
Take-Home Problem Solutions. Mathematical Finance; Fall, 2005; Due November 3.

1. Consider a one-period market with one bond and one stock. The bond has interest
rate r̄ per period: thus, if R(t) denotes the value at t of $1 invested at time 0, R(0) = 1
and R(1) = 1 + r̄. The stock price is denoted by S(t). The market has three states,
ω1, ω2, and ω3. The stock prices at time 1 are S(1)(ω1) = dS(0), S(1)(ω2) = S(0),
S(1)(ω3) = uS(0). Assume d < 1 < u.

(a). Find a condition on r̄, d, and u that ensures no arbitrage and prove the
validity of your condition.

We claim there is no arbitrage if and only if d < 1 + r̄ < u. Many students
solved this assuming r̄ > 0 so that they needed only to check r̄. This was perfectly
acceptable. We show here that if negative r̄ is allowed (think deflation), but at least
1 + r̄ > 0, then d < 1 + r̄ < u is necessary and sufficient.

We give two methods. First, we show that if 1 + r̄ ≤ d or u ≤ 1 + r̄, there is
arbitrage. Indeed, suppose that 1 + r̄ ≤ d. Then borrow a dollar and invest it in
(1/S(0)) units of stock. After the next period the stock will be worth (1/S(0))S(1)(ωi)
and this is greater than 1+ r̄ in state ω1 and strictly greater in states ω2 and ω3. This
is then an arbitrage. If u ≤ 1 + r̄, selling a stock short and investing the money at
the risk free rate achieves an arbitrage.

Now assume that there is an arbitrage portfolio (π1, π2). Then

π1 + π2S(0) ≤ 0 (i)

π1(1 + r̄) + π2dS(0) ≥ 0 (ii)

π1(1 + r̄) + π2S(0) ≥ 0 (iii)

π1(1 + r̄) + π2uS(0) ≥ 0 (iv)

and not all the quantities listed are non-negative. Obviously this situation can only
exist if π2 6 0 since we are assuming 1 + r̄ > 0. Inequalities (i) and (ii) and imply that

π2S(0)(d− (1 + r̄)) ≥ 0, π2S(0)(u− (1 + r̄)) ≥ 0 (1)

(subtract 1+ r̄ times the first equation from the second and fourth.) Now suppose
that d < 1 + r̄. It then follows that from the first inequality in (1) and from π2 6= 0
that π2 < 0. But this then implies from the second inequaity in (1) that u ≤ 1 + r̄.
Likewise, if 1 + r̄ < u, (1) implies 1 + r̄ ≤ d. This shows that if there is no arbitrage
then either 1 + r̄ ≤ d or 1 + r̄ ≥ u.

We could also establish the condition, using the condition that characterizes no
arbitrage by the existence of state-price vector. This is a 3-vector ψ of all positive
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components, such that

(
1

S(0)

)
=

(
1+r̄ 1+r̄ 1+r̄
dS(0) S(0) uS(0)

) ψ1

ψ2

ψ3

 . (2)

Then general solution can be written as follows; choose ψ2 arbitrarily and then set(
ψ1

ψ3

)
=

1

(1+r̄)(u−d)

(
u− (1+r̄) + ψ2(1+r̄)(1−u)
(1+r̄)− d+ ψ1(1+r̄)(d−1)

)

We need necessary and sufficient conditions that this system has a solution in which
all terms are positive. If ψ2 > 0, then the terms ψ2(1+r̄)(1−u) and ψ1(1+r̄)(d−1) are
negative. So clearly there is no solution all of whose terms is positive if u ≤ (1+r)
or (1+r) ≤ d. On the other hand if d < (1+r) < u. It is clear that if ψ2 > 0 but is
small enough, so also will ψ1 and ψ3 be positive.

For all remaining parts of the problem, assume that the no-arbitrage condition is
satisfied.

(b). Show that the market is not complete. If

V =

 V (ω1)
V (ω2)
V (ω3)

 =

 V1

V2

V3


show that V can be replicated if and only if V is orthogonal to the vector

Z =

 1−u
u−d
d−1



A portfolio (π1, π2) replicates the payoff V if V1

V2

V3

 =

 1+r̄ dS(0)
1+r̄ S(0)
1+r̄ uS(0)

( π1

π2

)
.

The range of the matrix multiplication as π ranges over all 2-vectors is 2 dimensional
proper subspace of the space of 3-vectors and so the model is not complete.

In general a matrix equation x = Ay has a solution if and only if x is perpendicular
to the null space of A∗, the transpose of A. However the null space of A∗ is spanned
by the vector Z = (1−u, u−d, d−1)∗, as one can easily check. So a contingent claim
V is replicable if and only if it is perpendicular to Z.
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(c). Compute the no arbitrage price of a replicable contingent claim.

