ð^ ± 5 œ !ßá ß XÑ5

process  defined by” œ ÐY Ñ5

Y œ Ð^ ± Ñ5 5
−
max
7 f

C 7
5ßX

X Y

is called the  of . A stopping time  that realizes thisSnell envelop ™ 7‡

maximum over the interval , that is, for whichÒ5ß X Ó

X Y X YC 7 C 7
7 f

Ð^ ± Ñ œ Y œ Ð^ ± Ñ‡

5ßX

5 5 5
−
max

is called an  for  over . optimal stopping time ™ Ò5ß X Ó

Thus, if  is the discounted payoff process of an American option then™
the Snell envelop  is the discounted value process of the option.”

We will compute the Snell envelop of the payoff process  fromÐ] Ñ5
Example 1 a bit later, when we have some additional tools that will make
the computation simpler.

Existence of Optimal Stopping Times
The very first question that should be addressed with respect to optimal
stopping times is whether or not they exist. For  it is clear that5 œ !
optimal stopping times exist because we are simply maximizing a finite
set of constants . But for  we are maximizing nonconstantXC 7Ð^ Ñ 5  !
functions .X YC 7Ð^ ± Ñ5

Theorem 1 For any interval  an optimal stopping time for  exists.Ò5ß X Ó ™
Proof. Recall that for

c5 5ß" 5ß-œ ÖF ßá ßF ×

the conditional expectation is defined by

X c XC 7 C 7Ð^ ± Ñ œ Ð^ ± F Ñ"5 5ß? F

?œ"

-"
5ß?

Thus, for each  the random variable  is equal to theF Ð^ ± Ñ5ß? 5X cC 7

constant  on . Hence, we can find a stopping time X 7C 7Ð^ ± F Ñ F5ß? 5ß? 5ß?

which maximizes these constants, that is, for which

X XC 7 C 7
7 f

Ð^ ± F Ñ œ Ð^ ± F Ñ
5ß?

5ßX

5ß? 5ß?
−
max
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Consider the random variable

7 75
‡

?œ"

-

5ß? Fœ ""
5ß?

which maximizes the conditional expectation on each block of . Toc5

see that is a stopping time in , note that  and for any 7 f 7‡ ‡
5ßX 5   5 2   5

Ò œ 2Ó œ ÐÒ œ 2Ó  F Ñ œ ÐÒ œ 2Ó  F Ñ − Ð Ñ7 7 7 T c5 5
‡ ‡

@œ" @œ"

- -

5ß@ 5ß@ 5ß@ 2. .
as required of a stopping time.

Now, if  then= − F5ß@

 ‘^ Ð Ñ œ ^ Ð Ñ œ ^ Ð Ñ7 7 = 7 =5
‡

5
‡

5ß@
= = =Ð Ñ Ð Ñ

and so

^ œ ^ "7 75
‡

5ß? 5ß?
"
?œ"

-

F

Hence, for any 7 f− 5ßX

X c X c

X c

X c

X c

X c

C 7 C 7

C 7

C 7

C 7

C 7

Ð^ ± Ñ œ Ð^ " ± Ñ

  Ð^ " ± Ñ

œ Ð^ ± Ñ"

œ Ð^ ± Ñ "

œ Ð^ ± Ñ

5
‡

5ß? 5ß?

5ß?

5ß?

5ß?

5 F 5

?œ"

-

?œ"

-

F 5

?œ"

-

5 F

5 F

?œ"

-

5

"
"
"

"

as required of an optimal stopping time.

We should also prove that the Snell envelop is -adapted.…

Theorem 2 The Snell envelop  is -adapted.ÐY Ñ5 …
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Proof. The random variable  is the maximum of a finite number ofY5

random variables , each of which is -measurable. Hence,X c cC 7Ð^ ± Ñ5 5

so is .Y5

Characterizing the Snell Envelop
Consider again the situation of the investor who, at time  needs to>5
make a decision among the stopping times in . When casting aboutf5ßX

for an optimal stopping time, he can divide the candidates  into threef5ßX

subsets based on the stopping event for the current time .>5

The investor could simply decide to stop now (at time ) and be done>5
with it, he could decide not to stop at time  under any circumstances, or>5
he could decide upon a stopping time that may stop now or may stop
later, depending on the state of the economy. In symbols, the set  isf5ßX

the disjoint union

f f f f5ßX 5"ßX 5ß5 5ßX
‡œ  

corresponding to the following:

1) Do not stop now, that is, stop at time  or later>5"

f 7 f 75"ßX 5ßXœ Ö − ± Ò œ 5Ó œ g×

2) Stop now, at time 5

f 7 f 7 H5ß5 5ßXœ Ö5" × œ Ö − ± Ò œ 5Ó œ ×H

3) May stop at time  or may stop later>5

f 7 f 7 H5ßX
‡

5ßXœ Ö − ± Ò œ 5Ó Á gß ×

We wish to show that the Snell envelop can be computed without the
need to consider stopping times of type 3). Note that we are  sayingnot
that there is no optimal stopping time of type 3), but only that the values
Y5  can be computed without regard to stopping times of type 3).

The mathematical version of this statement is that the Snell envelop
satisfies

Y œ Ö^ ß Ð^ ± Ñ×5 5 5
−

max max
7 f

C 7
5"ßX

X c

Note that the maximum is now being taken over the set .f5"ßX
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Theorem 3 The Snell envelop satisfies

Y œ Ö^ ß Ð^ ± Ñ×5 5 5
−

max max
7 f

C 7
5"ßX

X c

for all .5 œ !ßá ß X
Proof. First, since  is a (constant) stopping time and since7 œ 5
f f5"ßX 5ßX© , we clearly have

Y œ Ð^ ± Ñ

  Ö Ð^ ± Ñß Ð^ ± Ñ×

œ Ö^ ß Ð^ ± Ñ×

5 5
−

5 5 5
−

5 5
−

max

max max

max max

7 f
C 7

C C 7
7 f

7 f
C 7

5ßX

5"ßX

5"ßX

X c

X c X c

X c

We must establish the reverse inequality. Let  and consider the7 f− 5ßX

stopping time  defined from  by postponing any stopping from time 7 7w
5>

to , that is>5"

7 = 7
7 = = 7

= 7
wÐ Ñ œ Ö ß 5  "× œ

Ð Ñ − Ò  5Ó
5  " − Ò œ 5Ó

max œ if 
if 

Since the maximum of two stopping times is a stopping time, we have
7 fw

5"ßX− .

Now, since  we haveÒ  5Ó œ Ò œ 5Ó − Ð Ñ7 7 5 c-
5

X c X c X c

X c X c

X c

X c

C 7 C 7 C 77 7

C C 77 7

C 7

5 f
C 7

Ð^ ± Ñ œ Ð^ " ± Ñ  Ð^ " ± Ñ

œ Ð^ " ± Ñ  Ð^ " ± Ñ

Ÿ Ö^ ß Ð^ ± Ñ×

œ Ö^ ß Ð^ ± Ñ×

5 5 5Ò œ5Ó Ò 5Ó

5 5 5Ò œ5Ó Ò 5Ó

5 5

5 5
−

w

w

5"ßX

max
max max

But the left-hand side is valid for all  and so7 f− 5ßX

Y œ Ð^ ± Ñ Ÿ Ö^ ß Ð^ ± Ñ×5 5 5 5
− −
max max max
7 f 5 f

C 7 C 7
5ßX 5"ßX

X c X c

as desired.

The most important use of the previous formula is that from it we can
derive a backwards recurrence relation for . Note thatY5

Y œ Ð^ ± Ñ œ Ð^ ± Ñ œ ^X X X X X
−
max
7 f

C 7 C
X ßX

X c X c

This provides the initial step in the backwards recurrence.
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Let us look more closely at the random variable

\ œ Ð^ ± Ñmax
7 f

C 7
−

5
5"ßX

X c

that appears in the Theorem 3. If the conditioning was with respect to
c5" 5" then  would just be . This prompts us to condition further\ Y
and use the tower property of conditional expectation. First, we need to
mention that in general for any two random variables  and  we have\ ]

max maxÖ Ð\ ± Ñß Ð\ ± Ñ× Ÿ Ð Ö\ß ] × ± ÑX c X c X c

We leave proof of this as an exercise. Now we have

\ œ Ð^ ± Ñ

œ Ð Ð^ ± Ñ ± Ñ

Ÿ Ð Ö Ð^ ± Ñ× ± ÑÑ

œ ÐY ± Ñ

max

max

max

7 f
C 7

7 f
C C 7

C C 7
7 f

C

−
5

−
5" 5

−
5" 5

5" 5

5"ßX

5"ßX

5"ßX

X c

X X c c

X X c c

X c

and so

\ Ÿ ÐY ± ÑX cC 5" 5

For the reverse inequality, let  be an optimal stopping for the7 f‡
5"ßX−

interval , that is,Ò> ß X Ó5"

Y œ Ð^ ± Ñ5" 5"X cC 7‡

Then

X c X X c c

X c

X c

C C C 7

C 7

7 f
C 7

ÐY ± Ñ œ Ð Ð^ ± Ñ ± Ñ

œ Ð^ ± Ñ

Ÿ Ð^ ± Ñ

œ \

5" 5 5" 5

5

−
5

‡

‡

5"ßX

max

Hence,

\ œ ÐY ± ÑX cC 5" 5

and we arrive at the following recurrence relation for the Snell envelop.

Theorem 4 The Snell envelop satisfies the backward recurrence relation
1) UX Xœ ^
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2) 

Y œ Ö^ ß ÐY ± Ñ×5 5 5" 5max X cC

for all .5 œ !ßá ß X  "

Now we can compute the Snell envelop of the payoff process from
Example 1.

