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Abstract

Motivated by developments in quantum field theory, Witten has conjectured a relation between
the Donaldson and Seiberg-Witten invariants of smooth four-manifolds. We describe this conjecture
and the program to prove it using a moduli space of PU(2) monopoles. We summarize our generic-
parameter transversality and Uhlenbeck compactness results for PU(2) monopoles, along with some
of our calculations of Donaldson invariants in terms of Seiberg—Witten invariants. We give a brief
overview of issues concerning the gluing theory, focussing on some of the analytical difficulties that
are particular to PU(2) monopoles, and its application to the program to prove Witten’s conjecture.
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1. Introduction

The principal objective of our series of articles [13-16] and beyond, for which we
provide a brief survey here, is to prove the analogue of the Kotschick—Morgan conjecture
for PU(2) monopoles suggested by Pidstrigach and Tyurin [56]. This in turn should
lead to a proof of Witten’s conjecture concerning the relation between Donaldson and
Seiberg—Witten invariants and a deeper understanding of the highly successful role of
gauge theory in smooth four-manifold topology. We describe Witten’s conjecture below

* Corresponding author. E-mail: feehan@math.harvard.edu.
! The first author was supported in part by an NSF Mathematical Sciences Postdoctoral Fellowship under grant
DMS 9306061.

0166-8641/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(97)00201-0



112 PM.N. Feehan, T.G. Leness / Topology and its Applications 88 (1998) 111-145

and outline the program (see [28,29,37,38,50,51,54,56]), to prove this conjecture using
PU(2) monopoles. While the basic ideas in this program are by now well known, the
profound analytical difficulties inherent in attempts to implement it are perhaps much less
well known and so we feel it is worthwhile to describe some of these analytical problems
here. These analytical difficulties involve the gluing construction of links of lower-level
moduli spaces of U(1) monopoles contained in the Uhlenbeck compactification of the
moduli space of PU(2) monopoles. The question of existence of perturbations for the
PU(2) monopole equations, yielding both useful transversality results and an Uhlenbeck
compactification for the perturbed moduli space, is a fairly substantial one in its own
right [13]. We describe these transversality and compactness results here, along with
some of our calculations of Donaldson invariants in terms of Seiberg—Witten invariants
from [14] and a brief overview of issues concerning the gluing theory from [15,16] and
its applications.

First, to explain Witten’s conjecture we recall that a closed, smooth four-manifold X
is said to have Seiberg—Witten simple type if the Seiberg—Witten moduli spaces corre-
sponding to nonzero Seiberg—Witten invariants are all zero-dimensional. The manifold X
has Kronheimer-Mrowka simple type provided the Donaldson invariants corresponding
to products z of homology classes in He(X) and a generator x € Hy(X) are related
by D¥%(2%z) = 4D%(z). Kronheimer and Mrowka [35] (see also [18]) showed that the
Donaldson series of a four-manifold of Kronheimer—-Mrowka simple type with b'(X) = 0
and odd b+ (X) > 3 is given by

pw :eQ/2Z(_l)(wz__}_wKr)/ZareKr, (1.1
r=1

where w is a line bundle over X, @ is the intersection form on H»(X; Z), the coefficients
a, are nonzero rational numbers, and the K, € H*(X;Z) are the Kronheimer-Mrowka
basic classes. Let Spin°(X) be the set of isomorphism classes of spin® structures on X
and let e(X) and o(X) denote the Euler characteristic and signature of X, respectively.

Conjecture 1.1 (Witten [66]). Suppose X is a closed, oriented four-manifold with
b'(X) = 0 and odd bT(X) > 3, equipped with a homology orientation and a line
bundle w. Then X has Kronheimer-Mrowka simple type if and only if it has Seiberg—
Witten simple type. If X has simple type, then the Kronheimer—-Mrowka basic classes
are given by

{er(W;"): s € Spin°(X) such that SW(s) # 0},

where ¢, (s) := ¢ (W) and W are the spin® bundles associated to s with some choice
of Riemannian metric on X; furthermore, the Donaldson series for X is given by

pv — 92+(Te+110)/4,Q/2 Z (__l)(u'2+wc1(5))/ZSw(5)ecl(5)' (1.2)

sE8pin®(X)

