Math 151 & 153 final exam review problems

The final exam will cover the whole course: all the sections listed on the syllabus starting from Chapter 1, including the appendices. The following 11 problems emphasize material in Chapters 4 and 5 and Section 6.1. THE EXAM WILL ALSO HAVE PLENTY OF QUESTIONS FROM EARLIER MATERIAL. A complete review should certainly include the review problems for the midterm exams and those exams themselves.

1. Find the following derivatives, antiderivatives, and integrals:

a) Find
$$F(x)$$
 if $F'(x) = (2x+1)^{14}$ and $F(-1) = 2$.

b)
$$\int x^2 \sin(x^3) \, dx$$

c)
$$\int_{1}^{3} (x^2 - \sqrt{2x+1}) dx$$

$$d) \int xe^{-2x^2} dx$$

e)
$$\int_0^1 \frac{1+x}{1+x^2} dx$$
 (Hint: split the fraction in two.)

f)
$$\frac{d}{dx} \left(\int_0^{\sin x} \sqrt{1 + t^4} \, dt \right)$$

2. Below is a graph of y = f(t):

Graph of
$$y = f(t)$$

Each segment of the graph is a semicircle.

Define the function g by the formula $g(x) = \int_{-1}^{x} f(t) dt$.

- a) Use the signed area definition of the definite integral to calculate g(-1), g(0) and g(5) (no calculus needed).
- b) In what intervals is g increasing? In what intervals is g decreasing?
- c) Sketch a graph of y = g(x) for $-1 \le x \le 7$.
- **3.** In this problem, $f(x) = \sqrt{x}$.
- a) Write out the Riemann sum

$$\sum_{i=1}^{4} f(x_i^*) \, \Delta x_i$$

for the partition $\{0, .5, 1, 1.5, 2\}$ of the interval [0, 2] and the evaluation points $x_i^* = \text{right endpoint}$. (you do not have to give a decimal value for the sum).

b) Express the following limit as a definite integral, and then evaluate the integral by calculus:

$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{2i}{n}\right) \frac{2}{n}$$

1

4. The angle of elevation of the sun is decreasing at a rate of 0.26 radian per hour. How fast is the shadow cast by a 400 foot tall building increasing when the angle of elevation of the sun is $\pi/6$?

5. A vendor of Italian ices makes containers by cutting circular disks of paper along a radius and rolling them into the shape of a cone. If the radius of the disk is 6", what is the volume of the largest cone that can be made? Justify your answer. (*Note:* The volume of a right circular cone of radius r and height h is given by $V = \frac{\pi}{3}r^2h$.)

6. Suppose you know that f(2) = 3 and $f'(x) = e^{-x^2}$ (there is no simple formula for f(x) itself). Find the function L(x) that is the linear approximation to f(x) around the point x = 2. Do you expect that L(2.1) is larger or smaller than f(2.1)? Give a reason for your answer based on the concavity of the curve y = f(x) near x = 2.

7. A falling raindrop has a velocity $v_0 = 10$ meters/sec at time t = 0. Assume that the downward acceleration on the raindrop at time t is 9 - 0.9t when $0 \le t \le 10$ and that the acceleration becomes 0 for t > 10, due to wind resistance. Assume the raindrop is 500 meters above the ground at time t = 0.

a) What is the position and velocity of the raindrop at time t = 10 seconds?

b) At what time does the raindrop reach the ground?

8. Sketch the graph of $f(x) = \ln x + \frac{2}{x}$, x > 0. Use calculus to determine the location of all vertical and horizontal asymptotes, local extrema and points of inflection. How does the graph of f compare with that of $\ln x$ for large x?

9. Suppose $F(x) = x^3 - x^2 - 8x + 1$ on the domain [-2,2]. Use calculus to locate precisely the absolute maximum and absolute minimum of F on this domain. Similarly, find any local maxima and minima of F on this domain.

10. Consider the function J whose derivative is given by the following formula:

$$J'(x) = \frac{x-1}{x^2 + x}$$

Answer the following questions as well as you can (you may find it helpful to refer to features of the graph of y = J'(x) in what follows):

a) In what intervals is J increasing? In what intervals is J decreasing? Why?

b) Does J have any critical numbers? Where does J have local extrema, and what kind of extrema are they? Give two explanations: one using your answer to a), and the other using the Second Derivative Test.

c) Where are J's points of inflection located? What are the largest intervals in which J is concave up? What are the largest intervals in which J is concave down?

11. a) Let R be the finite region enclosed by the curves $y = \frac{8}{x}$ and y = 6 - x. Find the area of R.

b) Let A be the finite region enclosed by y = 1/x, the x-axis and the lines x = 2 and x = 72. Which vertical line divides A into two pieces of equal area?