
642:621: Mathematical Finance: Summary of Lecture 3, September 8

The one-period/finite state model The beginning of this lecture covers what is
in the handout. We repeat in summary to make our notation clear. We consider a
model with p basic assets and m states, gathered in the space Ω = {ω1, . . . , ωm}. The
prices of the assets at time t = 0 are collected in the vector

A(0) =


S1(0)

...
Sp(0)

 .
The prices Sk(1)(ωi), of the assets at time 1, if the state is ωi, are collected in the
vector

A(1)(ωi) =


S1(1)(ωi)

...
Sp(1)(ωi)

 .
These vectors are in turn put into a matrix whose entries describe the price of each
asset at time 1 for each state:

A 4
=
(
A(1)(ω1) · · · A(1)(ωm)

)
=


S1(1)(ω1) · · · S1(1)(ωm)
S2(1)(ω1) · · · S2(1)(ωm)

...
...

...
Sp(1)(ω1) · · · Sp(1)(ωm)


A state-price vector is a vector ψ = (ψ1, . . . , ψm)∗ in Rm such that

(i) Each component ψi > 0;

(ii) For each asset k, 1 ≤ k ≤ p,

Sk(0) =
m∑
i=1

ψiSk(1)(ωi).

A succinct way to state the second condition using our notation is

A(0) = Aψ. (1)

We will explain the significance of the state-price vector in a bit.
A portfolio is represented by a vector 4 in Rp; component 4k of this vector is the

number of shares held by the portfolio in asset k. The value of the portfolio at time
0 is

A∗(0)4 =
(
S1(0) · · · Sp(0)

)
41
...
4p

 =
p∑

k=1

4kSk(0).
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The vector in Rm

A∗4 =


A∗(1)(ω1)4

...
A∗(1)(ω1)4


lists the values of the portfolio at time 1 for each different state.

If z is a vector, the notation z ≥ 0 means that each component of the vector
is non-negative; the notation z > 0 means that each component of the vector is
non-negative and z 6= 0. With this notation, an arbitrage is a portfolio such that

either A∗(0)4 < 0 and A∗4 ≥ 0, or (2)

A∗(0) = 0 and A∗4 > 0. (3)

This may be state succinctly as

(
−A∗(0)π
A∗π

)
=


−A∗(0)π
A∗(1)(ω1)π

...
A∗(1)(1)(ωm)π

 > 0. (4)

Let M be the set of all vectors of the form in (4), as 4 ranges over all vectors in
R
p. Then (4) says there is an arbitrage if and only if M intersects the strictly positive

orthant K
4
= {z ∈ Rm+1; zi ≥ 0 for each component zi of z}. Equivalently, there is

no arbitrage if and only if K and M intersect only in the zero vector 0. Since K is a
closed cone containing no lines andM is a subspace, the separation theorem for convex
cones stated in the handout shows that K and M can be separated by a hyperplane in
R
m+1 through the origin. It turns out that the vector perpendicular to this hyperplane

can be used to define a state-price vector. This is the main mathematical point of
the of the following theorem, whose proof is given in detail in the handout notes on
separation of convex sets.

Theorem 1 The market model defined by vector A(0) and matrix A admits no ar-
bitrage if and only if there is a state-price vector.

This theorem is very important conceptually as well as for deriving pricing for-
mulas. It is the version for the one-period model of the fundamental theorem of asset
pricing. To understand its significance we must explore the meaning of and conse-
quences of the existence of a state-price vector. Before doing this let us apply the
example to the one-period, binomial model. This will be an important calculation,
as it will give us the state-price vector, which we will use often.
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2. The state price vector for the one-period, two-state model. We shall
re-derive the no-arbitrage condition for this model using Theorem 1. We recall the
price vectors and matrices of this model:

A(0) =

(
1

S(0)

)
, A =

(
1 + r̄ 1 + r̄
dS(0) uS(o)

)
,

To determine if there is a state-price vector, we look for solutions to the matrix
equation: (

1
S(0)

)
=

(
1 + r̄ 1 + r̄
dS(0) uS(o)

)(
ψ1

ψ1

)
. (5)

Some linear algebra shows that the unique solution is(
ψ1

ψ1

)
=

1

1 + r̄

(
u−(1+r̄)
u−d

1+r̄−d
u−d

)
. (6)

By inspection, both entries are positive if and only if d < 1 + r̄ < u, so there is no
arbitrage if and only if this condition, which we derived before by direct analysis,
holds.