The conjecture holds for all four-manifolds whose Donaldson and Seiberg—Witten in-
variants have been independently computed. The mathematical approach to this conjec-
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ture uses a moduli space of solutions to the PU(2) monopole equations—which generalize
the U(1) monopole equations of Seiberg and Witten—to construct a cobordism between
links of the compact moduli spaces of U(1) monopoles of Seiberg—Witten type and the
Donaldson moduli space of anti-self-dual connections, which appear as singularities in
this larger moduli space. Moreover, this approach should give a precise relation between
the Donaldson and Seiberg—Witten invariants even for four-manifolds not of simple type.
This is an important point since there are no known examples of four-manifolds with
b™ > 1 violating either of the simple type conditions, so we would expect to gain a
greater understanding of these conditions from such a general relation.

The moduli space of PU(2) monopoles is noncompact and has an Uhlenbeck compact-
ification similar to that of the moduli space of anti-self-dual connections. The substantial
analytical difficulties are due to the contributions of moduli spaces of U(1) monopoles
(cobordant to standard Seiberg—Witten moduli spaces) in the lower Uhlenbeck levels—the
‘reducibles’ at the boundary of the Uhlenbeck compactification. Many of these problems
had never been resolved even in the case of Donaldson theory where they arise, al-
beit in a rather simpler form, in attempts to prove the Kotschick-Morgan conjecture
for Donaldson invariants. The Kotschick~Morgan conjecture for Donaldson invariants of
four-manifolds X with bt (X) = 1 asserts that the invariants computed using metrics ly-
ing in different chambers of the positive cone of H*(X;R)/R* differ by terms depending
only on homotopy data [32]. The heart of the problem there lies in describing the links of
the reducible connections in the lower Uhlenbeck levels via gluing and then computing
integrals of the Donaldson cohomology classes over those links. To date, links of this
type in anti-self-dual moduli spaces have been described and their pairings with coho-
mology classes computed in only a few relatively simple special cases [5-7,11,39,67]:
the methods used there fall far short of what is needed to complete the PU(2) monopole
program to prove the equivalence between Donaldson and Seiberg-Witten invariants. By
assuming the Kotschick-Morgan conjecture, Gottsche has computed the coefficients of
the wall-crossing formula in [32] in terms of modular forms by exploiting the presumed
homotopy invariance of the coefficients [25]. A related approach to the Witten conjecture
has been suggested by Pidstrigach and Tyurin [56]: they proposed a PU(2) monopole
analogue of the Kotschick—-Morgan conjecture and argue that it can be used to compute
the required integrals of analogues of the Donaldson cohomology classes over the links
of the lower-level moduli spaces of U(1) monopoles.

In Section 2 we describe the PU(2) monopole equations, the holonomy perturbations
we use in order to achieve transversality, and the Uhlenbeck compactification for the
perturbed moduli space of PU(2) monopoles. In Section 3 we describe the cohomology
classes, the links of the moduli spaces of anti-self-dual connections and Seiberg-Witten
monopoles appearing in the top Uhlenbeck level, their orientations, and the relation
between the Donaldson and Seiberg—Witten invariants when the moduli spaces of U(1)
monopoles appear only in the top Uhlenbeck level. Finally, in Section 4 we describe the
Kotschick—-Morgan conjecture, its analogue in the case of PU(2) monopoles and how this
might be used to prove Witten’s conjecture. We also describe the need for gluing, survey
some of the results from [15,16] and describe a few of the more prominent difficulties



114 PM.N. Feehan, T.G. Leness / Topology and its Applications 88 (1998) 111-145

which arise when gluing PU(2) monopoles. Detailed proofs of all our results appear
elsewhere [13-16], so we just sketch the main ideas here.

2. Holonomy perturbations, transversality, and Uhlenbeck compactness

We consider Hermitian two-plane bundles E over X whose determinant line bundles
det E' are isomorphic to a fixed Hermitian line bundle over X endowed with a fixed
C, unitary connection. Choose a Riemannian metric on X and let s, := (p, W) be a
spin® structure on X, where p:T*X — End W is the Clifford map, and the Hermitian
four-plane bundle W = W+ & W~ is endowed with a C* spin® connection. The spin®
structure (p, W), the spin® connection on W, and the Hermitian line bundle together
with its connection are fixed once and for all.