One can give a variety of formulas. Let V be a replicable contingent claim. Then
we know (

V1

V3

)
=

(
1+r̄ dS(0)
1+r̄ uS(0)

)(
π1

π2

)
,

and by assumption of replicability we don’t have to worry about V2. This is exactly
the equation for replicability of a claim in the one-period binomial model and we can
deduce from the work there that the price of the option must be

1

1 + r̄
[q̃V1 + p̃V3]

where p̃ = ((1+r̄)− d)/(u− d), q̃ = 1− p̃, as in the binomial model.

(d). What condition must hold in order that a European call with strike price K
be replicable?

The European call will be replicable only in two cases, the trivial case, in which
K ≥ uS(0) and so the payoff of the option is always zero and hence its value is 0,
or the case K ≤ dS(0). In the latter case, the payoff vector is (dS(0) − K,S(0) −
K, uS(0)−K) and a straightforward computation shows this is perpendicular to the
vector Z identified in part (b). On the other hand, if dS(0) < K < uS(0), then
Z · V = (u−d) max{S(0)−K, 0}+ (d−1)(uS(0)−K) 6= 0.

2. (From Chapter 1, Volume 1 of Shreve). The background for this problem is in
Lectures 4, 5, 6 available on the course web page. We consider a three period binomial
tree model with S(0) = 4, u = 2, d = 1/2, and interest rate r = 1/4. With these
numbers, p̃ = 1/2 = q̃. We will study the Asian option. This is an option written
on the average price of a stock over its history. Define

Y (0) = 0, Y (t) =
t∑
i=1

S(i), 1 ≤ t ≤ 3.

The Asian option with strike price K pays

V (3) = max{Y (3)/3−K, 0}

at the terminal time T = 3.

Note: I mistated this problem because I should have written

Y (0) = S(0), Y (t) =
t∑
i=0

S(i), 1 ≤ t ≤ 3.
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and V (3) = max{Y (3)/4−K, 0}.
I will present the solution with the old definitions though so as not to confuse the

issue even further!)

(a). Let V (t)(ω|t) denote the price of the Asian option at time t in state ω. Write
down a recursive backward equation for V (t)(ω|t).

This is just the equation we derived in class, which applies to all contingent claims.
Note that for our specific problem p̃ = q̃ = 1/2, and 1 + r̄ = 5/4.

V (t)(ω|t) =
1

1+r̄
[q̃V (t+1)(ω|t,−1) + p̃V (t+1)(ω|t, 1)]

=
2

5
[V (t+1)(ω|t,−1) + V (t+1)(ω|t, 1)] (3)

It turns out that one can express V (ω|t) as a function v(t)(S(t), Y (t)) of the current
price S(t) and current accumulated sum of prices Y (t). This is true by definition for
T = s, with v(3)(s, y) = max{y/3 − K, 0}. Derive a recursive, backward algorithm
expressing v(t)(s, y) in terms of v(t+1)(s, y).

If the stock price at time t is S(t) = s and if Y (t) = y and if ξt+1 = −1, then
S(t+1) = ds and Y (t+1) = y+ds. On the other hand, if ξt+1 = −1, then S(t+1) = us
and Y (t+1) = y + us. Then it is clear from (3) that if we can represent the option
price at time t+1 as a function v(t+1)(S(t+1), Y (t+1)), then

v(t)(s, y) =
2

5
[v(t+1)(ds, y + ds) + v(t+1)(us, y + us)] . (4)

The terminal condition is, of course,

v(3)(s, y) = max{(y/3)−K, 0}. (5)

(b). Use the result of (a) to find the price of the option at time t = 0. (We will
do the calculation with strike price K = 5.) It is necessary to write down the possible
pairs of values (S(t), Y (t)) for t = 0, 1, 2. At time t = 0, S(0) = 4, Y (0) = 0. At
time t = 1, there are two possibilities for (S(1), Y (1): either (8, 8) or (2, 2). At time
t = 2, there are three possibilies: (16, 24) (corresponding to (ξ1, ξ2) = (1, 1)), (4, 12)
(corresponding to (ξ1, ξ2) = (1,−1)), (4, 6) (corresponding to (ξ1, ξ2) = (−1, 1)), and
(1, 3) (corresponding to (ξ1, ξ2) = (−1,−1)). Apply the terminal condition (5) and
the recursion (4),

v(2)(16, 24) =
2

5
[v(3)(8, 32) + v(3)(32, 56)] =

116

15
,

v(2)(4, 12) =
2

5
[v(3)(2, 14) + v(3)(8, 20)] =

2

3
,
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v(2)(4, 6) =
2

5
[v(3)(2, 8) + v(3)(8, 14)] = 0,

v(2)(1, 3) =
2

5
[v(3)(2, 5) + v(3)(.5, 3.5)] = 0.