EXAMPLE 5 Again referring to Example 1, let us compute the Snell
envelop of the payoff process . First, we haveÐ] Ñ5

Y œ ]$ $

Next, we need

X c X c

=

=

=

=

C CÐY ± Ñ œ Ð] ± Ñ œ

Ð&Þ#'  !Þ()Ñ œ $Þ# − F

Ð!Þ()  !Ñ œ !Þ$* − F

Ð!Þ()  !Ñ œ !Þ$* − F

! − F

$ # $ #

"
# #ß"
"
# #ß#
"
# #ß$

#ß%

ÚÝÝÝÛÝÝÝÜ

if 
if 
if 
if 

from which we get

Y œ Ö] ß ÐY ± Ñ× œ

$Þ# œ ß
!Þ$* œ ß
!Þ$* œ ß
! œ ß

# # $ #

" #

$ %

& '

( )

max X c

= = =
= = =
= = =
= = =

C

ÚÝÝÛÝÝÜ
if 
if 
if 
if 

Next, we need

X c
= = = = =

= = = = =
CÐY ± Ñ œ

Ð$Þ#  !Þ$*Ñ œ "Þ(*& œ ß ß ß

Ð!Þ$*  !Ñ œ !Þ"*& œ ß ß ß
# "

"
# " # $ %
"
# & ' ( )

 if 
if 

which gives

Y œ Ö] ß ÐY ± Ñ×

œ ÐY ± Ñ

œ
"Þ(*& œ ß ß ß
!Þ"*& œ ß ß ß

" " # "

# "

" # $ %

& ' ( )

max X c

X c

= = = = =
= = = = =

C

C

œ if 
if 

Finally,

Y œ Ö] ß ÐY ± Ñ× œ Ö!ß Ð"Þ(*&  !Þ"*&Ñ× œ !Þ**&
"

#
! ! " !max maxX cC
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Let us recall from Example 4 that the stopping time  defined by5

5 =
= = = = =

Ð Ñ œ
# − Ö ß ß ß ×
$œ if 

otherwise
" # ( )

has expected (discounted) final value

XC 5Ð] Ñ œ † $Þ#  † !Þ() œ !Þ**&
" "

% %

which is equal to . Hence,  is indeed an optimal stopping time. InY! 5
fact, as we will see,  is the  optimal stopping time in the sense5 smallest
that it stops before any other optimal stopping time. (Observe that we
could have waited until time  in states  and  and still achieved>$ ( )= =
optimality.)

This is a good time to emphasize a point about optimal stopping times,
namely, optimal stopping times represent the best  as to when toguess
stop without being able to see into the future. Thus, an optimal stopping
time is not  to produce the best possible payoff. Indeed,guaranteed
looking at Figure 1, it is clear that the best possible exercise procedure
involves exercising at time  if the final state is  but waiting until time># #=
> >$ " # if the final state is . However, at time  we do not know which state=
will prevail:  or  so this plan is  a stopping time.= =" # not

The Smallest Dominating Supermartingale

It is clear from condition 2) of Theorem 4 that

X cCÐY ± Ñ Ÿ Y5" 5 5

which is the condition that  be a supermartingale. An -adaptedY5 …
process  is an  ifÐ\ Ñ5 …-supermartingale

X cÐ\ ± Ñ Ÿ \5" 5 5

It is also clear that

^ Ÿ Y5 5

that is,   . It is not hard to see using the recurrenceY ^5 5dominates
relation that  is the  supermartingale that dominates .Y ^5 5smallest

Theorem 5 The Snell envelop  is the smallest -supermartingale thatY5 …
dominates .^5

Proof. We have seen that  is a supermartingale that dominates .Y ^5 5

Suppose that  is a supermartingale that dominates . This isZ ^5 5
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equivalent to the single inequality

Z   Ö^ ß ÐZ ± Ñ×5 5 5" 5max X cC

We can now proceed by backward induction using the recurrence
relation. For the basis step in the induction, we have

Z   ^ œ YX X X

Assuming that  thenZ   Y5" 5"

Z   Ö^ ß ÐZ ± Ñ×   Ö^ ß ÐY ± Ñ× œ Y5 5 5" 5 5 5" 5 5max maxX c X cC C

and we are done.

Additional Facts About Martingales
In order to continue our discussion of optimal stopping times, we need
some additional results relating to martingales and supermartingales.

Theorem 6
1) If  is an -martingale then for all — … 4 Ÿ 5

X XÐ\ Ñ œ Ð\ Ñ4 5

2) If  is an -supermartingale then for all — … 4 Ÿ 5

X XÐ\ Ñ   Ð\ Ñ4 5

Proof.  For a martingale, we have

X cÐ\ ± Ñ œ \5 4 4

Taking expected values and using the tower property gives

X X X c XÐ\ Ñ œ Ð Ð\ ± ÑÑ œ Ð\ Ñ5 5 4 4

For submartingales, the proof is similar.

Stopping a Process: Doob's Optional Stopping Theorem

We begin with a formal definition of sample path for a stochastic
process.

Definition Consider a stochastic process . For each— œ Ð\ ßá ß\ Ñ! X

element  the sequence= H−

Ð\ Ð Ñßá ß\ Ð ÑÑ! X= =

is called a . sample path
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Intuitively, to stop a stochastic process, we stop the sample path for each
= H 7 7 =− Ð Ñ when  tells us to do so, that is, at time . Thus, a sample path
looks like this

\ Ð Ñß \ Ð Ñßá ß\ Ð Ñß\ Ð Ñßá! " Ð Ñ Ð Ñ= = = =7 = 7 =

Thus, the indices in this path are equal to  and8 • Ð Ñ œ Ö8ß Ð Ñ×7 = 7 =min
we can write

\ Ð Ñß \ Ð Ñßá ß\ Ð Ñß\ Ð Ñßá!• • 8• Ð Ñ Ð8"Ñ• Ð Ñ7 = 7 = 7 = 7 =( ) 1 ( )= = = =

Definition Let  be a stochastic process adapted to a— œ Ð\ ßá ß\ Ñ! X

filtration  and let  be a stopping time  on . The  or… 7 7 … stopped process
sampled process is defined by

—7 7
7œ Ð\ Ñ œ Ð\ Ñ œ Ð\ ßá ß\ Ñ5 5• •! •Xk k

(Note that the first three expressions are just notation for the fourth.)

Observe that for each 8

\ œ \ " \ "8• 3 8

3œ"

8"

Ö œ3× Ö  8×7 7 7" (1)

The following theorem is one of the key results in martingale theory. (A
stopping time is also called an  random variable.)optional

Theorem 7 (Doob's Optional Sampling Theorem) Let  be a— œ Ð\ Ñ5
martingale (or supermartingale) and  a stopping time. Then the stopped7
process  is also a martingale (or supermartingale).—7

Proof. We know that

X YÐ\ ± Ñ œ \8 8" 8"

Starting from the expression (1) we have

X Y X Y X YÐ\ ± Ñ œ Ð\ " ± Ñ  Ð\ " ± Ñ8• 8" 3 8" 8 8"

3œ"

8"

Ö œ3× Ö  8×7 7 7"
Now, this simplifies quite a bit since  for ,Ö œ 3× − Ð Ñ 3 Ÿ 8  "7 T c8"

\ Ö   8× − Ð Ñ3 8" 8" is -measurable and  this becomesc 7 T c
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X Y X YÐ\ ± Ñ œ \ "  " Ð\ ± Ñ

œ \ "  " \

œ \ "  " \  " \

œ \ "

8• 8" 3 8 8"

3œ"

8"

Ö œ3× Ö  8×

3œ"

8"

3 8"Ö œ3× Ö  8×

3œ"

8#

3 8" 8"Ö œ3× Ö œ8"× Ö  8×

3œ"

8#

3 Ö œ3×

7 7 7

7 7

7 7 7

7

"
"
"
"  " \

œ \

Ö  8"× 8"

Ð8"Ñ•

7

7

as desired. The proof for a supermartingale is almost identical.

The Doob Decomposition

Finally, we need the following decomposition result.

Theorem 8 (The Doob Decomposition) Let  be an -— …œ Ð\ ßá ß\ Ñ! X

adapted stochastic process.
1) There is a unique martingale  and a uniqueŒ œ ÐQ ßá ßQ Ñ! X

predictable process  such that œ ÐE ßá ßE Ñ" X

\ œ Q E5 5 5

with .E œ !!

2) If  is a supermartingale then  is nondecreasing, that is— 
E   E5" 5 .

Proof. For part 1), set ,  and for Q œ \ E œ ! 5  !! ! !

Q œ Ò\  Ð\ ± ÑÓ  \5 3 3 3" !

3œ"

5" X YC

and . Then it is easy to check that the desired propertiesE œ Q \5 5 5

hold. For part 2), suppose that  is a supermartingale. Then—

Q E œ \   Ð\ ± Ñ

œ ÐQ ± Ñ  ÐE ± Ñ

œ Q E

5 5 5 5" 5

5" 5 5" 5

5 5"

X Y

X Y X Y

and so .E Ÿ E5 5"
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Characterizing Optimal Stopping Times
Note that if two discrete random variables satisfy  and\ Ÿ ]
X X CC CÐ\Ñ œ Ð] Ñ then because  is strongly positive, it follows that
\ œ ] . This fact will prove very useful.

Armed with the previous additional facts about martingales and
supermartingales, we can return to the matter at hand, namely
characterizing optimal stopping times.

We begin by exploring what happens if we stop the process . SinceÐY Ñ5
Y5  is a supermartingale, it follows by Doob's optional sampling theorem
that for any stopping time  the stopped process  is also a7 f− ÐY Ñ!ßX 5

7

supermartingale, that is

X cC
7 7ÐY ± Ñ Ÿ Y5" 55

Moreover, since  it follows that the final values satisfy .^ Ÿ Y ^ Ÿ Y5 5 7 7

The fact that  is a supermartingale and  implies the chain ofÐY Ñ ^ Ÿ Y5
7

7 7

inequalitites

X X X X XC 7 C 7 C C C
7 7 7Ð^ Ñ Ÿ ÐY Ñ œ ÐY Ñ Ÿ â Ÿ ÐY Ñ Ÿ â Ÿ ÐY Ñ œ YX 5 ! !

Now, if  is an  stopping time for , that is,7‡ optimal Ò!ß X Ó

Y œ Ð^ Ñ! XC 7‡

then the previous sequence of inequalitites becomes a sequence of
equalitites. The first of these equalities

X XC 7 C 7Ð^ Ñ œ ÐY Ñ‡ ‡

implies, since  and  is strongly positive, that . (See^ Ÿ Y ^ œ Y7 7 7 7‡ ‡ ‡ ‡C
theremark at the beginning of this section.) Looking further down the
chain of inequalities we also see that

X XC C
7 7ÐY Ñ œ ÐY Ñ5 5"

‡ ‡

The supermartingale property now implies that  is in fact aÐY Ñ5
7‡

martingale. To see this, we know that  is a supermartingale,ÐY Ñ5
7‡

X cC
7 7ÐY ± Ñ Ÿ Y5 5"5"
‡ ‡

Taking the expected value of the left side gives, by the tower property
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X X c XC C C
7 7Ð ÐY ± ÑÑ œ ÐY Ñ5 55"
‡ ‡

and do both sides of the inequality have the same expected value and
hence are the same. In other words,  is a martingaleÐY Ñ5

7‡

X cC
7 7ÐY ± Ñ œ Y5 5"5"
‡ ‡

For the converse, suppose that  and that  is a martingale.^ œ Y Y7 7
7
5

Then the sequence of inequalities is a sequence of equalities and in
particular,

Y œ Ð^ Ñ! XC 7

which implies that  is optimal for the interval .7 Ò!ß X Ó

We now have a characterization of optimal stopping times.