Let us note the following identity for the state-price vector:

ψ1 + ψ2 =
1

1 + r̄
. (7)

We can verify this either by using the solution given in (6) or, more simply, noting
that the first equation in the linear system (5) for ψ is

1 = (1 + r̄) (ψ1 + ψ2) .

The fraction 1/(1 + r̄) is called the discount rate (per period); because of the risk-
free interest rate, $1 paid out one period in the future, is worth only $ 1/(1 + r̄)
today. Thus we can summarize (7) by saying that the sum of the entries of the state-
price vector is the discount rate. We will see that this fact extends to the general,
one-period model. �

3. Interpretation of the state-price vector. In this section we are back in the
general model of section 1. It will be assumed that there is no arbitrage, and hence
there is a state-price vector ψ.

The first fact will generalize what we just derived about the state-price vector of
the two-state model. First, suppose we can find a portfolio θ such that

A∗ θ =


1
1
...
1

 . (8)
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Remember that the left side is the vector listing the value of portfolio at time T = 1
θ for each possible state ω1, . . . , ωm of the market. Thus portfolio θ has the same
value, namely 1, for each different state. Therefore, it is risk-free. Since the value of
the portfolio θ at time 0 is A∗(0) θ =

∑p
1 θiSi(0), the portfolio has the risk-free return

1

A∗(0)θ

Therefore, A∗(0)θ is the appropriate discount rate for the market.
Such a risk-free portfolio will exist if the market is complete (for, by definition,

completeness means that there is a replicating portfolio for every contingent claim,
including the claim that pays out 1 in every state), even if there is no asset in the
market which by itself is risk free. Of course, if there is a risk-free asset with return
1 + r̄, as in our two-state model, there is a risk-free portfolio with this return: simply
invest everything in the risk-free asset.

With these preliminaries we can state:

Assume that there is a risk-free portfolio θ as in (8). Let ψ be the state-
price vector. Then

p∑
1=1

ψ = A∗(0)θ = market discount rate. (9)

The proof of this is simple. By definition of the state price vector, we know that
A(0) = Aψ. Thus, using (8),

A∗(0) θ = ψ∗A∗θ =
(
ψ1 · · · ψm

)
1
...
1

 =
p∑
i=1

ψ.

The second important thing to observe about the state-price vector is that it tells
us how to compute the no-arbitrage price of any replicable contingent claim.

Let V (1) define a contingent claim with pay-off at time T = 1. Thus V (1) is a
function that assigns to each possible state ω a pay-off V (1)(ω). We shall think of
V (1) as an m- vector

V (1) =


V (1)(ω1)

...
V (1)(ωm)

 .
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Assume that there is a replicating portfolio π for V (1). Recall that this means that
π is a portfolio with the same pay-off as V (1) for every state:

p∑
1

πkSk(ω) = V (1)(ω) for every ω,

or, using vectors and matrices,
V (1) = A π. (10)

Then the no-arbitrage price of the claim is

V (0) =
m∑
1

ψiV (1)(ωi). (11)

Notice this formula contains no mention of the replicating portfolio. Compare this to
the condition (ii) defining a state-price vector:

Sk(0) =
m∑
i=1

ψiSk(1)(ωi), 1 ≤ k ≤ p.

The same system ψ of weights that gives the prices of the underlying assets at time
0 in terms of their possible prices at time 1 also prices any contingent claim.