From these values, v(1) can be computed by the recursion:

v(1)(8, 8) =
2

5
[v(2)(4, 12) + v(2)(16, 24)] =

84

25
,

v(1)(2, 2) =
2

5
[v(2)(1, 3) + v(2)(4, 6)] = 0.

Finally, v(0)(4, 0) = (2/5)v(1)(8, 8) = 168/125.

(c). Let π(t)(s, y) denote the number of shares of stock that should be held during
period [t, t+1] in the replicating portfolio if the stock price is s and if Y (t) = y.

According the delta hedging formula,

π(t)(s, y) =
v(t+1)(us, y+us)− v(t+1)(ds, y+ds)

s(u− d)
.

3. Invariance of Brownian motion under certain time and space scalings. Let W be
a Brownian motion. By checking the conditions defining a Brownian motion, show
that each of the following is a Brownian motion:

(a) Y (t) = W (1−t)−W (1), 0 ≤ t ≤ 1; (time-reversed Brownian motion.) (This
process is restricted to the time interval 0 ≤ t ≤ 1; show it is a Brownian motion on
this interval.

It is necessary to check that the process Y is continuous, has independent incre-
ments, and that the distribution of Y (t+s)−Y (t) is normal with mean 0 and variance
s. The process clearly has continuous paths because B does. If 0 ≤ t1 < t2 < · · · <
tn ≤ 1,

(Y (t1), Y (t2)−Y (t1), . . . , Y (tn)−Y (tn−1))

= (B(1)−B(1−t1), B(1−t1)−B(1−t2), . . . , B(1−tn)−B(1−tn−1))

The components of the vector on the right are increments of B over disjoint time
intervals and hence are independent. Furthermore, Y (t+s)−Y (t) = B(1−t)−B(1−t−s);
the last expression is a Brownian motion increment over an interval of length s and
hence is normal with mean 0 and variance s.
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(b) Y (t) = cW (t/c2).

Sample path continuity of Y follows directly from the continuity for W . As the
time parameter of Y is just a linear scaling, the increments of Y are increments of
Brownian motion, and hence Y has the independent increments property and the
increments are normal with zero mean. It remains only to check the increments have
the correct variance. But

Var (Y (t+s)− Y (s)) = c2Var
(
W ((t+s)/c2)−W (s/c2)

)
= c2(s/c2) = s.

(c). Y (t) = tW (1/t). (Set Y (0) = 0. For complete rigor, one needs to show
that limt↓0 Y (t) = Y (0) = 0. You may assume this.)

It is helpful to remember that jointly normal random variables are independent if
their covariance is zero.

The process Y is again continuous by continuity of W . Consider any increment
Y (t2)− Y (t1), t2 > t1. As a linear combination of zero mean, jointly normal random
variables–namely W (1/t1) and W (1/t2), it is normal and has mean zero. To calculate
its variance, we use the fundamental property, E[W (t, s)] = t ∧ s, where t ∧ s =
min{t, s}.

E
[
(Y (t2)− Y (t1))2

]
= E

[
t22W

2(1/t2)− 2t2t1W (1/t2)W (1/t1) + t21W
2(1/t1)

]
= t2 − 2t2t1(t−1

2 ∧ t−1
1 ) + t1 = t2 − t1.

Now let r ≤ s < t. We will show that the covariance of Y (t)−Y (s) and Y (r) is zero.
It then will follow that Y has independent increments, because then the covariance
of Y (t) − Y (S) with any linear combination of Y (r1), . . . , Y (rm) for times ri ≤ s is
zero, which by normality implies independence. But

E [Y (r)(Y (t)− Y (s))] = rt(r−1 ∧ t−1)− rs(r−1 ∧ s−1) = r − r = 0.

4. Let X and Y be random variables on a probability space (Ω,F , P). Let G be a
sub-σ-algebra of F , and assume that Y is G measurable; equivalently, the σ-algebra
σ(Y ) generated by Y is contained in G. Assume E|X| <∞.

Suppose that there is a function φ such that

E [X | G] = φ(Y ).

Using the properties defining conditional expectation, show that

E
[
X
∣∣∣ Y ] = E [X | G] .
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This is an application of the tower propery. Let σ(Y ) be the σ-algebra generated
by Y . Since Y is G-measurable, σ(Y ) ⊂ G. Thus

E
[
X
∣∣∣ Y ] = E [E [X | G] | Y ]

= E [φ(Y ) | Y ] = φ(Y )

= E [X | G] .

The second-to-last equality follows because obviously Y is σ(T )-measurable, and the
last equality follows by hypothesis.
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