Theorem 9 A stopping time  is optimal for the interval  if7 f− Ò!ß X Ó!ßX

and only if
1) ^ œ Y7 7

2)  is a martingale.Y5
7

Optimal Stopping Times and the Doob Decomposition
We have seen that a stopping time  is optimal if and only if 7 ^ œ Y7 7

and  is a martingale. This prompts us to take a closer look at”7 7œ ÐY Ñ5

when  is a martingale.”7

We have seen that the Snell envelop

” œ ÐY ßá ßY Ñ! X

is a supermartingale. Using Doob's decomposition, we can write

” Œ œ 

where  is a martingale and  isŒ œ ÐQ ßá ßQ Ñ œ ÐE ßá ßE Ñ! X " X

predictable and nondecreasing and .E œ !!

Suppose we now stop this sequence

” Œ 7 7 7 7 7 7 7œ  œ ÐQ E ßá ßQ E Ñ! ! X X

Since the difference of martingales is a martingale and since  is aŒ7

martingale, we see that  is a martingale if and only if”7
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7 7 7œ ÐE ßá ßE Ñ! X

is a (predictable) martingale. However, it is easy to see that a predictable
martingale is a constant sequence, that is

E œ â œ E! X
7 7

But  and so  is a martingale if and only if  is the zeroE œ !!
7 7 7” 

process.

Now, for any  the sequence  is= H =− E Ð Ñ5
7

E Ð Ñßá ßE Ð Ñß E Ð Ñßá ßE Ð Ñ! Ð Ñ" Ð Ñ Ð Ñ= = = =7 = 7 = 7 =

Since this sequence is nondecreasing from , it is the zero sequence if!
and only if

ÒE ÓÐ Ñ œ E Ð Ñ œ !7 7 == =Ð Ñ

Hence,  if and only if , that is,  is a martingale if and7 7
7œ ! E œ ! Y

only if .E œ !7

Theorem 10 Let  be the Snell envelop of . For a stopping” œ ÐY Ñ Ð^ Ñ5 5

time  the process stopped process  is a martingale if7 f ”− œ ÐY Ñ!ßX 5
7 7

and only if  where  is the predictable process in theE œ ! œ ÐE Ñ7  5

Doob decomposition of .”

The Smallest Optimal Stopping Time
The previous theorem makes it easy to determine the smallest optimal
stopping time. First, we recall the recurrence formula

Y œ Ö^ ß ÐY ± Ñ×5 5 5" 5max X cC

Using the Doob decomposition, we notice that

X c X c X cC C CÐY ± Ñ œ ÐQ ± Ñ  ÐE ± Ñ

œ Q E

œ ÐQ E Ñ  ÐE  E Ñ

œ Y  ÐE  E Ñ

5" 5 5" 5 5" 5

5 5"

5 5 5" 5

5 5" 5

and so

Y œ Ö^ ßY  ÐE  E Ñ×5 5 5 5" 5max
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Hence, the  inequalitystrict

Y  ^5 5

implies that

E œ E5" 5

It follows that  the first time  that  we do have theprior to > Y œ ^5 5 5

strict inequality  ( ) and so  ( ). But Y  ^ 3  5 E œ E 3  5 E œ !3 3 3" 3 !

and so

! œ E œ â œ E! 5

This prompts us to define  by7min

7 = = =minÐ Ñ œ Ö5 ± ^ Ð Ñ œ Y Ð Ñ×min 5 5

which exists since . In addition,  is the first entry^ Ð Ñ œ Y Ð ÑX X= = 7min
time of the adaptd process  into the Borel set  and so is aÐ^  Y Ñ Ö!×5 5

stopping time. By definition we have

^ œ Y7 7min min

If  is an optimal stopping time then it must be the smallest optimal7min
stopping time because all optimal stopping times  satisfy , that7 ^ œ Y7 7

is . Moreover, we have just seen that^ Ð Ñ œ Y Ð Ñ7 = 7 =Ð Ñ Ð Ñ= =

! œ E Ð Ñ œ E Ð Ñ œ â œ E Ð Ñ! " Ð Ñ= = =7 =min

Hence , which implies that  is a martingale. Finally,E œ !7
7

min
min”

Theorem 11 The smallest optimal stopping time is

7 = = =minÐ Ñ − Ö5 ± ^ Ð Ñ œ Y Ð Ñ×min 5 5

EXAMPLE 6 In Example 4 we defined the stopping time

5 =
= = = = =

Ð Ñ œ
# − Ö ß ß ß ×
$œ if 

otherwise
" # ( )

and showed in Example 5 that  is optimal. In fact, it is easy to see that 5 5
has the property

5 = = =Ð Ñ − Ö5 ± ^ Ð Ñ œ Y Ð Ñ×min 5 5

and so it is the smallest optimal stopping time.
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The Largest Optimal Stopping Time
In view of Theorem 10, in casting about for the largest optimal stopping
time, it is natural to consider the function

7 = =maxÐ Ñ œ Ö5 ± E Ð Ñ œ !×max 5

which exists since . Since any optimal stopping time  satisfiesE œ !! 7
E œ !7  if  is an optimal stopping time then it must be the largest7max
optimal stopping time. Note that  can also be defined by7max

7 =
= =

maxÐ Ñ œ
Ö5 ± E Ð Ñ  !× Ö5 ± E Ð Ñ  !× Á g

Xœ min 5" 5"if 
otherwise

and since this is the first entry time (into ) of the adapted processÐ!ß_Ñ
 7 we see that  is a stopping time. Also, since  we know bymax E œ !7max

Theorem 10 that  is a martingale. Thus, to show that  isÐY Ñ5
7max 7max

optimal, we need only show that .Y œ ^7 7max max

Once again we look at the recurrence relation

Y œ Ö^ ß ÐY ± Ñ×5 5 5" 5max X cC

which, using Doob's decomposition can be written

Y œ Ö^ ßY  ÐE  E Ñ×5 5 5 5" 5max

But for  we have5 œ Ð Ñ7 =max

E Ð Ñ  E Ð Ñ œ E Ð Ñ  !7 7 7max max max" "= = =

and so the maximum above is just , that is^5

Y Ð Ñ œ ^ Ð Ñ7 7max max= =

Thus  as desired.Y œ ^7 7max max

Theorem 12 The largest optimal stopping time is

7 = =

= =

maxÐ Ñ œ Ö5 ± E Ð Ñ œ !×

œ
Ö5 ± E Ð Ñ  !× Ö5 ± E Ð Ñ  !× Á g

X

max
min

5

5" 5"œ if 
otherwise

where

Y œ Q E5 5 5

is the Doob decomposition.
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Exercises
1. Show that the first entry time into any set of the form  is aÐ+ß ,Ñ

stopping time.
2. Show that the first entry time into any Borel set  is a stopping time.F
3. Show that the first time that a stock's price doubles its initial price is

a stopping time.
4. Show that the first time that a stock's price doubles its previous price

is a stopping time, that is, the random variable

7 =
= = = =

Ð Ñ œ
Ö5 ± W Ð Ñ   #W Ð Ñ× Ö5 ± W Ð Ñ   #W Ð Ñ× Á g

Xœ min 5 5" 5 5"if 
otherwise

is a stopping time.
5. Show that the first  time from a set of the form  is aexit Ð+ß ,Ñ

stopping time.
6. Prove that the maximum, minimum or sum of two stopping times is a

stopping time. How about the difference?
7. Prove that for any random variables  and \ ]

max maxÖ Ð\ ± Ñß Ð\ ± Ñ× Ÿ Ð Ö\ß ] × ± ÑX c X c X c

8. Prove that since  for all , it follows that  for any^ Ÿ Y 5 ^ Ÿ Y5 5 7 7

stopping time .7
9. Prove that if two discrete random variables satisfy  and\ Ÿ ]

X X CC CÐ\Ñ œ Ð] Ñ then because  is strongly positive, it follows that
\ œ ] .

10. Prove that if  is a martingale and  isÐE ßá ßE Ñ ÐE ßá ßE Ñ! X " X

predictable then  is a constant sequence, that isÐE Ñ5

E œ â œ E! X
7 7

11. For the CRR model with

? œ "Þ#ß . œ !Þ)ß < œ !ß W œ #!!

compute the price process, payoff process for an American call with
O œ #" and the Snell envelop. Find the first optimal stopping time.

12. Write an Excel spreadsheet that given  and  will compute?ß .ß <ß W O!

the price process, payoff process for an American call/put with strike
price  and the Snell envelop.O
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Appendix

Convexity and the Separation Theorem
In this appendix, we develop the necessary material on convexity.

Convex, Closed and Compact Sets
We shall need the following concepts.

Definition
1) Let . The any linear combination of the formB ßá ß B −" 5

8‘

> B â > B" " 5 5

where

> â > œ "

! Ÿ > Ÿ "
" 5

3

is called a  of the vectors .convex combination B ßá ß B" 5

2) A subset  is  if whenever  then the entire line\ © Bß C − \‘8 convex
segment between  and  also lies in , in symbolsB C \

Ö B  C ± =  > œ "ß ! Ÿ =ß > Ÿ "× © \s t

3) A subset  is a  if  implies that  for all\ © B − \ B − \‘ !8 cone
!  !.

4) A subset  is  if whenever  is a convergent\ © B − \‘8
8closed

sequence of points in  then the limit is also in . Simply put, a\ \
subset is closed if it is closed under the taking of limits.

5) A subset  is  if it is both closed and bounded. \ © ‘8 compact

We will also have need of the following facts from analysis.

1) A continuous function that is defined on a compact set  in  takes\ ‘8

on its maximum and minimum values at some points within the set
\.

2) A subset  of  is compact if and only if every sequence in  has\ \‘8

a subsequence that converges in .\

Theorem 1 Let  and  be subsets of . Define\ ] ‘8

\  ] œ Ö+  , ± + − \ß , − ] ×
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1) If  and  are convex then so is \ ] \  ]
2) If  is compact and  is closed then  is closed.\ ] \  ]
Proof. For 1) let  and  be in . The line segment+  , +  , \  ]! ! " "

between these two points is

>Ð+  , Ñ  Ð"  >ÑÐ+  , Ñ œ >+  Ð"  >Ñ+  >,  Ð"  >Ñ, − \  ]! ! " " ! " ! "

and so  is convex.\  ]

For part 2) let  be a convergent sequence in . Suppose that+  , \  ]8 8

+  , Ä - - − \  ] +8 8 8. We must show that . Since  is a sequence in
the compact set , it has a convergent subsequence  whose limit \ +85

!
lies in . Since  and  we can can conclude that\ +  , Ä - + Ä8 8 85 5 5

!
, Ä -  ] -  − ]85

! !. Since  is closed, we must have  and so
- œ  Ð-  Ñ − \  ]! ! , as desired. 

