
610:621: Mathematical Finance: Lecture 6, September 21.

Multi-period binomial tree model, continued.

The equation for pricing a contingent claim.

The context of this lecture is the binomial tree model established in the lecture
notes for lectures 4 and 5. In this lecture we study equation (7) of the previous lecture
for the price process V (t)(ξ1, . . . , ξt) for a contingent claim paying V (T ) at time T .
Writing ω|t as shorthand for (ξ1, . . . , ξt), this equation is

V (t)(ω|t) =
1

1 + r̄
[q̃V (t+1)(ω|t,−1) + p̃V (t+1)(ω|t, 1)] , t ≤ T − 1. (1)

(I have rewritten the equation here by replacing t−1 of equation (7) in the pre-
vious lecture by t.) Since V (T ) is given, this equation allows one to solve for the
price process by a backward (in time) recursion. Equation (1) applies to a general
contingent claim. For each time t, there are 2t values of V (t) to compute since there
are 2t sequences (ξ1, . . . , ξt) of 1’s and −1’s. Thus to fully specify the price process,
we need to apply equation (1) a total of 1 + 2 + . . .+ 2T−1 = 2T − 1 times, which, for
large T can be computationally intensive.

A simpler and less computationally intensive equation for pricing can be obtained
if the contingent claim is a function of the price of the stock: that is V (T ) = C(S(T )).
This happens, for example, for the European call, where C(s) = max{s −K, 0}, or
the European put, where C(s) = max{K − s, 0}. Then we have the following result.
For each time t, V (t)(ω|t) = v(t, S(t)(ω|t)) (more simply, V (t) = v(t, S(t))) where
v(t, ·) is the solution of the backward equation,

v(T, s) = C(s) (2)

v(t, s) =
1

1 + r̄
[q̃v(t+1, ds) + p̃v(t+1, us)] , t ≤ T−1. (3)

The solution of this equation can be carried out on the binomial tree for the prices. At
time t there are only t+1 possible different prices, namely ujdt−jS(0) for 0 ≤ j ≤ t.
Thus the number of prices on the tree out to time T is 1 + 2 + . . . + (T + 1) =
(T+1)(T+2)/2, and so only this many applications of (3) are required to characterize
the price process.

The proof that V (t) = v(t, S(t)) is by backward induction on t. The representation
V (T ) = v(T, S(T )) is immediate by the fact that V (T ) = C(S(T )) and the definition
of v(T, ·) in (2). Now let us do the induction step. Assume V (t+1) = v(t+1, S(t+1)).
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We will show then that V (t) = v(t, S(t)). The key to this is the simple observation,
from the dynamics for the price process defined in the previous lecture, that

S(t+1)(ω|t,−1) = dS(t)(ω|t) and S(t+1)(ω|t, 1) = uS(t)(ω|t).

Applying (1) and the induction assumption

V (t)(ω|t) =
1

1 + r̄
[q̃v (t+1, S(t+1)(ω|t,−1)) + p̃v (t+1, S(t+1)(ω|t, 1))]

=
1

1 + r̄
[q̃v (t+1, dS(t)(ω|t)) + p̃v (t+1, uS(t)(ω|t))] .

But this last expression is just v(t, S(t)), which completes the induction step.

Remark. Equation (3) is the binomial tree version of a partial differential equation
for an option price that we will later derive in the continuous-time model.

Next we will write down a closed formula that expresses the general solution to
(1). To define this, first let us define the function

J(ξ1, . . . , ξs) =
s∑
1

(1+ξj)/2 = number of 1’s in ξ1, . . . , ξs,

which acts on any sequence (ξ1, . . . , ξs) ∈ {−1, 1}s, for any positive integer s. Thus,
if s is a time and if (ξ1, . . . , ξs) represents a sequence of up and down movements of
a stock up to time s, J(ξ1, . . . , ξs) is the number of times it has gone up.

Then, if V (t) solves (1), we have, for t < T , the solution

V (t)(ω|t) =
1

(1+r̄)T−t
∑

η=(ηt+1,...,ηT )∈{−1,1}T−t
p̃J(η)q̃T−J(η)V (T )(ω|t, ηt+1, . . . , ηT ). (4)

The proof of this formula is again by backward induction. For t=T−1, formula (4)
translates to

V (T−1)(ω|T−1) =
1

(1+r̄)1

∑
η∈{−1,1}

p̃J(η)q̃T−J(η)V (T )(ω|T−1, η)

=
1

1+r̄
[q̃V (T )(ω|T−1,−1) + p̃V (T )(ω|T−1, 1)] .

