
610:621: Mathematical Finance: Lectures 4 and 5, September 13 and 15

Multi-period binomial tree model.

1. Preliminary framework. In this lecture we formulate and study a market
model that has T periods, so that the set of trading times is T = {0, 1, 2, . . . , T}.
The market will consist of one risk-free bond, yielding a return of 1 + r̄ per period,
and one stock. We assume that the stock does not pay dividends, so that the return
or loss on the stock is due totally to its price changes. As in the one-period model, it
will be assumed that in each period, the return on the stock is either u or d, d < u.
But before specifying this more fully, we define the portfolio strategies allowed. For
convenience of discussion, assume throughout that monetary value is measured in US
dollars.

2. Self-financing portfolio processes and the wealth equation. The discussion
of this section does not depend on the model for the set of states Ω, nor the movements
of the stock prices. Here, S(t)(ω) denotes the price of the stock at time t, if state ω
occurs, consistent with previous notation. Explicit dependence of prices, portfolios,
etc. on ω will often be suppressed. For example, we often write just S(t) if the
dependence on ω does not need to be discussed.

Since transactions are allowed at each time t, t = 0, 1, 2, . . . , T , the portfolio can
be rebalanced for each time period. We shall let π(t)(ω) denote the portfolio chosen
at time t, t = 0, 1, . . . , T −1, for investment in period t+1. Taken in its totality,
as a function of t and ω, π is called a portfolio process. Since there are only two
investment possibilities, π(t) is a vector with two components; for consistency with
previous notation, let π1(t) be the dollar amount invested at the risk-free interest
rate, and π2(t) the number of shares invested in the stock.

The total value of the portfolio invested at time t will be denoted X(t)(ω), and
called the wealth. We have

X(t) = π1(t) + π2(t)S(t) (1)

Because the amount invested in the bond is π1(t) = X(t) − π2(t)S(t), we may and
shall characterize the portfolio process by specifying π2(t) and X(t), rather than π1(t)
and π2(t).

It is natural, for an investment model, to demand that a portfolio process be self-
financing. This means that at each time t, the wealth X(t) must be only the initial
wealth X(0) plus what the investor has earned (or lost) from the investments, either
from the risk-free interest, or from price movements of the stock. Mathematically, this
means the following. Suppose that the wealth at time t is X(t), and we have chosen
a portfolio π(t) with total value X(t), to invest in period t+1. Then at time t+1 one
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period later, the value of this portfolio is (1 + r̄)(X(t) − π2(t)S(t)) + π2(t)S(t+1),
since π2(t) units of stock are owned and the return on the remainder of X(t) invested
risk-free is 1 + r̄. For a self-financing strategy, we insist that this value is what we
have to invest for period t+2. That is,

X(t+1) = (1 + r̄)(X(t)− π2(t)S(t)) + π2(t)S(t+1). (2)

This equation is called the wealth equation. Once an initial X(0) and a sequence of
investments π2(0), π2(1), . . . , π2(T−1) are given, (2) determines recursively a unique
wealth process X(0), X(1), . . . , X(T ), and hence completes the specification of the
portfolio process. To summarize, a self-financing portfolio process is specified by an
initial endowment X(0), the amounts {π2(t); 0 ≤ t ≤ T−1}, and the wealth equation.

There is one more general constraint on the portfolio process—a causality con-
straint. In any multi-period market model there is a natural flow of information. At
time t, the investor has observed the market only up to time t. His or her choice
of π2(t)(ω) can only depend on this information. In general a state ω encodes the
entire history of the market, for all times before and after t. The structure of π2(t)
as a function of ω must be somehow constrained so that it only depends on past
information. We do not yet have the mathematical technology to do this in general.
We will specify below what the causality constraint is for the special case of binomial
trees.

3. Contingent claims. In the T period model, suppose we have a contingent claim
that promises to pay V (T )(ω) at time T if the market is in state ω.