To show why (11) is true, recall that the no-arbitrage price of V (1) is given by the
value of its replicating portfolio at time 0: V (0) = A∗(0)π. But A(0) = Aψ. Hence,

V (0) = ψ∗A∗π = ψ∗V (1) =
(
ψ1 · · · ψm

)
V (1)(ω1)

...
V (1)(ωm)

 =
m∑
1

ψiV (1)(ωi).

The two-state model again. We return to our model with one bond(risk free
asset), one stock, and two states. We derived the state-price vector above. If V (1) =
(V (1)(ω1), V (1)(ω2))∗ is a congingent claim then we get the price

V (0) =
1

1 + r̄

[
u− (1 + r̄)

u− d
V (ω1) +

(1 + r̄)− d
u− d

V (ω2)

]
. (12)

We have already derived this in lecture 2 (see equation (3) on page 3) from the
replicating portfolio. �

4. The risk-neutral measure. Assume no arbitrage and let ψ be the state-price
vector. Let us define

p̃j =
ψj∑m
1 ψi

, 1 ≤ j ≤ m.
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These are all positive numbers and
∑m

1 p̃j = 1. Now let us consider the set of possible
states Ω = {ω1, . . . , ωm} as the outcome space of a random experiment and assign
probability pj to ωj for each j, 1 ≤ j ≤ m—since these pj sm to 1 this makes
mathematical sense. We are not saying that this probability assignment reflects the
“real” probabilities that the different states occur. We merely want to analyze what
would happen if the p̃j’s were the probabilities. The use of ˜ in the notation is to
remind us of the special origin of these probabilities. This assignment of probabilities
based on the state-price vector is called the risk-neutral probability measure, for
reasons to be explained presently.

Now imagine an experiment in which the ωj’s are chosen randomly according to
the probabilities p̃j. Any function of the states—such as the price Sk(1)(ω) of an
underlying asset at time 1, or the payout V (1)(ω) of a contingent claim, may then be
viewed a random variable; ω is chosen at random and the value Sk(1)(ω) or V (1)(ω) is
thus random. Considering, for example Sk(1), what would be its expectation? Since
it takes on value Sk(1)(ωj) with probability pj, 1 ≤ k ≤ m, its expected value would
be

Ẽ [Sk(1)] =
m∑
1

Sk(1)(ωj)p̃j. (13)

(The ˜ in Ẽ reminds that the risk-neutral measure is being used.) Of course, this
extends to any function X on ω. Considered as a random variable,

Ẽ [X] =
m∑
1

X(ωj)p̃j.

If we write out what the right-hand side of (13) is, using the definition of pj and
remember that ψ is a state-price vector.

E [Sk(1] =
1∑m
1 ψi

m∑
1

Sk(1)(ωj)ψj =
1∑m

1 ψj
Sk(0).

Rearranging,

Sk(0) =

(
m∑
1

ψi

)
Ẽ [Sk(1)] . (14)

This is true for every asset, and, because of the pricing formula (11), the no-arbitrage
price of claim V (1) is also given by

V (0) =

(
m∑
1

ψi

)
Ẽ [Sk(1)] . (15)

Remembering the interpretation of
∑m

1 ψi from the previous section, one can describe
formula (14) in words as saying that that price of each asset at time 0 is the discounted
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expected value of its price at time 0. The same is true for the no-option price of a
contingent claim. The expected return of each asset is thus

Ẽ [Sk(1)]

Sk(0)
=

1∑m
1 ψi

,

and we know this expected return to be just the risk-free rate (per period) of return.
Thus, under the risk neutral measure, all assets have the same expected return;
an investor who was interested only in expected return, but was neutral (that is,
indifferent) toward risk, would not prefer any one asset over another.