Convex Hulls
We will have use for the notion of convex hull.

Definition convex hull The  of a set  of vectors in  isW œ ÖB ßá ß B ×" 5
8‘

the smallest convex set in  that contains the vectors . We‘8
" 5B ßá ß B

denote the convex hull of  by . W ÐWÑV

Here is a characterization of convex hulls.

Theorem 2 Let  be a set of vectors in . Then theW œ ÖB ßá ß B ×" 5
8‘

convex hull  is the set V ?ÐWÑ

? Dœ Ö> B â > B ± ! Ÿ > Ÿ "ß > œ "×" " 5 5 3 3

of all convex combinations of vectors in .W
Proof. First, we show that  is convex. So let?

\ œ > B â > B

] œ = B â = B
" " 5 5

" " 5 5

be convex combinations of  and let . ThenW +  , œ "ß ! Ÿ +ß , Ÿ "

+\  ,] œ +Ð> B â > B Ñ  ,Ð= B â = B Ñ

œ Ð+>  ,= ÑB â Ð+>  ,= ÑB
" " 5 5 " " 5 5

" " " 5 5 5

But this is also a convex combination of  becauseW
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! Ÿ +>  ,= Ÿ
Ð+  ,Ñ= œ = Ÿ " > Ÿ =
Ð+  ,Ñ> œ > Ÿ " >  =3 3

3 3 3 3

3 3 3 3
œ

and

" " "
3œ" 3œ" 3œ"

5 5 5

3 3 3 3Ð+>  ,= Ñ œ + >  , = œ +  , œ "

Thus,

\ß ] − Ê +\  ,] −? ?

which says that  is convex. It is also clear that  for all  and so? ?B − 33

? is a convex set that contains all of the vectors in . It follows thatW

V ?ÐWÑ ©

To show the reverse inclusion, we must show that any convex set that
contains  must also contain . So suppose that  is a convex set thatW H?
contains . Then  contains all convex combinations of any two vectorsW H
in . Consider a convex combination, say  of threeW > B  > B  > B" " # # $ $

such vectors. We can write

> B  > B  > B œ > B  Ð>  > ÑÐ B  B Ñ
> >

>  > >  >
" " # # $ $ " " # $ # $

# $

# $ # $

Now, the expression in the parentheses at the far right is a convex
combination of two vectors in  and so is in . If we denote it by  thenW H .

> B  > B  > B œ > B  Ð>  > Ñ." " # # $ $ " " # $

But the expression on the right side of the equal sign is a convex
combination of two elements of  and so is in . Thus, we see that anyH H
convex combination of three vectors in  is in . An inductive argumentW H
along these lines, which we leave as an exercise, can be used to furnish a
complete proof. 

Linear and Affine Hyperplanes
We next discuss hyperplanes in . A  in  is an‘ ‘8 8linear hyperplane
Ð8  "Ñ-dimensional subspace of . As such, it is the solution set of a‘8

linear equation of the form

+ B â + B œ !" " 8 8

or
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! † B œ !

where  and . Geometrically speaking,! œ Ð+ ßá ß + Ñ B œ ÐB ßá ß B Ñ" 8 " 8

this is the set of all vectors in  that are perpendicular to the vector .‘ !8

An  is a linear hyperplane that has been translated by(affine) hyperplane
a vector . Thus, it is the solution set to an equation of the" œ Ð, ßá ß , Ñ" 8

form

+ ÐB  , Ñ â + ÐB  , Ñ œ !" " " 8 8 8

or

+ B â + B œ + , â+ ," " 8 8 " " 8 8

or finally

! ! "† B œ †

Let us write , where  is a vector in  and  is a real number to[ ! ! ‘Ð ß ,Ñ ,8

denote the hyperplane

[ ! ‘ !Ð ß ,Ñ œ ÖB − ± † B œ ,×8

Note that the hyperplane

[ ! ! ‘ ! !Ð ß Ñ œ ÖB − ± † B œ ×l l l l# #8

contains the point , which is the point of  closest to the origin,! [ !Ð ß ,Ñ
since

! ! ) ! !† B œ Ê B œ Ê B  l l l l l l l l l l# cos

A hyperplane divides  into ‘8 closed halfspaces

[ ! ‘ !

[ ! ‘ !


8


8

Ð ß ,Ñ œ ÖB − ± † B   ,×

Ð ß ,Ñ œ ÖB − ± † B Ÿ ,×

and two open halfspaces

[ ! ‘ !

[ ! ‘ !

‰ 8


‰ 8

Ð ß ,Ñ œ ÖB − ± † B  ,×

Ð ß ,Ñ œ ÖB − ± † B  ,×

It is not hard to show that

[ ! [ ! [ ! Ð ß ,Ñ  Ð ß ,Ñ œ Ð ß ,Ñ
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and that ,  and  are pairwise disjoint and[ ! [ ! [ ! 
‰ ‰Ð ß ,Ñ Ð ß ,Ñ Ð ß ,Ñ

[ ! [ ! [ ! ‘ 
‰ ‰ 8Ð ß ,Ñ  Ð ß ,Ñ  Ð ß ,Ñ œ 

Definition completely separated The subsets  and  of  are  by a\ ] ‘8

hyperplane  if  lies in one open halfspace determined by[ !Ð ß ,Ñ \
[ !Ð ß ,Ñ ] and  lies in the other. Thus, one of the following holds

1)  for all ! !† B  ,  † C B − \ß C − ]
2)  for all  ! !† C  ,  † B B − \ß C − ]

Separation
Now that we have the preliminaries out of the way, we can get down to
some theorems. The first is a well-known separation theorem that is the
basis for many other separation theorems.

Theorem 3 Let  be a closed convex subset of  that does  containG ‘8 not
the origin, that is, . Then there is a nonzero  for which! Â G −! ‘8

! !† B   l l#
for all . Hence, the hyperplane  completely separatesB − G Ð ß Ñ[ ! !"

#
#l l

! G and .
Proof. First we want to show that  contains a point that is closest to theG
origin from among all points in . The functionG

.ÐBÑ œ Bl l
which measures the distance from  to the origin is a continuousB
function. Although  need not be compact, if we choose a real number G =
such that the closed ball  of radius  aboutF Ð!Ñ œ ÖD − ± D Ÿ =× ==

8‘ l l
the origin intersects , then the intersectionG

G œ G  F Ð!Ñw
=

is both closed and bounded and so is compact. The distance function
therefore achieves its minimum on this set , say at the pointGw

! − G © Gw . We want to show that

! !† B   l l#
for all .B − G
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Suppose to the contrary that for some  we hadB − G

! !† B  l l#
Then since  is convex, the line segment from  to  must be containedG B!
in G

ÖÐ"  >Ñ  >B ± ! Ÿ > Ÿ "× © G!

Let us look at the distance from a typical point on this line segment to the
origin. If we discover that one point on this line is strictly closer than !
we will have a contradiction because  is closest to the origin from!

among all points in . This contradiction will show that G † B  ! !l l#
for all , as desired.B − G

So we compute

mÐ"  >Ñ  >Bm œ ÐÐ"  >Ñ  >BÑ † ÐÐ"  >Ñ  >BÑ

œ Ð"  >Ñ m m  #>Ð"  >Ñ † B  > mBm

œ Ðm m  B  † BÑ>  Ð † B  # Ñ> 

! ! !

! !

! ! ! ! !

#

# # # #

# ## # #l l l l l l
Now, this is a quadratic in  that is concave up and has its minimum>
value at

> œ
#  † B

#Ðm m  B  † BÑ

l ll l! !

! !

#

# #

Since we are assuming that  we see that  and so the! !† B  !  >l l#
minimum value of  is strictly less than , which ismÐ"  >Ñ  >Bm! !l l
what we wanted to show. 

The next result brings us closer to our goal.

Theorem 4 Let  be a compact convex subset of and let  be aG W‘8

subspace of  such that . Then there exists a nonzero‘8 G  W œ g
! ‘− 8 such that
1)  for all  (that is, )! 5 5 !† œ ! − W − W¼

2)  for all ! # ! #†   − Gl l#
Hence, the hyperplane  completely separates  and .[ ! !Ð ß Ñ W G"

#
#l l

Proof. We consider the set

E œ W  G

which is closed since  is closed and  is compact. It is also convexW G



308

since  and  are convex. Furthermore,  because if W G ! Á E ! œ 5 #
then  would be in the intersection , which is empty.# 5œ  G  W

So we can apply Theorem 3 to deduce the existence of a nonzero ! ‘− 8

such that

! !† B   l l#
for all . Let  be an arbitrary element of .B − E œ W  G B œ  W  G5 #
Then

! 5 ! # ! 5 # !†  † œ † Ð  Ñ   l l#
Now, if  is nonzero for any value of , we can replace  by a! 5 5 5† − W
scalar multiple of  to make the left side negative, which is impossible.5
Hence, we must have  for all , which is 1) above. Since! 5 5† œ ! − W
! 5† œ ! we also get

! # !†   l l#
for all , as desired. # − G

Now we come to our main goal.

Theorem 5 Let  be a subspace of  for which , whereW W  œ Ö!×‘ ‘8 8


‘8
 " 8 3œ ÖÐB ßá ß B Ñ ± B   !×

is the nonnegative orthant in . Then  contains a strongly positive‘8 ¼W
vector .! ¦ !
Proof. We would like to separate  from something, but we cannotW
separate it from . Consider instead the convex hull  of the standard‘ ?8



basis vectors  in % % ‘" 8
8
ßá ß

? % % Dœ Ö> â > ± ! Ÿ > Ÿ "ß > œ "×" " 8 8 3 3

It is clear that  contains only strongly positive vectors, that is,?
? ‘© 8

 and is convex. It is also closed and bounded and therefore
compact. Since  there is a nonzero vector  such! Â œ Ð+ ßá ß + Ñ? ! " 8

that
1) ! − W¼

2)  for all ! $ ! $ ?†   −l l#
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Taking  to be the -th standard basis vector, we get$ %œ 33

+ œ †    !3 3
#! % !l l

and so  is strongly positive, as desired. !
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Selected Solutions

Chapter 1: Probability I: Introduction to Discrete Probability
1. "Î#
2. #&Î(#
3. &Î"#ß *Î"#ß (Î"#
4. "Î"!#%ß ""Î"!#%ß &'Î"!#%
5. "Î$ß "Î'ß "Î$ß "Î#
6. $Î)
7.  ""Î"'
8. "Î"$
10. a) Consider a stock whose current price is  and whose price at&!

some fixed time  in the future may be one of the followingX
values: . Suppose we estimate that the probabilities%)ß %*ß &!ß &"
of these stock prices are









Ð%)Ñ œ !Þ#

Ð%*Ñ œ !Þ%

Ð&!Ñ œ !Þ$

Ð&"Ñ œ !Þ"

If we purchase one share of the stock now, what is the expected
return at time ? What is the expected profit?X

 b) Consider a derivative of the stock in part a) whose return  is aH
function of the stock price, say

HÐ%)Ñ œ #

HÐ%*Ñ œ "

HÐ&!Ñ œ !