One example is the European call option with expiration date T and strike price
K. This gives the holder of the option the right, but not the obligation, to buy the
stock at price K at time T . The holder will exercise if the price S(T )(ω) > K, for a
profit of S(T )(ω) −K, but otherwise will not. The pay-off for the European call is
thus V (T )(ω) = max{S(T )(ω)−K, 0}.

Another example is the European put option, with expiration date T and strike
price K. This gives the holder the right, but not the obligation, to sell the stock to
the option writer for price K. This time the holder will exercise if K > S(T ) for a
profit of K − S(T )(ω). Thus, the payoff is V (T )(ω) = max{K − S(T )(ω), 0}.

There are many other option types. The American option, which we will discuss
later, allows the holder to exercise the option at any time up to the expiration date.
In this option the pay-off is not paid out at T , but we can define an equivalent option
with pay-off at T by including an appropriate interest rate factor. So assume there is
a risk-free return of 1 + r̄ per period. If the state is ω, the pay-off of an American call
option at strike price K is V (T )(ω) = max{0, (S(0)−K)(1 + r̄)T , (S(1)(ω)−K)(1 +
r̄)T−1, . . . , S(T )(ω) − K}. The American put has pay-off V (T )(ω) = max{0, K −
S(0)(1 + r̄)T , (K − S(1)(ω))(1 + r̄)T−1, . . . , K − S(T )(ω)}.
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Again, in the future, we shall often write V (T ) without ω.

4. Binomial tree model: definition and the no arbitrage pricing principle.
In this model, at each time t, if the price of the stock is S(t), at time t+1 it can either
be uS(t) or dS(t), where 0 < d < u. To encode the stock movements for all time, we
shall, use a sequence ω = (ξ1, . . . , ξT ). Each ξt can equal either −1 or 1; ξt = 1 means
S(t+1) = uS(t), while ξi = −1 means S(t+1) = dS(0). Thus, the model for the set
Ω of all possible states of the market will be the set {−1, 1}T of all such sequences ω.

With this notation, the value of S(t)(ω) can be read off of ω;

S(t)(ξ1, . . . , ξT ) = ujdt−jS(0), where j is the number of occurences of 1 in (ξ1, . . . , ξt),

because j is the number of periods, up to period t, in which the return was u, while
in the t− j remaining, the return was d. For each t, (1 + ξt)/2 equals 1 if ξt = 1, and

it equals 0 if ξt = −1. Thus the number j in the formula for S(t) is
t∑

s=1

(1+ξs)/2, and

we can write
S(t)(ξ1, . . . , ξT ) = u

∑t

1
(1+ξs)/2d

∑t

1
(1−ξs)/2S(0). (3)

Or we can write a difference equation for the price:

S(t+1)(ω) = u(1+ξt+1)/2d(1−ξt+1)/2S(t)(ω), 0 ≤ t ≤ T−1. (4)

These formulae for the price are not too important technically for the pricing of
derivatives, but there are two conceptual points in them.

(i) At each time t, S(t)(ξ1, . . . , ξT ) depends only on the values ξ1, . . . , ξt, marking
the market movements up to time t. While this is obvious, it is an example
of how to express the property that at time t, a function of ω depend only on
the history of the market up to time t. If F is a function of ω = (ξ1, . . . , ξT )
determined just by the values ξ1, . . . , ξt, we shall abuse notation slightly and
write F (ω) = F (ξ1, . . . , ξt). To save writing, it is also convenenient to define
ω|t = (ξ1, . . . , ξt).

(ii) Equation (4) expresses the price as the solution of a difference equation driven
by a “random” input sequence ξ1, . . . , ξT . This will be generalized in the
continuous-time theory to a stochastic differential equation model for a stock
price.

Before going on, we return to the theme of remark (i) and make several defini-
tions. A function {u(t)(ω) : t ∈ {0, 1, . . . , T}, ω ∈ Ω}, abbreviated {u(t)}, is called
a process. If, for every t, u(t)(ω) depends only on the values in ω|t = (ξ1, . . . , ξt),
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then {u(t)} is said to be adapted. This terminology allows us to complete the defi-
nition of a self-financing portfolio process, begun in section 2, by demanding that it
be adapted.