Let k£ > 2 be an integer and let Ag be the space of L7 connections A on the U(2)
bundle £ all inducing the fixed determinant connection on det E. Equivalently, following
[35, Section 2(i)], we may view Ag be the space of L connections A on the SO(3) =
PU(2) bundle su(E). We shall often pass back and forth between these viewpoints, via
the fixed connection on det E, relying on the context to make the distinction clear. Let

Da:Li{W*® E)— L;_;(W™ ® E)
be the corresponding Dirac operators. Given a connection A on E with curvature F4 €
L;_ (A @ u(E)), then (F{)o € L}_,(A* ® su(E)) denotes the traceless part of its
self-dual component. Equivalently, if A is a connection on su(E) with curvature F4 €
L;_(A*®so(su(E))), thenad™' (F) € L} _ (A" ®su(E)) is its self-dual component,
viewed as a section of A* ® su(F) via the isomorphism ad: su(E) — so(su(E)).

For an L section @ of W ® E, let & be its pointwise Hermitian dual and let (& ®
@*)go be the component of the Hermitian endomorphism @ ® &* of W+ ® E which lies
in su(W™) ® su(E). The spin® structure p defines an isomorphism p* : AT — su(W )
and thus an isomorphism p* = p* ® idey(g) of AT @ su(E) with su(W+) ® su(E).
Then

(Fi)o—(0") (@020 =0,
Da® =0, @1

are essentially the unperturbed equations considered in [50,51,54,56] for a pair (A, ®)
consisting of a fixed-determinant connection A on E and a section & of W+ @ E. (The
trace conditions and precise setting vary; Eqs. (2.1) are closer to those of [64,65] than
[56].) Equivalently, given a pair (A, ®) with A a connection on su(F), Egs. (2.1) take
the same form except that (F'J ) is replaced by ad ™' (F}) or simply by F}, with the
isomorphism ad: su(E) — so(su(F)) being implicit.

In this section we briefly describe the holonomy perturbations of these equations which
we introduced in [13]: these perturbations allow us to prove transversality for the moduli
space of solutions, away from points where the connection is reducible or the spinor
vanishes identically, and to prove the existence of an Uhlenbeck compactification for
this perturbed moduli space.
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Donaldson’s proof of the connected sum theorem for his polynomial invariants [10,
Theorem B] makes use of certain ‘extended anti-self-dual equations’ [10, Eq. (4.24)] to
which the Freed-Uhlenbeck generic metrics theorem does not apply [10, Section 4(v)]. To
obtain transversality for the zero locus of these extended equations, he employs holonomy
perturbations which give gauge-equivariant C>° maps Ay — Li_, (A" ® su(E)) [8,
Section 2], [10, pp. 282-287]. These perturbations are continuous across the Uhlenbeck
boundary and yield transversality not only for the top stratum, but also for all lower
strata and for all intersections of the geometric representatives defining the Donaldson
invariants.

In [13] we describe a generalization of Donaldson’s idea which we use to prove
transversality for the moduli space of solutions to a perturbed version of the PU(2)
monopole equations (2.1). Unfortunately, in the case of the moduli space of PU(2)
monopoles, the analysis is considerably more intricate. In Donaldson’s application, some
important features ensure that the requisite analysis is relatively tractable: (i) reducible
connections can be excluded from the compactification of the extended moduli spaces
[10, p. 283], (ii) the cohomology groups for the elliptic complex of his extended equa-
tions have simple weak semi-continuity properties with respect to Uhlenbeck limits [10,
Proposition 4.33], and (iii) the perturbed zero-locus is cut out of a finite-dimensional
manifold [10, p. 281, Lemma 4.35 and Corollary 4.38]. For the development of Donald-
son’s method for PU(2) monopoles described here and in detail in [13], none of these
simplifying features hold and so the corresponding transversality argument is rather com-
plicated. Indeed, one can see from Proposition 7.1.32 in [11] that because of the Dirac
operator, the behavior of the cokernels of the linearization of the PU(2) monopole equa-
tions can be quite involved under Uhlenbeck limits. The method we describe below uses
an infinite sequence of perturbing sections defined on the infinite-dimensional configu-
ration space of pairs; when restricted to small enough open balls in the configuration
space, away from reducibles, only finitely many of these perturbing sections are nonzero
and they vanish along the reducibles.

