
Problem Solutions. Mathematical Finance; Fall, 2005

Exercise 4.1, Shreve, volume 2. In this problem, M is a martingale with re-
spect to a filtration {Ft}, and 4 is an simple process adapted to {Ft}: 4(t) =∑4(tj)1[tj ,tj+1)(t), where t0 = 0 < t1 < t2 < · · · < tn = T is a partition of [0, T ]. To
avoid any technical issues with existence of expectations, assume there is a constant
K such that P (|4(t)| ≤ K, ∀t ≥ 0) = 1; this is a stronger assumption than is actually
needed. For t ∈ [tk, tk+1), I(t) is defined as

I(t) =
k−1∑
j=0

4(tj) [M(tj+1)−M(tj)] +4(tk) [M(t)−M(tk)] , (1)

and the object is to show that I is a martingale. The purpose of this problem is
to indicate that the definition of the stochastic integral extends beyond Brownian
motion to general martingales.

Before starting, observe that for any j, the martingale property of M and the
adaptedness of 4 imply

E
[
4(tj)[M(tj+1)−M(tj)] | Ftj

]
= 4(tj)E

[
M(tj+1)−M(tj) | Ftj

]
= 0 (2)

Let 0 ≤ s < t ≤ T . The problem is to show E[I(t) | Fs] = I(s). Let k be the
index such that tk ≤ t < tk+1, and let i be the index such that ti ≤ s < ti+1. The
first case is i = k, that is tk ≤ s < t < tk+1. In this case, the sum of the terms up to
j=k − 1 in (1) is Ftk-measurable and hence is Fs-measurable. Also,

E [4(tk)[M(t)−M(tk)] | Fs] = 4(tk) [E[M(t) | Fs]−M(tk)] = 4(tk) [M(s)−M(tk)] ,
(3)

where in the first equality, the Fs measurability of 4(tk) and M(tk) is used, and, in
the last equality, the martingale property of M is used. Thus, taking expectations in
(1),

E [I(t) | Fs] =
k−1∑
j=0

4(tj) [M(tj+1)−M(tj)] +4(tk) [M(s)−M(tk)] = I(s).

Now suppose that i < k and let j be an index such that i < j ≤ k. Then, Fs ⊂
Ftj , and by inserting a conditioning on Ftj via the tower property of conditional
expectation, and by using equality (2),

E [4(tj)[M(tj+1)−M(tj)] | Fs] = E
[
E[4(tj)[M(tj+1)−M(tj)] | Ftj ] | Fs

]
= 0. (4)
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For index i itself, the same type of calculation as in (3) yields

E [4(ti)[M(ti+1)−M(ti)] | Fs] = 4(ti) [M(s)−M(ti)] . (5)

Now take the conditional expectation of I(t) using (4) and (5):

E [I(t) | Fs] =
i−1∑
j=0

4(tj) [M(tj+1)−M(tj)] +4(ti) [M(s)−M(ti)] = I(s).

This completes the derivation of the martingale property of I.

Shreve, 4.2. In this problem, I is stochastic integral of a deterministic simple
process: I(t) =

∑k−1
j=0 4(tj) [W (tj+1)−W (tj)] +4(tk) [W (t)−W (tk)], for tk ≤ t <

tk+1.

(i). We show that the increment I(t)− I(s) is independent of Fs, whenever s < t.
Let i be such that ti ≤ s < ti+1, and k such that tk ≤ t < tk+1. Then, a calculuation
shows that

I(t)−I(s) = 4(ti)[W (ti+1)−W (s)]+
k−1∑
j=i+1

4(tj) [W (tj+1)−W (tj)]+4(tk) [W (t)−W (tk)] .

(If i = k, this reduces to I(t)−I(s) = 4(tk)[W (t)−W (s)].) Since 4 is deterministic,
we see that I(t)− I(s) is a linear combination of increments of W which are all
independent of Fs, and hence is independent of Fs.

(ii). The expression for I(t)−I(s) in part (i) represents it as a sum of independent
zero mean normal random variables. Hence I(t)− I(s) is normal. Its variance is the
sum of the variances of its summands, which a calculation shows to be

42(ti)(s−ti) +
k−1∑
j=i+1

42(tj)(tj+1−tj) +42(tk)(t−tk) =
∫ t

s
42(r) dr.

Or one can derive this immediately from the Itô isometry formula (4.2.6) for the
expected value of the square of a stochastic integral, using the fact that, here, 4 is
deterministic.

(iii). I is a martingale because for every s < t, I(t)− I(s) is a mean zero random
variable independent of Fs. Thus E[I(t) − I(s) | Fs] = E[I(t) − I(s)] = 0, which
implies E[I(t) | Fs] = I(s).

(iv). Because I is a normal process, all its second moments are finite and so all
conditional expectations involving products of I at various times are defined. Note
that for t > s,

E [I(s)(I(t)−I(s)) | Fs] = I(s)E [I(t)−I(s) | Fs] = 0.
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Thus,

E
[
I2(t) | Fs

]
= E

[
(I(t)−I(s))2

∣∣∣ Fs]+ 2E [I(s)(I(t)−I(s)) | Fs] + I2(s)

=
∫ t

s
42(r) dr + I2(s).

In the last step we used the result of part (ii). It follows easily that I2(t) −∫ t
0 42(r) dr is a martingale.

Exercise 4.3, Shreve. We consider I as defined in problem 4.2, but now we allow
4 to be random, but adapted.