We know from the definition of a self-financing portfolio process, that it is de-
termined by an initial wealth X(0) and an adapted process {π2(t)} specifying the
number of shares of stock to invest in each period. To simplify notation and make
it consistent with Shreve’s, from now on we will use 4(t) to denote π2(t). Thus, to
repeat, a self-financing portfolio process is specified by an initial wealth, or initial
endowment, X(0), and adapted process 4(0),4(1), . . . ,4(T−1), and the solution of
the wealth equation (2) (with π2 replaced by 4).

The binomial tree model should be viewed as a sequence of successive one period
models. Indeed, suppose that we are at time t and we have observed the sequence of
prices S(0), S(1)(ω), . . . , S(t)(ω). This is equivalent to observing ω|t = (ξ1, . . . , ξt),
encoding the price movements “up” (from S to uS) or “down” (from S to dS), up
to time t. Given only this information, what happens from t to t+ 1 is described by
the one-period model starting from price S(t)(ω|t); either ξt+1 = 1, so that the next
price is

S(t+1)(ω|t, 1) = uS(t)(ω|t),

or ξt+1 = −1, so that the next price is

S(t+1)(ω|t,−1) = dS(t)(ω|t).

An arbitrage at time t, given history (ξ1, . . . , ξt) is a portfolio, with investment choices
perhaps dependent on (ξ1, . . . , ξt), that achieves an arbitrage for this one-period mar-
ket going from t to t+ 1. We know that if d < 1 + r̄ < u, no such arbitrage can exist,
independent of t or (ξ1, . . . , ξt).

With the model now defined, we can develop the no-arbitrage pricing theory for
contingent claims. Given a function G(ω), defined on Ω, we write G ≥ 0 to say
G(ω) ≥ 0 for every ω in Ω, and we write G > 0 to say G(ω) ≥ 0 for every ω in Ω but
G is not the function which is identically zero.

Definition. A self-financing portfolio process is an arbitrage if either X(0) < 0 and
X(T ) ≥ 0, or X(0) = 0 and X(T ) > 0, where X is the wealth process associated to
the portfolio.

Theorem 1 If d < 1 + r̄ < u, then the multi-period, binomial tree model does not
admit arbitrage.

The proof of this theorem is to observe that if there is a self-financing portfolio
process that achieves an arbitrage, then there must be a (ξ1, . . . , ξt) for which the
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portfolio process is an arbitrage for the one-period model starting at (ξ1, . . . , ξt). But
this is not allowed by the condition d < 1 + r̄ < u.

Henceforth, we assume that this no arbitrage condition, d < 1 + r̄ < u, is in force.

Definition. Let V (T ) be a contingent claim. A replicating portfolio process for
V (T ) is a self-financing portfolio process such that X(T ) = V (T ) (shorthand for
X(T )(ω) = V (T )(ω) for all ω in Ω.)

We will prove in a bit that every contingent claim for the binomial tree model has
a replicating portfolio. Thus the binomial tree model defines a complete market.

Given a contigent claim, we are of course interested in how to price it at time
0. We are also interested in pricing it at intermediate times t, when we know that
(ξ1, . . . , ξt) has happened. And of course, we want prices so that if the contingent claim
is allowed as an investment opportunity additional to the stock and bond, no arbitrage
possibilities arise. Let V (T ) be a contingent claim. Then the no-aribitrage price of
V (T ) at time T is just V (T )itself. We shall use the notation V (0), V (1), . . . , V (T−
1), V (T ) to denote a sequence of arbitrage-free prices of the claim. In this sequence,
V (t) is really a function V (t)(ξ1, . . . , ξt) depending on the sequence of stock price
movements up to time t. Hence {V (t)} is really a price process. To say that V (t) is an
arbitrage-free price means that for every (ξ1, . . . , ξt), the T − t period market starting
from time t, ending at time T , with (ξ1, . . . , ξt) fixed, and allowing investments in
bond, stock, or contingent claim, does not admit arbitrage.