We shall describe these perturbations and their properties only in fairly general terms
here, as the full description is lengthy; we refer the interested reader to [13] for a detailed
account.

Let Gg be the Hilbert Lie group of L 41 unitary gauge transformations of E with
determinant one. It is generally convenient to take quotients by a slightly larger symmetry
group than G when discussing pairs, so let S}, denote the center of U(2) and set

°GE = Sz X (+i4z} GF,

which we may view as the group of L? 4| unitary gauge transformations of E with
constant determinant. The stabilizer of a unitary connection on F in °G g always contains
the center S}, C U(2). We call A irreducible if its stabilizer is exactly S} and reducible
otherwise. Let Bg(X) = Ag(X)/Gr be the quotient space of L2 connections on E with
fixed-determinant connection and let A% (X) and Bj(X) be the subspace of irreducible
L% connections and its quotient. As before, we may equivalently view Bg(X) and B}, (X)
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as quotients of the spaces of L2 connections on su(E) by the induced action of G5 on
su(FE).
We construct gauge-equivariant C* maps

Ap(X)3 A— 7 @(A) € Li (X, gl(AT) @r s0(su(E))),
Ap(X) 3 A d-w(4) € L, (X, Hom(W*, W) @c sl(E)), (2.2)

where 7 = (7j,,) is a sequence in 2°(X,gl(A™)) and ¥ = (¥j1,) 1s a sequence in
2'(X,C), while m(A4) = (m;;,(A)) is a sequence in L. ,(X,su(E)) of holonomy
sections constructed by extending the method of [8,10], and

T - l‘ﬁ(A) Iz Z Tila OR ad(mj,l,a(A)),
il
G- 8(A) = p(V)1.0) ®c Mj1a(A).
il
To construct these maps, we fix a collection of N}, small, disjoint balls {4B; }j\;"] in X,
a locally finite open cover {U;,}22, of each quotient space B}, (2B;) of irreducible
connections over 2B;, and three loops {v; .}, C 2B; such that holonomy around
these loops spans su(E)|pg, for each connection in {U} o}. The sections m;; . are sup-
ported on B; in X and on L3 balls containing U; ., in Bj(2B;), by a suitable choice of
cutoff functions on X and Bj(2B;). The set {m;,,o(A)};., spans su(E)|g, for each
point [A]»p,| € Uj o with energy || F. AH2L2(4BJ») < €3/2, where g is a certain universal
constant {13]. When this (regularized) energy bound is exceeded over a ball 48, the
associated perturbations vanish, ensuring continuity across the Uhlenbeck boundary. The
number N, of balls B; may be chosen sufficiently large that for every solution (A, ®)
to the perturbed PU(2) monopole equations (2.4), there is at least one ball B;, whose
associated holonomy sections {m; ; «(A)};_, span su(E)| B, - We use the small-time
heat kernel for the Neumann Laplacians d%da on L?*(2B;,su(E)) to ensure that the
sections m;; o(A) are in Li | when Alyp; is in Lj.

By construction, the maps 7 - i and 9 - @ of (2.2) are uniformly C*-bounded over
A%(X), when A% (X) is endowed with its L metric, provided k > 3 and which we
shall therefore assume for the remainder of the article. Moreover, they are continuous
with respect to Uhlenbeck limits, just as are those of [10]. Suppose {Ag} is a sequence in
Ag(X) which converges to an Uhlenbeck limit (A4, ) in Ag_,(X) x Sym‘(X), where
E_; is a Hermitian two-plane bundle over X such that

det(E_g) =detE and CQ(E__[) = CQ(E) — €, with £ € Z;g.

The sections 7-i(Az) and - (Ag) then converge in L3, ,(X) to a section 7-fi( A, z)
of gl(A*) ® so(su(E_,)) and a section 7 - m(A4,x) of Hom(W+, W) @ sl(E_,),
respectively. For each £ > 0, the maps of (2.2) extend continuously to gauge-equivariant
maps

Ag_(X) x Sym*(X) — L}, (X, gl(AT) ®r so(su(E_;))),

Ag_,(X) x Sym*(X) — L%, (X,Hom(W*, W ™) ®c sl(E_p)), (2.3)
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given by (A,x) — 7-fi(4,z) and (4,z) — I - (A, x), respectively, which are O
on each C*° stratum determined by Sym®(X).

