610:621: Mathematical Finance: Lecture 6, September 21.
Multi-period binomial tree model, continued.
The equation for pricing a contingent claim.

The context of this lecture is the binomial tree model established in the lecture
notes for lectures 4 and 5. In this lecture we study equation (7) of the previous lecture
for the price process V (t)(&1,...,&) for a contingent claim paying V(T') at time T.
Writing w|; as shorthand for (&, ...,&), this equation is

VO] = T VD@l =) + VD), t<T—1 ()
(I have rewritten the equation here by replacing t—1 of equation (7) in the pre-
vious lecture by ¢.) Since V(T is given, this equation allows one to solve for the
price process by a backward (in time) recursion. Equation (1) applies to a general
contingent claim. For each time ¢, there are 2° values of V/(¢) to compute since there
are 2' sequences (&1,...,&) of 1’s and —1’s. Thus to fully specify the price process,
we need to apply equation (1) a total of 1 +2+ ...+ 2771 =27 — 1 times, which, for
large T" can be computationally intensive.
A simpler and less computationally intensive equation for pricing can be obtained
if the contingent claim is a function of the price of the stock: that is V(T') = C(S(T)).
This happens, for example, for the European call, where C(s) = max{s — K, 0}, or
the European put, where C'(s) = max{K — s,0}. Then we have the following result.
For each time ¢, V(t)(w|;) = v(t, S(t)(w];)) (more simply, V(t) = v(t,S(t))) where
v(t,-) is the solution of the backward equation,

o(T,s) = C(s) (2)
o(t,s) — ﬁ[q~v(t+1,ds)+ﬁv(t+1,us)], F<T-1. (3)

The solution of this equation can be carried out on the binomial tree for the prices. At
time ¢ there are only t+1 possible different prices, namely u/d'=7S(0) for 0 < j < t.
Thus the number of prices on the tree out to time 7" is 1 +2 + ... + (T'+1) =
(T'+1)(T+2)/2, and so only this many applications of (3) are required to characterize
the price process.

The proof that V' (t) = v(t, S(t)) is by backward induction on ¢. The representation
V(T) =v(T,S(T)) is immediate by the fact that V(T') = C(S(T")) and the definition
of v(T,-) in (2). Now let us do the induction step. Assume V' (t+1) = v(t+1, S(t+1)).



We will show then that V(¢) = v(t,5(t)). The key to this is the simple observation,
from the dynamics for the price process defined in the previous lecture, that

S(t+1)(wl;, —1) =dS(t)(w];) and  S(tE+1)(wl, 1) = uS(t)(w]e).

Applying (1) and the induction assumption

V) = i — [qv (t+1, S(t+1) (@l =1)) + o (t+1, S(E+1) (@], 1))]
B 1j1Lr [qu (t+1,dS(t)(wl)) + pv (E+1, uS(t)(w]e))] -

But this last expression is just v(t, S(t)), which completes the induction step.

Remark. Equation (3) is the binomial tree version of a partial differential equation
for an option price that we will later derive in the continuous-time model.

Next we will write down a closed formula that expresses the general solution to
(1). To define this, first let us define the function

s

J(&,...,&) = _(14¢&;)/2 = number of 1’s in &, ..., &,

1

which acts on any sequence (&1, ...,&) € {—1,1}*, for any positive integer s. Thus,
if s is a time and if (&,...,&;) represents a sequence of up and down movements of
a stock up to time s, J(i, ..., &) is the number of times it has gone up.
Then, if V(¢) solves (1), we have, for ¢ < T, the solution
1 ~J () ~T—
V(t)(wl) = e > PTG DV(TY (Wl esry ). (4)

n=(M¢41,....m7)E{—1,1}T—1

The proof of this formula is again by backward induction. For t=T—1, formula (4)
translates to

V(T =1)(w|r-1)

57 () 5T—J(n)
— > p’"g V(T)(wlr-1,m)
A
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= o2 VD)@l =1) + V(D) (wlr-1, 1))
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But this is exactly what is given by the backward recursion (1) and so it is correct.
Now assume that the representation (4) is valid for t+1. Then use thisin (1), rearrange
terms slightly and you'll get (4). I'll leave it as an exercise—I haven’t the fortitude

to try to typeset the calculation!



It is interesting to look at formula (4) for t=0. It is:

V(0) = > V(T (). (5)
(1—1—7“) el 1}T
This can be intepreted as an expectation. For each w = (&;,...,&r) in the state

space €2 for the binomial tree model, assign w the probability

B({w}) =p"@g" .

One can check that this is a valid probability assignment in that

ST p/Wg W = (54 ¢)" =1,
wEN

since p + ¢ = 1. The probability assignment P is called the risk neutral measure on
Q). It generalizes the risk neutral probability measure we defined previously for the
one-period model. Once this probability measure is defined, we can think of V(T
as a random variable. Then formula (5) states that V' (0) is the expectation of V(T')
under this risk-free measure, discounted by (1 +7)7, the discount due to the risk-free
interest rate over 1" periods:
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V(0) =

Part of the reason P is called the risk-free measure is that,. in fact,

1 -

S(0) = ——=FE[S(T)]. 6

0) = e 18T (©

In effect, the probabilities assigned by the risk-free measure provide the analogue of

state-price vector, as they express the price at time 0 in terms of its price at time

T. To prove (6), use the formula we stated last lecture (here expressed using .J),
S(T)(w) = u’@d" =7 S(0). Also note as a preliminary that

d(u — (147)) + u(14+7—d)
u—d

dq + up = =14r.

Now,

_ TJw)J T—J(w)
___E[S(T)] 1+ﬂ§5 ) dT=7) 5(0)

1 N N
at+r (up +dg)"



Later, we will interpret the formula (4) for intermediate times ¢ as a conditional
expectation involving the risk-free measure. And we will show that (1+7)7*S(¢),
the discounted price process, is a martingale with respect to the risk-free measure.
If you don’t know what a martingale is, we will get to it, so this remark is for
those that do know! In fact, the fundamental theorem of asset pricing for multi-
period (discrete-time) markets says that no-arbitrage is equivalent to the existence of
a probability measure under which the discounted price process is a martingale. This
is the appropriate generalization of the result we stated for the one-period model that
no-arbitrage is equivalent to the existence of a risk-neutral probability measure.

Some final remarks on this risk-neutral measure P on 2. When we assign proba-
bilities, we can then think of J(w), which counts the number of 1’s in w, as a random
variable. What is its distribution? We calculate the probability P (J=7) that there

are exactly j 1’s. Well, there are < ) sequences w for which J(w) = j and, according

J
to the definition of P, each has probability p’“¢7 /). So,

™ : T ~J(w) ~T'—J(w
B(J=j) = <j>pJ< G-I,

Thus J is a binomial random variable with parameters p and 7. It has the same
distribution as the number of heads in T" independent tosses of a coin, the probability
of heads on each toss being p. The risk-neutral measure is assigning probabilities as
if the price movements &1, ..., &r were determined by independent Bernoulli random
variables (essentially, coin tosses) with probability that & = 1 being p, and the
probability that & = —1 being ¢ =1 — p.

Finally, suppose that V(T') = C(S(T)), that is, the contingent claim is a function
of the price of the stock at time 7. Under the risk-neutral measure the probability
that S(T') = du’~75(0) is the probability that J = j, which we have just calculated.
Thus

1

This is a nice, simple formula for pricing. It can be used as the basis for a derivation
of the famous Black-Scholes formul—but this is for a later lecture.