Let us in general say that a probability assignment pj, 1 ≤ j ≤ m, on {ω1, . . . , ωm}
is risk-neutral, if pj > 0 for every j, and the expected return

E [Sk(1)]

Sk(0)

4
=

∑m
1 pjSk(1)(ωj)

Sk(0)

is the same for every asset k , 1 ≤ k ≤ p. We have shown that if there is a state-price
vector, there is a risk-neutral measure. The converse is also obviously true: if there
is a risk-neutral measure, then there is a state-price vector. Therefore, Theorem 1,
the fundamental theorem of asset pricing for the one-period/finite-state model can
be reformulated as:

Theorem 2 There is no arbitrage in the one-period/finite-state model if and only if
there is a risk-neutral probability measure.

Once we get our hands on the risk-neutral measure, formula (15) tells us how to
price contingent claims.

Interpretative remarks: A. There is no claim here that the risk-neutral prob-
abilities reflect the “real” probabilities of the different states to occur. The idea that
there are real probabilities out there is consistent with the frequentist view of the
meaning of a probability. Going with this view, let us imagine that we can observe
the market over many periods. The frequentist probability of ωi is the long run (limit-
ing) frequency of occurences of ωi. Let us suppose the probablities are p1, p2, . . . , pm.
Let us suppose also there is a risk-free return of 1+ r̄ per period. The expected return
of asset k in one period is then ∑m

1 pjSk(1)(ωj)

Sk(0)
.

If k is a risky asset, we should expect that this return is strictly greater than (1 +
r̄). If it were not, we should not expect there to be much demand for the asset,
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because it is risky, but, on the average, returns no more than a risk-free investment.
Ideally, higher expected returns of risky assets are premiums to reward the investor
for undertaking risk. In fact, this appears to be true empirically; average returns on
stock are historically higher than those available from investing money at the going
interest rate.

B. The pricing formula (15) does not require knowledge of the actual probabilities
that the different states occur. All it requires is agreement on which states have
positive probability of occuring. At first this seems counterintuitive. Imagine a
European call option on a stock with price S(0) in the one-period/two-state model.
Let the strike price be K. Suppose that the price can increase to uS(0) > K or
decrease to dS(0) < K. The holder of this option (call her A) can exercise the right
to buy the stock at time T = 1 for price K and will do so if the price goes up to
uS(0), because then she can make an immediate profit of uS(0) − K. However if
the stock price goes down to dS(0) she will not exercise the option. It would seem
natural that the higher the probability that the stock price increases to uS(0), the
higher should be the price of the option. But this is not true. The reason is that
there is a replicating portfolio. Think of the point of view of the seller of the option,
call him B. He receives V (0) for the option. The delta hedging formula (see lecture
2 notes) tells him how much to invest part of this in the stock and the remainder
at the risk free interest rate. He will earn the payoff (to the holder of the option).
Thus, if the stock goes up, he will collect the profit uS(0) −K. Now A will choose
to exercise the option and she will pay him K. These two payments together give
him uS(0) with which he can buy a unit of stock and give it to K, as he is obligated
to do. He loses no money. If the stock goes down, B’s replicating portfolio returns
0, but A does not exercise the option and B gets to keep the V (0) paid him at the
outset. Whether the option is more or less likely to go up, the same V (0), if invested
according to the replicating portfolio, will always give B what he needs to cover the
contract, and so the price does not depend on the relative likelihoods of up and down.
The price depends only on the set of possible stock movements allowed by the model.

One can also look at probabilities from a Bayesian point of view. Each investor
may have his or her own subjective ideas of the probability of different stock move-
ments. The no-arbitrage pricing theory is attractive, because in the words of Hull
(from his text): “Investor attitudes are irrelevant to the relation between the price of
the derivative and the value of the underlying variable.” To be complete, one should
add– “given a model of future market states.” The states of such a model are tacitly
assumed all to ave positive probability of occuring—otherwise, why include it in the
model? But the pricing does not depend on what anyone might think about these
probabilities. This allows parties with widely different opinions about what might
happen to agree upon a price. You may purchase a call option thinking that the

8



stock price is very likely to rise; the seller might think it more likely to fall. But this
does not matter for calculating the price.
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