But this is exactly what is given by the backward recursion (1) and so it is correct.
Now assume that the representation (4) is valid for t+1. Then use this in (1), rearrange
terms slightly and you’ll get (4). I’ll leave it as an exercise—I haven’t the fortitude
to try to typeset the calculation!
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It is interesting to look at formula (4) for t=0. It is:

V (0) =
1

(1+r̄)T
∑

η∈{−1,1}T
p̃J(η)q̃T−J(η)V (T )(η). (5)

This can be intepreted as an expectation. For each ω = (ξ1, . . . , ξT ) in the state
space Ω for the binomial tree model, assign ω the probability

P̃ ({ω}) = pJ(ω)qT−J(ω).

One can check that this is a valid probability assignment in that∑
ω∈Ω

pJ(ω)qT−J(ω) = (p̃+ q̃)T = 1,

since p̃ + q̃ = 1. The probability assignment P̃ is called the risk neutral measure on
Ω. It generalizes the risk neutral probability measure we defined previously for the
one-period model. Once this probability measure is defined, we can think of V (T )
as a random variable. Then formula (5) states that V (0) is the expectation of V (T )
under this risk-free measure, discounted by (1 + r̄)T , the discount due to the risk-free
interest rate over T periods:

V (0) =
1

(1+r̄)T
Ẽ [V (T )] .

Part of the reason P̃ is called the risk-free measure is that,. in fact,

S(0) =
1

(1+r̄)T
Ẽ [S(T )] . (6)

In effect, the probabilities assigned by the risk-free measure provide the analogue of
state-price vector, as they express the price at time 0 in terms of its price at time
T . To prove (6), use the formula we stated last lecture (here expressed using J),
S(T )(ω) = uJ(ω)dT−J(ω)S(0). Also note as a preliminary that

dq̃ + up̃ =
d(u− (1+r̄)) + u(1+r̄−d)

u− d
= 1+r̄.

Now,

1

(1 + r̄)T
Ẽ [S(T )] =

1

(1 + r̄)T
∑
ω∈Ω

p̃J(ω)q̃T−J(ω)uJ(ω)dT−J(ω)S(0)

= S(0)
1

(1 + r̄)T
(up̃+ dq̃)T

= S(0).
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Later, we will interpret the formula (4) for intermediate times t as a conditional
expectation involving the risk-free measure. And we will show that (1+ r̄)−tS(t),
the discounted price process, is a martingale with respect to the risk-free measure.
If you don’t know what a martingale is, we will get to it, so this remark is for
those that do know! In fact, the fundamental theorem of asset pricing for multi-
period (discrete-time) markets says that no-arbitrage is equivalent to the existence of
a probability measure under which the discounted price process is a martingale. This
is the appropriate generalization of the result we stated for the one-period model that
no-arbitrage is equivalent to the existence of a risk-neutral probability measure.

Some final remarks on this risk-neutral measure P̃ on Ω. When we assign proba-
bilities, we can then think of J(ω), which counts the number of 1’s in ω, as a random
variable. What is its distribution? We calculate the probability P̃ (J=j) that there

are exactly j 1’s. Well, there are

(
T

j

)
sequences ω for which J(ω) = j and, according

to the definition of P̃, each has probability p̃J(ω)q̃T−J(ω). So,

P̃ (J=j) =

(
T

j

)
p̃J(ω)q̃T−J(ω).

Thus J is a binomial random variable with parameters p̃ and T . It has the same
distribution as the number of heads in T independent tosses of a coin, the probability
of heads on each toss being p̃. The risk-neutral measure is assigning probabilities as
if the price movements ξ1, . . . , ξT were determined by independent Bernoulli random
variables (essentially, coin tosses) with probability that ξi = 1 being p̃, and the
probability that ξi = −1 being q̃ = 1− p̃.

Finally, suppose that V (T ) = C(S(T )), that is, the contingent claim is a function
of the price of the stock at time T . Under the risk-neutral measure the probability
that S(T ) = djuT−jS(0) is the probability that J = j, which we have just calculated.
Thus

V (0) =
1

(1+r̄)T
Ẽ [V (T )] =

1

(1+r̄)T

T∑
j=0

(
T

j

)
p̃J(ω)q̃T−J(ω)C

(
djuT−jS(0)

)
.

This is a nice, simple formula for pricing. It can be used as the basis for a derivation
of the famous Black-Scholes formul—but this is for a later lecture.
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