No arbitrage pricing principle. Let V (T ) be a contingent claim with a replicating
portfolio process. Then V (t) = X(t), 0 ≤ t ≤ T , defines the unique, no-arbitrage
price process for the claim, where {X(t)} is the wealth process of the replicating
portfolio.

This statement of principle is really a theorem. Its proof, as in the one period
case, is as follows. If, say, X(0) were not the price of the claim at time 0, then by
either shorting the claim and going long in the replicating portfolio, or shorting the
portfolio and going long in the claim, one can achieve an arbitrage. The price process
must be unique, because if there were another price process that differed from it one
could arbitrage the price differences.

4. Binomial tree model: solution. In this section, we present a general algorithm
and formula for computing the no-arbitrage price process of a contingent claim for
the binomial tree model. Of course, it is assumed always that d < 1 + r̄ < u.

Let us recall the definitions

q̃ =
u− (1 + r̄)

u− d
, p̃ =

1 + r̄ − d
u− d

,
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and the formulae

V (0) =
1

1 + r̄
[q̃V (ω1) + p̃V (ω2)] , (5)

for the no arbitrage price of claim V in the one-period model, and

δ =
V (ω2)− V (ω1)

S(ω2)− S(ω1)
, (6)

the delta hedging formula, for the number of shares to invest in stock in the replicating
portfolio. These formula were derived and discussed in previous lectures.

The key idea for the multi-period model is backward induction. Consider time
T−1 and suppose (ξ1, . . . , ξT−1) has occured. Then in the next time step the state is
either (ξ1, . . . , ξT−1,−1), or it is (ξ1, . . . , ξT−1, 1); the first case corresponds to state
ω1 in the one-period model, that is, a return on the stock of d, and the second
corresponds to state ω2 and a return of u. The pay-off of the claim in the first case is
V (T )(ξ1, . . . , ξT−1,−1) and in the second is V (T )(ξ1, . . . , ξT−1, 1). What total wealth
do we need at time T − 1 and history (ξ1, . . . , ξT−1) to replicate this claim? Equation
(5) says that the answer is

V (T−1)(ξ1, . . . , ξT−1) =
1

1 + r̄
[q̃V (T )(ξ1, . . . , ξT−1,−1) + p̃V (T )(ξ1, . . . , ξT−1, 1)] ,

and if this is the wealth supplied, we can replicate the claim by investing in

4(T−1)(ξ1, . . . , ξT−1) =
V (T )(ξ1, . . . , ξT−1, 1)− V (T )(ξ1, . . . , ξT−1,−1)

uS(T−1)(ξ1, . . . , ξT−1)− S(T−1)(ξ1, . . . , ξT−1)

shares of stock, and investing the remaining

V (T−1)(ξ1, . . . , ξT−1)−4(T−1)(ξ1, . . . , ξT−1)S(T−1)(ξ1, . . . , ξT−1)

dollars in the bond. In this way, using the results of the one-period model we can
derive the no-arbitrage price of the claim at time T−1 for each possible history of
price movements, (ξ1, . . . , ξT−1), up to time T−1, and also the replicating portfolio
we need to use.

Now consider time T − 2 with a history (ξ1, . . . , ξT−2). How much money do
we need to replicate V (T ) from this position? At time T−1, the state will be either
(ξ1, . . . , ξT−2,−1), and in that case we will need V (T−1)(ξ1, . . . , ξT−2,−1) to replicate
V (T ), or the state will be (ξ1, . . . , ξT−2, 1) and we will need V (T−1)(ξ1, . . . , ξT−2, 1)
to replicate V (T ). Thus the amount of money we need to replicate V (T ) starting
from T−2 is the same that we would need to replicate a one-period claim that pays
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off V (T −1)(ξ1, . . . , ξT−2,−1) in state ω1 and V (T −1)(ξ1, . . . , ξT−2, 1) in state ω2.
Applying formula (5) again:

V (T−2)(ξ1, . . . , ξT−2) =
1

1 + r̄
[q̃V (T−1)(ξ1, . . . , ξT−2,−1) + p̃V (T−1)(ξ1, . . . , ξT−2, 1)] .