HÐ&"Ñ œ $

Thus, the return  is a random variable on . What is theH H
expected return of the derivative?

11. "Î#
12. The expected value is .!
13.  cents. Yes.#&Î"$
14. Not fair, 5 cents.X ¸ 

21. Suppose that the values of  are  and the values of \ ÖB ßá ß B × ]" 8

are . Then the values of  are the distinct productsÖC ßá ß C × \]" 7

B C + \]3 4. For a given value  of  let
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ÖÐB ß C Ñßá ß ÐB ß C Ñ×3 4 3 4" " 7 7

be the set of all pairs whose product is equal to . Then+

 



  

 

Ð\] œ +ß ^ œ DÑ œ ÐÖ\ œ B ×  Ö] œ C ×Ñ  Ö^ œ D×

œ ÐÖ\ œ B ×  Ö] œ C ×  Ö^ œ D×Ñ

œ Ð\ œ B Ñ Ð] œ C Ñ Ð^ œ DÑ

œ Ð\ œ B Ñ Ð] œ C

 Ÿ– —.
 Ÿ.

"
– —"

5œ"

7

3 4

5œ"

7

3 4

5œ"

7

3 4

5œ"

7

3 4

5 5

5 5

5 5

5 5
Ñ Ð^ œ DÑ

œ Ð\ œ B ß ] œ C Ñ Ð^ œ DÑ

œ Ð\] œ +Ñ Ð^ œ DÑ



 

 

– —"
5œ"

7

3 45 5

22. We have

 

 

 

Ð0Ð\Ñ œ +ß 1Ð] Ñ œ ,Ñ œ Ð\ − 0 Ö+×ß ] − 1 Ö,×Ñ

œ Ð\ − 0 Ö+×Ñ Ð] − 1 Ö,×Ñ

œ Ð0Ð\Ñ œ +Ñ Ð1Ð] Ñ œ ,Ñ

" "

" "

Chapter 2: Portfolio Management and the Capital Asset
Pricing Model
1. " œ "
2. . "œ !Þ!%Ð  "Ñ
3. The equation for  can be solve for  to get a linear function of .5w = =

Plug this into the equation for  to get  as a linear function of .. . 5w

4. ,ÎÐ"  +Ñ
6. We have

Cov Cov
Cov Cov

Cov Cov
Cov

Cov

ÐV ß Ñ œ ÐV ßV  V Ñ

œ ÐV ßV Ñ  ÐV ßV Ñ

œ ÐV ßV Ñ  ÐV ßV Ñ
ÐV ßV Ñ

ÐV ßV Ñ

œ !

Q Q 3 5 Q

Q 3 5 Q Q

Q 3 Q Q
3 Q

Q Q

% "

"
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7. Solve for  from the equation of the capital market line and plug it"
into the equation  of the regression line to get theC œ B " !
equation

C œ ÐB  Ñ 




. .

. .
. .

5

Q
Q 5

rf

rf

Setting  gives .B œ C œ. .rf rf
8.  and " " " ! ! !! " " " # ! " " " #œ A  A œ A  A

Chapter 3: Background on Options
4. The cost  of the call with the smaller strike price is more than theG"

cost  of the call with the higher strike price. The profit curve isG#

shown below.

C1

K1

Profit

Stock
PriceK2

C2

 
 Figure 3 – A bull spread
6. The profit is made by selling the APR call and buying the JUL call.

This costs $3. However, in April, the investor owns a call worth $5,
thus making $2.

7. The profit curve is shown in Figure 3.

C1

K1

Profit

Stock
PriceK2

2C2

K3C3

 
Figure 3 – The butterfly spread

Chapter 4: An Aperitif on Arbitrage
1. We still have
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i

i

Ð Ñ œ W  J

Ð Ñ œ J  W

long contract
short contract

X !ßX

!ßX X

but the cash-and-carry investor has a final payoff of

iÐ Ñ œ W  W /  M/cash-and-carry X !
<X <X

and

iÐ Ñ œ W /  W  M/reverse cash-and-carry ! X
<X <X

To explain the last term, note that the short sale of an asset requires a
lender to lend that asset. This lender will demand the return of not
only the asset itself, but also the income that would have come to the
lender by virtue of owning the asset.

2. The two strategies now have payoffs as follows:

i iÐ Ñ  Ð Ñ œ W /  J  M/long contract reverse cash-and-carry ! !ßX
<X <X

and

i iÐ Ñ  Ð Ñ œ J  W /  M/short contract cash-and-carry !ßX !
<X <X

3. Setting the final payoffs in exercise 2 to  gives!

J œ ÐW  MÑ/!ßX !
<X

4. Since no lending or borrowing is done for the buyer of the contract,
we still have

i

i

Ð Ñ œ W  J

Ð Ñ œ J  W

long contract
short contract

X !ßX

!ßX X

The other payoffs need a slight tweaking as follows

i

i

Ð Ñ œ W  W /

Ð Ñ œ W /  W

cash-and-carry
reverse cash-and-carry

X !
< X

! X
< X

,

j

5. The final payoff for Strategy 1 is

i iÐ Ñ  Ð Ñ œ W /  Jlong contract reverse cash-and-carry ! !ßX
< Xj

For Strategy 2 we have

i iÐ Ñ  Ð Ñ œ J  W /short contract cash-and-carry !ßX !
< X,
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6. The assumption of no arbitrage implies that both of the payoffs must
be nonpositive, that is

W /  J Ÿ !! !ßX
< Xj

and

J  W / Ÿ !!ßX !
< X,

Combining these two inequalities gives

W / Ÿ J Ÿ W /! !ßX !
< X < Xj b

7. If not then buy the share, sell the call and pocket the difference. Use
the share to cover the call if and when it is exercised.

8. If not, sell the put and invest the money. The put cannot cost you
more than  in either case and you will have  immediately in theO O
case of the American put or at the end in the case of the European
put.

9. Use put-call option parity formula.
10. a) The first inequality comes from the fact that . TheG œ GI E

second comes from the fact that  can be gotten byO  W!

exercising the put at time .>!
 b) For the first formula, since  we getG œ GE I

W O/  . Ÿ G! !
<X E

In addition, immediate exercise of the American call will return
W O!  and so the call cannot be purchased for less than this
amount. For the second formula,  becauseO  W Ÿ T!

E

immediate exercise is worth . For the other part, considerO  W!

two portfolios. Portfolio A is 1 put. Portfolio B is ÐO  . Ñ/!
<X

in cash and a short share of stock.

Chapter 5: Probability II: More Discrete Probability
3. We have

X c = X =

5  5 =

Ð\ ± ÑÐ Ñ œ Ð\ ± Ò Ó Ñ

œ \Ð Ñ Ð ± Ò Ó Ñ

  !

c

5 H

c"
−
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17. For  let . Then= H =− 5 œ RÐ Ñ

X = X













ÐW ± RÑÐ Ñ œ ÐW ± R œ 5Ñ

œ < ÐW œ < ± R œ 5Ñ

œ <
ÐÐ\ â\ œ < Ñ  ÐR œ 5ÑÑ

ÐR œ 5Ñ

œ <
ÐÐ\ â\ œ < Ñ  ÐR œ 5ÑÑ

ÐR œ 5Ñ

œ <
Ð\ â\ œ < Ñ

"
"
"
"

3œ"

7

3 3

3œ"

7

3
" R 3

3œ"

7

3
" 5 3

3œ"

7

3
" 5 3 





X

.

. =

ÐR œ 5Ñ

ÐR œ 5Ñ

œ < Ð\ â\ œ < Ñ

œ Ð\ â\ Ñ

œ 5

œ RÐ Ñ

"
3œ"

7

3 " 5 3

" 5

18. The solution is

X X d c X X c

X X c

X X c

X X

X
X

Ð Ð\ ± Ñ ± Ñ œ Ð\ ± G Ñ"

œ Ð Ð\ ± G Ñ" ± Ñ

œ Ð\ ± G Ñ Ð" ± Ñ

œ Ð\ ± G Ñ Ð" ± F Ñ"

œ Ð\ ± G Ñ
Ð

 " ¹
"
"
" "– —
" "– —

3œ"

7

3 G

3œ"

7

3 G

3œ"

7

3 G

3œ" 4œ"

7 5

3 G 4 F

3œ" 4œ"

7 5

3

3

3

3

3 4

" " Ñ

ÐF Ñ
"

œ Ð\ ± G Ñ "
Ð" Ñ

ÐF Ñ

G F

4
F

3œ" 4œ"

7 5

3 F
G F

4

3 4

4

3 4

4



X
X


" "– —

Now, since for each  there is a   for which  weG F G © F3 4 3 4unique
3 3

know that
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" œ
" 4 œ 4
! 4 Á 4G F
G 3

3
3 4

3œ
and so we pick up with

" " "– —
"
"

3œ" 4œ" 3œ"

7 5 7

3 F 3 F
G F

4 4

G

3œ"

7
G G

3 4
F

3œ"

7
G

4
F

X X
X

 

X

X X

 

X



Ð\ ± G Ñ " œ Ð\ ± G Ñ "
Ð" Ñ

ÐF Ñ ÐF Ñ

Ð" Ñ

œ "
Ð\" Ñ Ð" Ñ

ÐG Ñ ÐF Ñ

œ "
Ð\" Ñ

ÐF Ñ

3 4

4 4

3

3
3

3 3

3

43

3

3

43

Now we group the terms of this sum into smaller sums, each one
being over just the blocks  that are contained in one block . (InG F3 43

other words, group the sum by the blocks in .) This givesc

" "
3œ" 4œ"

7 5
G

4 4
F F

FX

 

X
X c

Ð\" Ñ

ÐF Ñ ÐF Ñ
" œ " œ Ð\ ± Ñ

Ð\" Ñ
3

3

4 43

4

as desired.