(i). In general, I(t)− I(s) will not be independent of Fs. Consider for example,
s = t1 and t = t2. Then I(t2) − I(t1) = 4(t1) [W (t2)−W (t1)]. If 4(t1) is an Ft1
measurable random variable, for example suppose 4(t1) = W (t1), then I(t2)− I(t1)
is not independent of Ft1 because 4(t1) is determined by Ft1 .

(ii). In general, I(t)−I(s) will not be normally distributed. Again, taking s = t1,
t = t2, and 4(t1) = W (t1), I(t2)−I(t1) = W (t1)(W (t2)−W (t1)). A normal random
variable satisfies E[(X−µ)4] = 3(Var(X))2, where µ = E[X]. Note that the expected
value of I(t2)− I(t1) is zero, and using the independent increments property and
normality of Brownian motion,

Var (I(t2)−I(t1)) = E[W 2(t1)]E
[
(W (t2)−W (t1))2

]
= t1(t2 − t1),

but on the other hand

E
[
(I(t2)−I(t1))4

]
= E

[
W 4(t1)

]
E
[
(W (t2)−W (t1))4

]
= 3t21(3(t2−t1)2) = 9t21(t2−t1)2.

Hence I(t2)−I(t1) is not normal.

(iii). By Theorem 4.3.1, part (iv), on page 134 of Shreve, I is martingale (as long

as E
[∫ T

0 42(u) du
]
<∞, for all T > 0) and so E [I(t) | Fs] = I(s).

(iv). It is still true that

E
[
I2(t)−

∫ t

0
42(u) du | Fs

]
= I2(s)−

∫ s

0
42(u) du, (6)

(as long as E
[∫ T

0 42(u) du
]
<∞, for all T > 0 ).

We will verify this for s = t1 and t = t2, but the argument generalizes easily to
any 0 ≤ s < t. Return to the calculation of problem 4.2 part (iv). The derivation of
Thus,

E
[
I2(t) | Fs

]
= E

[
(I(t)−I(s))2

∣∣∣ Fs]+ 2E [I(s)(I(t)−I(s)) | Fs] + I2(s)

= E
[
(I(t)−I(s))2

∣∣∣ Fs]+ I2(s)
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uses only the propery of part (iii) and so is valid for a random, adapted integrand
4. The fact that I(t) − I(s) = 4(t1) [W (t2)−W (t1)] and the independence of
W (t2)−W (t1) from Fs = Ft1 imply

E
[
(I(t)−I(s))2

∣∣∣ Ft1] = 42(t1)(t2 − t1) = E
[∫ t2

t1
42(u) du | Ft1

]
.

(The middle term equals
∫ t2
t1
42(u) du and happens to be Ft1-measurable, and so that

is why we can re-introduce the conditional expectation in the last term.) Rearranging
terms leads to (6).

Exercise 4.4, Shreve. (i) For a partition Π : 0 = t0 < t1 < · · · < tn = T and

t∗i
4
= (ti+1 + ti)/2, define

QΠ/2 =
n−1∑
j=0

(
W (t∗j)−W (tj)

)2
.

For each j, E
[
(W (t∗j)−W (tj))

2
]

= t∗j − tj = (tj+1 − tj)/2. Thus

E
[
QΠ/2

]
=

n−1∑
j=0

(tj+1−tj)/2 =
T

2
.

On the other hand,

E
[
(QΠ/2 − T/2)2

]
= E


n−1∑
j=0

(
W (t∗j)−W (tj)

)2
− (t∗j−tj)

2


=
∑
j

∑
k

E
[((

W (t∗j)−W (tj)
)2
− (t∗j−tj)

) (
(W (t∗k)−W (tk))

2 − (t∗k−tk)
)]

However, by independence of increments, all terms in this sum are zero, except
those with k = j. Also, using the normality of Brownian increments, we know

E
[(
W (t∗j)−W (tj)

)4
]

= 3E
[(
W (t∗j)−W (tj)

)2
]

= 3(t∗j − tj)2. Using this, one obtains

E
[
(QΠ/2 − T/2)2

]
= 2

n−1∑
j=0

(t∗j − tj)2 ≤ ‖Π‖(T/2).

Thus lim
‖Π‖→0

E
[
(QΠ/2−T/2)2

]
= 0.

(ii). We present two ways to do this. First, for a partition Π, define

Q̄Π/2 =
n−1∑
j=0

(
W (tj+1)−W (t∗j)

)2
.
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The same proof as in part (i) shows that lim
‖Π‖→0

E
[
(Q̄Π/2 − T/2)2

]
= 0. Now, by

mulitplying out the terms in QΠ/2 and Q̄Π/2 and summing up, one can verify that

W 2(T )− 2
n−1∑
j=0

W (t∗j) (W (tj+1)−W (tj)) = Q̄Π/2 −QΠ/2.

Since QΠ/2 and Q̄Π/2 both converge to T/2 as ‖Π‖ → 0,

W 2(T )− 2
n−1∑
j=0

W (t∗j) (W (tj+1)−W (tj))→ 0, as ‖Π‖ → 0.

The second method follows the hint in the problem statement. Write

n−1∑
j=0

W (t∗j) (W (tj+1)−W (tj)) = QΠ/2+
n−1∑
j=0

W (tj)
(
W (t∗j)−W (tj)

)
+W (t∗j)

(
W (tj+1)−W (t∗j)

)
.

The second sum converges to the Itô integral
∫ T

0 W (u) dW (u) = (W 2(T )−T )/2, while
the first term converges to T/2, as ‖Π‖ → 0. Hence

n−1∑
j=0

W (t∗j) (W (tj+1)−W (tj))→ 0, as ‖Π‖ → W 2(T )/2.
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