Likewise, the delta hedging formula specifies how many shares of the portfolio should
be dedicated to stock in period T−1 to achieve this.

Continuing this procedure leads to a recursive equation solved backwards in time
for the no-arbitrage prices and the replicating portfolio. To simplify notation, go back
to writing ω|t for (ξ1, . . . , ξt). Then, for all t, 0 < t ≤ T , and for each ωt, the equation
for the price process is

V (t−1)(ω|t−1) =
1

1 + r̄
[q̃V (t)(ω|t−1,−1) + p̃V (t)(ω|t−1, 1)] , (7)

and the formula for the portfolio process is

4(t−1)(ω|t−1) =
V (t)(ω|t−1, 1)− V (t)(ω|t−1,−1)

uS(t−1)(ω|t−1)− dS(t−1)(ω|t−1)
. (8)

We summarize this solution in the following theorem, paraphrasing the theorem
stated in Chapter 1 of Shreve, Volume 1.

Theorem 2 Consider the binomial tree model with d < 1 + r̄ < u. Let V (T )
be a contingent claim. Let V (0), V (1), . . . , V (T −1) be the solution to (7) and let
4(0), . . . ,4(T−1) be defined by (8). Consider the self-financing portfolio process de-
fined by {4(t)} and initial wealth X(0) = V (0). Then this portfolio process replicates
V (T ) and in fact X(t) = V (t) for all t. Thus {V (t)} is the no-arbitrage price process.

Example. Consider a two-period, European put at strike price 52. Assume the price
of the stock at time 0 is $50, that r̄ = 0.05 and that in each period the stock can
increase by 20% or decrease by 20% per period. Recall that the pay-off to the holder
of the put will be V (2) = max{52−S(T ), 0}. Determine the price of the put at time
0.

Increase or decrease by 20% per period means u = 1.2 and d = .8. Thus

q̃ =
1.2− 1.05

1.2− 0.8
=

3

8
and p̃ =

1.05− 0.8

1.2− 0.8
=

5

8
.

The price process is S(0) = 50, S(1)(1) = (1.2)50 = 60, S(1)(−1) = (0.8)50 = 40¡
S(2)(1, 1) = 1.2S(1) = 72, S(2)(1,−1) = S(2)(−1, 1) = (1.2)S(1)(−1) = 48, and
S(2)(−1,−1) = (0.8)S(1)(−1) = 32. (It helps to write all these number on the graph
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of a tree, with a node for each price, but I am too lazy to figure out how to typeset
this!). The pay-offs at time T = 2 are

V (2)(1, 1) = max{52− S(2)(1, 1), 0} = 0

V (2)(1,−1) = V (2)(−1, 1) = max{52− S(2)(1,−1), 0} = 4

V (2)(−1,−1) = max{52− S(2)(−1,−1), 0} = 20.

Apply (7). Then

V (1)(1) =
1

1.05
[(3/8)V (2)(1,−1) + (5/8)V (2)(1, 1)] = 1.43

V (1)(−1) =
1

1.05
[(3/8)V (2)(−1,−1) + (5/8)V (2)(−1, 1)] =

10

1.05
= 9.52

Repeating,

V (0) =
1

1.05
[(3/8)V (1)(−1) + (5/8)V (1)(1)] = 4.76.

A person speculating on a price drop in a stock might purchase a call option. Suppose
you buy this put at $4.76 and the price drops from $50 to $32 in two periods, a
total drop of %36. Then then return pay-off is $20. The return in this situation is
20/4.76 = 4.2. This example demonstrate that the percent return on an option can,
if the circumstances are favorable, be much greater percent-wise, than the fluctation
of the price of the underlying.
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