Chapter 6: Discrete-Time Pricing Models
1. The system of equations is

i @ =

i @ =

i @ =

i @ =

# # "

# # #

# # $

# # %

Ð ÑÐ Ñ œ *&

Ð ÑÐ Ñ œ *!

Ð ÑÐ Ñ œ )&

Ð ÑÐ Ñ œ (&

or

W Ð Ñ Ð Ñ  W Ð Ñ Ð Ñ œ *&

W Ð Ñ Ð Ñ  W Ð Ñ Ð Ñ œ *!

W Ð Ñ Ð Ñ  W Ð Ñ Ð Ñ œ )&

W Ð Ñ Ð Ñ  W

#ß" " #ß" " #ß# " #ß# "

#ß" # #ß" # #ß# # #ß# #

#ß" $ #ß" $ #ß# $ #ß# $

#ß" % #ß" % #ß

= ) = = ) =

= ) = = ) =

= ) = = ) =

= ) = # % #ß# %Ð Ñ Ð Ñ œ (&= ) =

Substituting the actual prices gives
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) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß# "

#ß" # #ß# #

#ß" $ #ß# $

#ß" % #ß# %

Ð Ñ  *! Ð Ñ œ *&

Ð Ñ  )! Ð Ñ œ *!

Ð Ñ  )! Ð Ñ œ )&

Ð Ñ  (& Ð Ñ œ (&

The condition that  be -measurable is@ c# "

) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß" #

#ß" $ #ß" %

#ß# " #ß# #

#ß# $ #ß# %

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

and so the previous system can be written using only  and  as= =" $

) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß# "

#ß" " #ß# "

#ß" $ #ß# $

#ß" $ #ß# $

Ð Ñ  *! Ð Ñ œ *&

Ð Ñ  )! Ð Ñ œ *!

Ð Ñ  )! Ð Ñ œ )&

Ð Ñ  (& Ð Ñ œ (&

The first two equations have a unique solution and so do the second
two equations, giving

@ = @ =

@ = @ =

# " # #

# $ # %

Ð Ñ œ Ð Ñ œ Ð&!ß Ñ
"

#
Ð Ñ œ Ð Ñ œ Ð(&ß #Ñ

Working backwards in time, we next compute the acquisition values
for @#

i @ =

i @ =

" # "

" # $

Ð ÑÐ Ñ œ &!  )& † œ
" ")&

# #
Ð ÑÐ Ñ œ (&  () † # œ )"

The self-financing condition requires that these are also the
liquidation values of  and so@"

i @ =

i @ =

" " "

" " $

Ð ÑÐ Ñ œ
")&

#
Ð ÑÐ Ñ œ )"

Writing these out and substituting the actual prices gives the system
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) = ) =

) = ) =

"ß" " "ß# "

"ß" $ "ß# $

Ð Ñ  )& Ð Ñ œ
")&

#
Ð Ñ  () Ð Ñ œ )"

But  is -measurable, that is, constant on , and so for any@ c H" !

= H−

) = ) =

) = ) =

"ß" "ß#

"ß" "ß#

Ð Ñ  )& Ð Ñ œ
")&

#
Ð Ñ  () Ð Ñ œ )"

This system has solution

@ ="Ð Ñ œ  ß
$$! #$

( "%
Œ 

which is a portfolio consisting of a short position (sale) of  bonds$$!
(

and a purchase of  shares of stock, for an initial cost of#$
"%

  )! † œ ¸ )%Þ#*
$$! #$ &*!

( "% (
$

2. The system of equations is

i @ =

i @ =

i @ =

i @ =

i @ =

i @ =

$ $ "

$ $ #

$ $ $

$ $ %

$ $ &

$ $ '

Ð ÑÐ Ñ œ "!!

Ð ÑÐ Ñ œ "!!

Ð ÑÐ Ñ œ *&

Ð ÑÐ Ñ œ *!

Ð ÑÐ Ñ œ *!

Ð ÑÐ Ñ œ )&

or, since the price of the risk-free asset  is š" "

) = = ) =

) = = ) =

) = = ) =

) = = ) =

) =

$ß" " $ß# " $ß# "

$ß" # $ß# # $ß# #

$ß" $ $ß# $ $ß# $

$ß" % $ß# % $ß# %

$ß" & $ß#

Ð Ñ  W Ð Ñ Ð Ñ œ "!!

Ð Ñ  W Ð Ñ Ð Ñ œ "!!

Ð Ñ  W Ð Ñ Ð Ñ œ *&

Ð Ñ  W Ð Ñ Ð Ñ œ *!

Ð Ñ  W Ð= ) =

) = = ) =
& $ß# &

$ß" ' $ß# ' $ß# '

Ñ Ð Ñ œ *!

Ð Ñ  W Ð Ñ Ð Ñ œ )&

Substituting the actual prices gives
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) = ) =

) = ) =

) = ) =

) = ) =

) = ) =

) = )

$ß" " $ß# "

$ß" # $ß# #

$ß" $ $ß# $

$ß" % $ß# %

$ß" & $ß# &

$ß" ' $ß#

Ð Ñ  "!! Ð Ñ œ "!!

Ð Ñ  *& Ð Ñ œ "!!

Ð Ñ  *& Ð Ñ œ *&

Ð Ñ  *! Ð Ñ œ *!

Ð Ñ  *! Ð Ñ œ *!

Ð Ñ  )! Ð Ñ œ )&='

The condition that  be -measurable is@ c$ #

) = ) =

) = ) =

) = ) =

) = ) =

$ß" " $ß" #

$ß" % $ß" &

$ß# " $ß# #

$ß# % $ß# &

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

Ð Ñ œ Ð Ñ

and so the previous system can be written using only  and= = =" $ %ß ß
=' as

) = ) =

) = ) =

) = ) =

) = ) =

) = ) =

) = )

$ß" " $ß# "

$ß" " $ß# "

$ß" $ $ß# $

$ß" % $ß# %

$ß" % $ß# %

$ß" ' $ß#

Ð Ñ  "!! Ð Ñ œ "!!

Ð Ñ  *& Ð Ñ œ "!!

Ð Ñ  *& Ð Ñ œ *&

Ð Ñ  *! Ð Ñ œ *!

Ð Ñ  *! Ð Ñ œ *!

Ð Ñ  )! Ð Ñ œ )&='

The first two equations have a unique solution and so do the fourth
and fifth equations, giving

@ = @ =

@ = @ =
$ " $ #

$ % $ &

Ð Ñ œ Ð Ñ œ Ð"!!ß !Ñ

Ð Ñ œ Ð Ñ œ Ð!ß "Ñ

along with

@ =

@ =

$ $

$ '

Ð Ñ œ Ð=ß Ñ
*&  =

*&

Ð Ñ œ Ð>ß Ñ
)&  >

)!

where  and  are parameters. The acquisition values for  are= > @$
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i @ = i @ =

i @ =

i @ = i @ =

i @ =

# $ " # $ #

# $ $

# $ % # $ &

# $ '

Ð ÑÐ Ñ œ Ð ÑÐ Ñ œ "!!

Ð ÑÐ Ñ œ =  )! † œ  )!
*&  = $=

*& "*
Ð ÑÐ Ñ œ Ð ÑÐ Ñ œ )!

Ð ÑÐ Ñ œ >  (& † œ  (&
*&  > %>

*& "*

The self-financing condition requires that these are also the
liquidation values of  and so  must replicate the alternative@ @# #

Œ "!!ß  )!ß )!ß  (&
$= %>

"* "*

Since we are asked for only one replicating portfolio, let us choose
= œ > œ ! to get the alternative

a b"!!ß )!ß )!ß (&

We have the system

) = ) =

) = ) =

) = ) =

) = ) =

) = ) =

) = )

#ß" " #ß# "

#ß" # #ß# #

#ß" $ #ß# $

#ß" % #ß# %

#ß" & #ß# &

#ß" ' #ß#

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  (& Ð='Ñ œ (&

Since  is constant on the blocks  and  this) = = = = = =#ß3 " # $ ' ' 'Ö ß ß × Ö ß ß ×
can be written

) = ) =

) = ) =

) = ) =

) = ) =

) = ) =

) = )

#ß" " #ß# "

#ß" " #ß# "

#ß" " #ß# "

#ß" % #ß# %

#ß" % #ß# %

#ß" % #ß#

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  (& Ð=%Ñ œ (&

or
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) = ) =

) = ) =

) = ) =

) = ) =

#ß" " #ß# "

#ß" " #ß# "

#ß" % #ß# %

#ß" % #ß# %

Ð Ñ  *! Ð Ñ œ "!!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  )! Ð Ñ œ )!

Ð Ñ  (& Ð Ñ œ (&

giving

@ = @ = @ =

@ = @ = @ =
# " # # # $

# % # & # '

Ð Ñ œ Ð Ñ œ Ð Ñ œ Ð)!ß #Ñ

Ð Ñ œ Ð Ñ œ Ð Ñ œ Ð!ß "Ñ

Working backwards in time, we next compute the acquisition values
for @#

i @ =

i @ =
" # "

" # %

Ð ÑÐ Ñ œ )!  )& † # œ *!

Ð ÑÐ Ñ œ !  () œ ()

The self-financing condition requires that these are also the
liquidation values of  and so@"

i @ =

i @ =
" " "

" " %

Ð ÑÐ Ñ œ *!

Ð ÑÐ Ñ œ ()

Writing these out and substituting the actual prices gives the system

) = ) =

) = ) =
"ß" " "ß# "

"ß" % "ß# %

Ð Ñ  )& Ð Ñ œ *!

Ð Ñ  () Ð Ñ œ ()

But  is -measurable, that is, constant on , and so for any@ c H" !

= H−

) = ) =

) = ) =
"ß" " "ß# "

"ß" % "ß# %

Ð Ñ  )& Ð Ñ œ *!

Ð Ñ  () Ð Ñ œ ()

This system has solution

@ ="Ð Ñ œ  ß
$*! "#

( (
Œ 

which is a portfolio consisting of a short position (sale) of  bonds$*!
(

and a purchase of  shares of stock, for an initial cost of"#
(

  )! † œ ¸ )"Þ%$
$*! "# &(!

( ( (
$
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3. Toss 1 is tails: Casino is even, player down $1 million, game over.
 Toss 1 is heads: Casino up $2 million, player down $1 million, game

continues.
 Toss 2 is tails: Casino is even, player down $1 million, game over.
 Toss 2 is heads: Casino up $4 million, player down $1 million, game

continues.
 Toss 3 is tails: Casino is even, player down $1 million, game over.
 Toss 3 is heads: Casino is even, player up $8 million, game

continues.

