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Overview

Classical gauge theory, as understood by geometric analysts, is the study of spaces of connec-
tions on a principle G-bundle over a smooth manifold X equippped with a Riemannian metric
g, where G is a Lie group, such as the orthogonal, special orthogonal, unitary, or special unitary
groups, O(n), SO(n), U(n), or SU(n), respectively. Gauge theory has its origins in Theoretical
Physics and Yang–Mills gauge theory was proposed by C. N. Yang and R. Mills [44] to describe
the behavior of elementary particles using non-Abelian Lie groups and is at the core of the unifica-
tion of the electromagnetic force and weak forces (for example, U(1)×SU(2)) as well as quantum
chromodynamics, the theory of the strong force (based on SU(3)). It forms the basis of our
understanding of the Standard Model of particle physics. Maxwell’s theory of electromagnetics
provided the first example of a gauge theory and can be viewed as a special case of Yang–Mills
gauge theory with the simplest Abelian Lie group, G = U(1). While Physicists consider quan-
tum Yang–Mills theory, quantum field theories will not be the subject of this reading course,
but rather applications of classical Yang–Mills theory and geometric analysis to understand the
topology of 3-manifolds and smooth 4-manifolds.

Beginning in the late 1970s, classical gauge theory was increasingly studied by Mathematicians
in an effort to give a rigorous foundation to at least some of the theory employed by Physicists.
Key articles included those of Atiyah and Bott [1], Atiyah, Hitchin, and Singer [2], Bourguignon
and Lawson [4], Taubes [37, 38], and Uhlenbeck [41, 40]. Donaldson [5] gave a dramatic application
of Yang–Mills gauge theory with G = SU(2) to the topology of smooth 4-manifolds using tools
from geometric analysis — nonlinear elliptic partial differential equations on vector bundles over
Riemannian manifolds. This was one of a series of landmark results due to him in the period 1983–
86 that led to his being awarded a Fields Medal in 1986 along with Freedman [17], who proved the
Topological Poincaré Conjecture for closed topological 4-manifolds. Freedman showed that every
closed, simply-connected, topological 4-manifold X is completely classified by its intersection form
(a homotopy invariant), QX : H2(X;Z) × H2(X;Z) → Z, and its Kirby–Siebenmann invariant,
κ(X) ∈ H4(X;Z/2Z), which is zero if X admits a smooth structure and non-zero otherwise. For
example, ifH2(X;Z) = 0 andQX = 0 and κ(X) = 0, soX is homotopy-equivalent to the 4-sphere,
S4, then Freedman’s Theorem implies that X is homeomorphic to S4, in other words, the Poincaré
Conjecture is true for topological 4-manifolds. The intersection form QX can be used to define
the signature of a closed 4-manifold, σ(X) = b+(X)− b−(X), where b±(X) are the dimensions of
the maximal positive (negative) subspaces of H2(X;Z) defined by QX (equivalently, the number
of positive (negative) eigenvalues of symmetric, bilinear form QX : H2(X;R) ×H2(X;R) → R),
while b2(X) = b+(X) + b−(X), the second Betti number or rank of H2(X;Z). Using Yang–Mills
gauge theory, Donaldson proved that if X is a closed, simply-connected, smooth 4-manifold with
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b−(X) = 0 and b+(X) ≥ 1, then QX = diag(1, . . . , 1) and X is homeomorphic to CP2# · · ·#CP2

(the connected sum of b2 = b+ copies of CP2).
Donaldson greatly extended his ideas in [5] to define his Donaldson invariants [6, 8] of smooth

4-manifolds and which he computed explicitly for complex algebraic surfaces and used to give
examples of 4-manifolds that are homeomorphic but not diffeomorphic. His theory was further ex-
tended by many mathematicians, but especially Kronheimer and Mrowka [22]. Donaldson invari-
ants were also given a quantum Yang–Mills interpretation by Witten [42] and his interpretation, in
collaboration with Seiberg [35, 34], ultimately led to to the development of Seiberg–Witten invari-
ants of smooth 4-manifolds [43]. Those invariants can be computed more easily than Donaldson
invariants and the underlying geometric analysis is much simpler than that underlying Donald-
son’s theory. Witten conjectured an explicit relationship that expressed Donaldson invariants in
terms of Seiberg–Witten invariants, since proved by the author and Leness in [14, 13, 12, 11]
(modulo a gluing theorem [10], in preparation).

By considering cylindrical 4-manifolds Y × R, where Y is a closed 3-manifold, Floer [15] con-
structed 3-dimensional analogues of Donaldson invariants for 3-manifolds, called instanton Floer
homology groups (see [7] for an exposition), and which he hoped would lead to a proof of the
Poincaré Conjecture for 3-manifolds. (This was since proved by Perelman [30, 32, 31] using
an entirely different approach via the Hamilton–Ricci flow of Riemannian metrics on a given
3-manifold.) Floer’s ideas were adapted by Kronheimer and Mrowka [23] and Marcolli and Wang
[27] to the setting of the Seiberg–Witten monopole equations on Y × R and used to define
3-dimensional analogues of Seiberg–Witten invariants for 3-manifolds, called monopole Floer ho-
mology groups. While research on applications of Donaldson and Seiberg–Witten invariants to
4-manifolds has matured, Floer homology and its applications to 3-manifolds is an extremely
active area of research today.

This short reading course will provide an introduction to the methods required to do research in
gauge theory and its applications to 3-manifolds and smooth 4-manifolds. The point of departure
will depend on the mathematical background of interested students, but can include:

• Tools from differential and algebraic topology, homotopy theory, Riemannian geometry,
vector bundles, Lie groups, and principle bundles.
• Non-linear elliptic equations on vector bundles over Riemannian manifolds.
• Atiyah–Singer index theorem and the Dirac operator.
• Yang–Mills connections, anti-self-dual connections, and Seiberg–Witten monopoles.
• Topological classification of 3-manifolds and 4-manifolds.
• Construction of Donaldson and Seiberg–Witten invariants.
• Gradient flows for analytic functions on Banach manifolds.
• Construction of instanton and monopole Floer homologies.

References for basic tools include Aubin [3], Gilkey [20], Lee [25], Jost [21], Li [26], and Struwe
[36]. The monographs by Donaldson and Kronheimer [8], Freed and Uhlenbeck [16], Friedman
and Morgan [18], Lawson [24], Morgan [28], Nicolaescu [29], Salamon [33], and Taubes [39] provide
introductions to gauge theory. The monographs by Donaldson [7], Donaldson and Kronheimer
[8], the author [9], Frøyshov [19], and Kronheimer and Mrowka [23] provide introductions to more
advanced topics and serve as a bridge to current research in this field.
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