 In all ending cases, the casino is even. Thus, the casino has a perfect
hedge. It is self-financing because the casino never added its own
money or removed money. The side bets on heads replicated the
payoff to the casino, but in the opposite position, resulting in a !
payoff to the casino.

4.

i @ @ i @ i @

i @ i @

i @ @

3 "ß3 #ß3 3 "ß3 3 #ß3

3 "ß3" 3 #ß3"

3 "ß3" #ß3"

Ð+  , Ñ œ + Ð Ñ  , Ð Ñ

œ + Ð Ñ  , Ð Ñ

œ Ð+  , Ñ

and so it follows that  is self-financing.+  ,F F" #

5. The self-financing condition is

i @ i @3 3
w w
3 3"Ð Ñ œ Ð Ñ

for all . Because  is assumed to be self-financing,3 œ "ßá ß X  " F
the liquidation value of  is@w

3

i @ ) )

i @

i @

3 3ß" 3ß" 3ß4 3ß4
w
3

4œ#

8

3 3 3ß"

3 3" 3ß"

Ð Ñ œ Ð  +ÑW  W

œ Ð Ñ  +W "

œ Ð Ñ  +W "

"
H

H

and the acquisition value is

i @ ) )

i @

3 3"ß" 3ß" 3"ß4 3ß4
w
3"

4œ#

8

3 3" 3ß"

Ð Ñ œ Ð  +ÑW  W

œ Ð Ñ  +W "

"
H

Thus  is self-financing.Fw

7. Let  be the zero trading strategy (where all portfolios are theF! œ !
zero portfolio). If the Law of One Price holds then for any trading
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strategy  that has  final value we haveF !

i F i F i F

i F i F

i F

X X X !

! ! !

!

Ð Ñ œ ! Ê Ð Ñ œ Ð Ñ

Ê Ð Ñ œ Ð Ñ

Ê Ð Ñ œ !

and so 2) holds. Conversely, suppose that any trading strategy with
payoff  has initial value . Then! !

i F i F i F F

i F F

i F i F

X " X # X " #

! " #

! " ! #

Ð Ñ œ Ð Ñ Ê Ð  Ñ œ !

Ê Ð  Ñ œ !

Ê Ð Ñ œ Ð Ñ

and so the Law of One Price holds.
8. Yes. We simply sell one share of stock short and invest the money in

the risk-free asset. If the risk-free rates are high enough, they we
provide us with  money than necessary to buy the stock andmore
return it at the end. More formally, let  be the maximum value ofQ
W œ ÐW ß"ÑX ß# " !ß# on . Let . Roll this over at each time. The finalH @
portfolio is thus also , with liquidation value@X !ß#œ ÐW ß"Ñ

i @X X !ß# X ß#
< Ð> > Ñ < Ð> > ÑÐ Ñ œ W <  W < œ / â/ where . Thus," " ! X X X"

i @X X !ß# X ß# !ß#Ð Ñ œ W <  W   W < Q

So if  we are guaranteed a profit.<  QÎW!ß#

11. In this case the random variables  are attainable, say by\ œ "5 Ö ×=5

F D =5 5 5. Hence, any random variable  is attainable via\ œ \Ð Ñ\
the replicating strategy .\ œ \Ð ÑD = F5 5

12. Let . Let . Then  replicates  if\À Ä œ Ð ß Ñ \H ‘ @ ) ) @#
" "ß" "ß# "

i @ ) )" " "ß" "ß# X
<XÐ Ñ œ /  W œ \

that is,

) = ) = =

) = ) = =

"ß" " "ß# " ! "
<X

"ß" # "ß# # ! #
<X

Ð Ñ/  Ð ÑW ? œ \Ð Ñ

Ð Ñ/  Ð ÑW . œ \Ð Ñ

This system always has a solution if and only if the determinant is
nonzero, that is,

º º/ W ?

/ W .
œ / W Ð.  ?Ñ Á !

<X
!

<X
!

<X
!

13. The solution is
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)

)

"ß"
<X . ?

"ß#
? .

!

œ /
?0  .0

?  .

œ
0  0

W Ð?  .Ñ

14. The price of  is\

/ 0  0
/  . ?  /

?  . ?  .
<X

<X <X

? .” •
15. It is a candidate for martingale measure.
16. To avoid arbitrage, if the payoff satisfies  then the initialÐ0 ß 0 Ñ  !? .

price must be positive. In other words,

1 10  Ð"  Ñ0  !? .

for all strictly positive vectors . This is easily seen to be theÐ0 ß 0 Ñ? .

case if and only if  which is equivalent to .!   " .  /  ?1 <X

17. We have

? œ œ "Þ!" . œ œ !Þ**
"!" **

"!! "!!
, 

and

0 œ Ð"!!B  **Þ&!ß !Ñ œ
"Þ&! B œ ?
! B œ .B max œ

Thus,

G œ "Þ&! œ (&Ð"  Ð!Þ**Ñ/ Ñ œ !Þ(&)"$'&%
"  Ð!Þ**Ñ/

!Þ!#

<X
<X

18. a) If the risk-neutral probability distribution is  then weÐ ß "  Ñ1 1
have

"'! œ #!!  "%!Ð"  Ñ1 1

and so . To price the asset, we have: œ "Î$

T œ Ð"Î$Ñ † !  Ð#Î$Ñ † %! œ )!Î$

 b) Suppose you invest in the portfolio :  bonds, @ œ ÐBß Cß "Ñ B C
stock and  put. Then the initial cost is"

i @!Ð Ñ œ B  "'!C  #!
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and the final payoff is

i @X Ð Ñ œ œB C " #!! "%! B  #!!C B  "%!C  %!
" "

! %!
a b a bÎ Ñ

Ï Ò
Now, to make a profit (since ), we only need to make sure< œ !
that

B  #!!C  B  "'!C  #!

B  "%!C  %!  B  "'!C  #!

This is equivalent to

"Î#  C  "

So, a profit is guaranteed by buying any amount of stock
between  and ."Î# "

19. A trading strategy, which amount to nothing more than a single
portfolio, is only two-dimensional whereas the space containing the
alternatives is three-dimensional. Hence, the valuation  cannot bei"

surjective.
20. To obtain a risk-neutral probability distribution

C œ Ð:ß ;ß "  :  ;Ñ

we must solve the equation

%!:  $!;  #!Ð"  :  ;Ñ œ #&

or, equivalently

%:  #; œ "

This has infinitely many solutions for which the vector

Ð:ß ;ß "  :  ;Ñ œ Ð:ß  #:ß  :Ñ
" "

# #

is  (It is easy to forget when solving that we needstrongly positive.
strongly positive solutions!) The condition of strong positivity is

:  !
"

#
 #:  !

"

#
 :  !
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which is equivalent to

!  : 
"

%

22. The payoff vector is

3 œ Ð#!ß "!ß !Ñ

and we must check that this is attainable, that is, that there is a
solution to the system

a bŒ ) )" #
" " "
%! $! #!

œ Ð#!ß "!ß !Ñ

It is readily seen that the solution is

) )" #œ #!ß œ "

so the alternative is attainable and a replicating portfolio is given by
selling  units of the risk-free asset and buying one share of the#!
stock. To price the option under the two risk-neutral distributions, we
have

\ 3 X 3C C" "Ð Ñ œ / Ð Ñ œ † "#  † "!  † ! œ
" % ( "$

"# "# "# $
<X

and

\ 3 X 3C C# #Ð Ñ œ / Ð Ñ œ † "#  † "!  † ! œ
" ""

$
<X

6 6 6
1 4

Thus, the two risk-neutral probability distributions do not give the
same price for the derivative. Nevertheless, we may choose either of
these distributions and be assured of the absence of arbitrage!

Chapter 7: Chapter on CRR Model
1. a) , b) , c) , d) , e) , f) . For the put,! !Þ!!"& !Þ#*%% Þ!)"' #Þ!(** Þ!()$

use the put-call option parity formula . ForT œ O/  G  W<>
!

example, when  we haveO œ &!

T œ &!/  !Þ#*%%  &! œ !Þ$(()!Þ!"Î'

2. a) , b) , c) , d) . For the put, use the put-!Þ!!!) !Þ"&!" "Þ!"& #Þ!"$$
call option parity formula .T œ O/  G  W<>

!

3. A % gain followed by a % loss, or vice-versa, results is a slight"! "!
loss, as shown by
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Ð"  !Þ"ÑÐ"  !Þ"Ñ œ "  !Þ!" œ !Þ**

(If the gain comes first, the loss is on a larger amount; if the loss
comes first, the gain is on a smaller amount.

7. For part d), we can price a path-independent alternative  as follows\

\ i F

X i F

X

= 



Ð\Ñ œ Ð Ñ

œ / Ð Ð ÑÑ

œ / Ð\Ñ

œ / \Ð − K Ñ ÐK Ñ

œ / \ ÐK Ñ

!

<P
3

<P

<P

5œ!

X

5 5

<P

5œ!

X

5 5

C

C

C

C

"
"

any 

10. This is because the time-  asset prices are required to be ->5 5c
measurable. The converse fails in general. For example, the asset
prices at time  could be constant over the entire state space . For>5 H
the CRR model, assuming we know the history of stock prices and
states prior to time  then at time  knowledge of the stock's price> >5 5

tells us the state as well. This follows from the fact that at time  the>5
stock's price can only be one of two  values relative to thedistinct
previous time-  price>5"

W Ð Ñ œ W ? W Ð Ñ œ W .5 5" 5 5"= = or 

Thus, knowledge of the true price implies knowledge of the change
in state from time  to time . This, together with knowledge of> >5" 5

the time-  state, tells us the time-  state.> >5" 5

Chapter 8: Continuous Probability
4. In particular, if  thenE −3 D

 , .
3œ" 3œ"

_ _

3

-

3
-E œ E − D

and so

,
3œ"

_

3E − D

that is,  is also closed under countable intersections.D
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5. If  then+ − ‘

Ð_ß +Ñ œ Ð8ß +Ñ.
8+

is a countable union of open intervals and so is a Borel set. Also,

Ð_ß +Ó œ Ð_ß +  Ñ −
"

8
,
8!

U

The right rays are complements of the left rays.
6. If  then+ Ÿ ,

Ò+ß ,Ó œ Ð+  ß ,  Ñ −
" "

8 8
,
8!

U

7. Write

E œ ÐE Ï FÑ  ÐE  FÑ

F œ ÐF Ï EÑ  ÐE  FÑ

Since these are disjoint unions, we have

  

  

ÐEÑ œ ÐE Ï FÑ  ÐE  FÑ

ÐFÑ œ ÐF Ï EÑ  ÐE  FÑ

and so

     ÐEÑ  ÐFÑ œ ÐE Ï FÑ  ÐE  FÑ  ÐF Ï EÑ  ÐE  FÑ

But

ÐE Ï FÑ  ÐE  FÑ  ÐF Ï EÑ

is a disjoint union that equals  and so we get the result.E  F
8. This follows immediately from the Principle of Inclusion-Exclusion

and the fact that probabilities are nonnegative.
10. If





ÐF œ +Ñ œ :

ÐF œ ,Ñ œ ;

then

! œ ÐFÑ œ +:  ,;X

and
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" œ ÐFÑ œ + :  , ;Var # #

Solving these equations gives

+ œ ß , œ
; :

:; :;È È
13. Suppose that  is an sequence of events andE © E © â" # increasing 

let

E œ E.
3œ"

_

3

The limit exists because it is the limit of an increasing bounded
sequence of real numbers. Set  and writeE œ g!

E œ ÐE Ï E Ñ.
3œ"

_

3 3"

where the events  are disjoint. ThenE Ï E3 3"

 





 



ÐEÑ œ ÐE Ï E Ñ

œ ÐE Ï E Ñ

œ ÐE Ï E Ñ

œ Ò ÐE Ñ  ÐE ÑÓ

œ ÐE Ñ

 .
"

"

3œ"

_

3 3"

3œ"

_

3 3"

8Ä_
3œ"

8

3 3"

8Ä_
3 !

8Ä_
3

lim

lim

lim

14. Let . Let  be a sequence of real numbers for whichE œ Ö\ Ÿ >× >> 8

> Ä _ E8 >. Then the events  form a decreasing sequence whose8

intersection is . The continuity of the probability implies thatg

lim lim
8Ä_ 8Ä_

8 >0Ð> Ñ œ ÐE Ñ œ ÐgÑ œ ! 
8

Similarly, if  then  and so> Ä _ E Å8 >8 H

lim lim
8Ä_ 8Ä_

8 >0Ð> Ñ œ ÐE Ñ œ Ð Ñ œ "  H
8

As to right continuity, let . Then> Æ >8



330

Ð_ß >Ó œ Ð_ß > Ó,
8œ"

_

8

and so by continuity

0Ð>Ñ œ ÐÐ_ß >ÓÑ œ ÐÐ_ß > ÓÑ œ 0Ð> Ñ lim lim
8Ä_ 8Ä_

8 8

which shows that  is right-continuous.0
15. For part b)

 



ÐÐ+ß ,ÓÑ œ Ð+ß ,  Ó
"

8

œ ÐÐ+ß ,  ÓÑ
"

8

œ JÐ,  Ñ  JÐ+Ñ
"

8
œ JÐ,Ñ  JÐ+Ñ

 .
8œ"

_

8Ä_

8Ä_

lim

lim

16. We have  and so for  Ð\ Ÿ >Ñ Ä Ð\ Ÿ >Ñ +  !8

   Ð+\  , Ÿ >Ñ œ Ð\ Ÿ Ñ Ä Ð\ Ÿ Ñ œ Ð+\  , Ÿ >Ñ
>  , >  ,

+ +
8 8

A similar equation holds for .+  !

Chapter 9: Black-Scholes
1. .. 5œ !Þ"&ß œ !Þ!$#

2. $G œ &Þ%%
3. $G œ $$Þ$'
4. We have

VarÐ\ Ñ œ Ð\ Ñ  Ò Ð\ ÑÓ

œ :  Ð"  :Ñ  !
Ð"  :Ñ :

:Ð"  :Ñ :Ð"  :Ñ

œ "

: ß3 : ß3: ß3
# #

# #

X XX
X X
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5. For the expected value, we have

X X 5 ?

5 ? X

5 ?

5 ?

5
?

: = : = =ß3

3œ"

X

= : =ß3

3œ"

X

=

3œ"

X

=

=

ÐU Ñ œ Ð > \ Ñ

œ > Ð\ Ñ

œ ÒÐ"  =Ñ:  =Ð"  :ÑÓ
>

=Ð"  =Ñ

œ XÐ:  =Ñ
>

=Ð"  =Ñ

œ
> :  =

> =Ð"  =Ñ

È "
È "
È

È "
È

È
È È

10. We have

W œ / ÐW Ñ

œ / ÐW / Ñ

œ W / Ð/ Ñ

œ W / / / .B
"

#

œ W / /
"

#

! >
<>

<> > >^
!

!
<> > >^

!
>Ð <Ñ >B B Î#

_

_

!
>Ð <Ñ  ÐB # >B >

_

_

X

X

X

1

1

C

C
. 5

. 5
C

. 5

. 5 5

/ /

/ /

/ /

/ / /

È
È

È

È

>

>

#

"
#

# #

È (
È ( Ñ >

!
>Ð <Ñ >  ÐB >Ñ

_

_

!
>Ð <Ñ >

"
#

#

" "
# #

# #

"
#

#

5

. 5 5

. 5

/

/ //

/ /

.B

œ W / / .B
"

#

œ W /

È (
1

È

Thus

/ œ ">Ð <Ñ >. 5/ /
"
#

#

which happens if and only if

>Ð  <Ñ  > œ !
"

#
. 5/ /

#
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that is

. 5/ /œ < 
"

#
#

11. Let  be the random variable representing the  up-ticksRY number of
in stock price over the lifetime of the model. Then, of course, the
number of down-ticks is . It follows thatX RY

W œ W ? .

œ W /

œ W /

>ßX !
R XR

!
R ?ÐXR Ñ .

!
R Ð ? .ÑX .

Y Y

Y Y

Y

log log

log log log

and so

L œ R Ð ?  .Ñ  X .>ßX Y log log log

 Since  is a binomial random variable with parameters  and  weR XY /
have  and . ThusX / / /ÐR Ñ œ X ÐR Ñ œ X Ð"  ÑY YVar

X /

/ /

ÐL Ñ œ X Ð ?  .Ñ  X .

ÐL Ñ œ X Ð"  Ñ Ð ?  .Ñ

>ßX

>ßX
#

log log log
Var log log

12. Standardizing the random variable  givesLX

L œ
L  ÐL Ñ

ÐL Ñ

œ
Ð#R  XÑ ?  XÐ#  "Ñ ?

%X Ð"  ÑÐ ?Ñ

œ
Ð#R  XÑ  XÐ#  "Ñ

%X Ð"  Ñ

œ
R  X

X Ð"  Ñ

œ
R  ÐR

X
‡ X X

X

X ßY Y

Y Y
#

X ßY Y

Y Y

X ßY Y

Y Y

X ßY X ß

X

1

1 1

1

1 1

1

1 1

X

C

C

È
È

È
È

Var
log log

log

1

Y

X ßY

Ñ

ÐR ÑÈVar1

Hence, since  is a binomial random variable with parametersRXßY

8 œ X  and

: œ œ
/  .

?  .
1Y

<P
X

the random variables
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L œ
R  ÐR Ñ

ÐR Ñ
X
‡ X ßY X ßY

X ßY

XCÈVar1

for  are standardized binomial random variables.X œ "ß #ßá
According to Theorem 12 of Chapter 8 this sequence converges in
distribution to a standard normal random variable .a!ß"

13. High volatility implies that the stock price is more likely to be far
from the strike price than is the case when the volatility is small. A
high stock price is good for the owner of a call. On the other hand,
when the stock price falls below the strike price, it doesn't really
matter how far it falls—the call will expire and the owner will simply
loose the purchase price. Thus, high upside volatility is good, high
downside volatility is irrelevant. A similar argument obtains for a
long put.

Chapter 10: Optimal Stopping and American Options
2. We have

Ò œ 5Ó œ Ö ± W − F W − F 4  5×

œ ÒW − F Ó â  ÒW − F Ó  ÒW − FÓ

7 = 5 4
-

! 5" 5
- -

 but  for  

But since the price  is -measurable and since  is a filtration,W Ð Ñ3 3 3c c
we deduce that each of the events  and the event ÒW − F Ó ÒW − FÓ3 5

-

are in the largest algebra . This is the condition required of aT cÐ Ñ5
stopping time. Finally, for  we have5 œ X

Ò œ X Ó œ ÒW − F Ó â  ÒW − F Ó − Ð Ñ7 T c! X" X
- -

3. This is the first time that .W   #W5 !

4. Write

Ö5 ± W Ð Ñ   #W Ð Ñ× œ Ö5 ±   #×
W Ð Ñ

W Ð Ñ
5 5"

5

5"
= =

=

=

and consider first entry times for the adapted process .Š ‹W Ð Ñ
W Ð Ñ

5

5"

=
=

5.  Exiting a set  is the same as entering the complement .F F-

6. For the maximum, we have

Ò Ö ß × œ 5Ó œ ÐÒ œ 3Ó  Ò œ 5  3ÓÑ − Ð Ñmax 7 5 7 5 T c.
3œ!

5

5
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The difference is not a stopping time, since it requirs knowledge of
the future.

8. For any  we have for = H 7 =− 5 œ Ð Ñ

^ Ð Ñ Ÿ Y Ð Ñ7 = 7 =Ð Ñ Ð Ñ= =

that is

Ò^ ÓÐ Ñ Ÿ ÒY ÓÐ Ñ7 7= =

or finally, .^ Ÿ Y7 7

10. The martingale condition is

X cÐE ± Ñ œ E5" 5 5

for . But the predictablility implies that 5   ! ÐE ± Ñ œ EX c5" 5 5"

and so .E œ E5" 5

11. Here is an Excel worksheet with the solution. 
u= 1.2 r= 0 K= 21 pi= 0.5
d= 0.8 S0= 20 T= 3 Call=1/Put=-1 1

S0 S1 S2 S3 Y0Bar Y1Bar Y2Bar Y3Bar
20 24 28.8 34.56 0 3 7.8 13.56

16 19.2 23.04 0 0 2.04
19.2 23.04 0 2.04
12.8 15.36 0 0

23.04 2.04
15.36 0
15.36 0
10.24 0

V3Bar E(V3Bar|P2) V2Bar E(V2Bar|P1) V1Bar E(V1Bar|P0) V0Bar
13.56 7.8 7.8 4.41 4.41 2.46 2.46
2.04 7.8 7.8 4.41 4.41 2.46 2.46
2.04 1.02 1.02 4.41 4.41 2.46 2.46

0 1.02 1.02 4.41 4.41 2.46 2.46
2.04 1.02 1.02 0.51 0.51 2.46 2.46

0 1.02 1.02 0.51 0.51 2.46 2.46
0 0 0 0.51 0.51 2.46 2.46
0 0 0 0.51 0.51 2.46 2.46
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