The parameters 7 and o vary in the Banach spaces of ZL(A) sequences in
CT(X,gl(A%)) and C™(A! ® C), respectively, where A = {G,l,a)}andr > k+1,

W”eg(CT(X)) = Z 6 195,

Il

(X)»

and similarly for ||7]|, L(cr(x))- The sequence of weights 6§ = (6,)32, € £°((0,1])
may be chosen so that the gauge-equivariant maps of (2.2) are smooth even at reducible
connections, where the maps vanish [13].

We call an L7 pair (A, ®) in the pre-configuration space,

EW,E' = Ag x Li(X, W+ ® E),
a PU(2) monopole if it solves

(Fi)o = (id + 70 ® idsy(my + 7~ W(A)) (p+) (@ ® 9*)o0 = 0,
Da® + p(90)® + 7 - fi(A)D = 0, (2.4)

where 7o € C"(X, gl(A™)) and ¥y € C™(A’ ® C). For convenience, we often denote the
perturbed Dirac operator D + p() + ¥ - m(A) simply by D 4,5- We let My i be the
moduli space of solutions cut out of the configuration space,

Cwk = CW,E/ Gr,

by Egs. (2. 4) where u € °Gg acts by u(A, P) := (u. A, ud).

We let CW 5 C Cw,g be the subspace of pairs [A, ®] such that A is irreducible and
the section @ is not identically zero and set M;VOE = Mwgn CW - Note that we
have a canonical inclusion Bg C Cw,g given by [A] — [A,0] and similarly for the
pre-configuration spaces.

The sections 7 i(A) and - fi(A) vanish at reducible connections A by construction;
plainly, the terms in (2.4) involving the perturbations 7 - #i(A) and ¥ - m(A) are zero
when & is zero. The holonomy perturbations considered by Donaldson in [10] are inho-
mogeneous, as he uses the perturbations to kill the cokernels of d}; directly. In contrast,
the perturbations we consider in (2.4) are homogeneous and we argue indirectly that the
cokernels of the linearization vanish away from the reducibles and zero-section solutions.

A careful application of the Agmon-Nirenberg unique continuation theorem [1] to
(2.4) ensures that a PU(2) monopole (A, ®) which is irreducible on X gives at least
one restriction AIZB],, which is irreducible and whose associated holonomy sections
span su(E)|p ,. The corresponding property for anti-self-dual connections is proved as
Lemma 4.3.21 in [11]. The proof of Donaldson and Kronheimer relies on the Agmon-
Nirenberg unique continuation theorem for an ordinary differential inequality on a Hilbert
space [1, Theorem 2]. We show in [13] that Donaldson and Kronheimer’s argument
adapts to the case of the PU(2) monopole equations (2.1) or (2.4), when the initial open
set where (A, ®) is reducible contains the closed balls B(x;, Ry) supporting holonomy
perturbations.
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The perturbations (g, ¥y, 7, 5) then ensure that an element in the cokernel of the
linearization of the parametrized version of (2.4), at a point (A, ®, 79, 9y, 7, 5) where
A is irreducible and ¢ Z 0, must vanish identically over at least one ball B;, and so
must vanish identically over X by the Aronszajn—Cordes unique continuation theorem
[2]. Hence, the Sard—Smale theorem yields:

Theorem 2.1 [13]. Let X be a closed, oriented, smooth four-manifold with C*° Rieman-
nian metric, spin® structure {p, W) with spin® connection, and a Hermitian line bundle
det £ with unitary connection. Then there exists a first-category subset of the space of
C™ perturbation parameters such that the following holds: For each 4-tuple (1o, 190, T, 19)
in the complement of this first-category subset, the moduli space ]VIW E(Tg, Jo, T. 19) isa
smooth manifold of the expected dimension

dim My = —2p1 (su(E)) — 3 (e(X) + (X))
+ LIpi(su(E)) + $ (F* — o(X)) — 1,
where pi(su(E)) = ¢|(E)? — 4cy(E) and F := ¢;(WT) + ¢ (E).

Remark 2.2, Different approaches to the question of transversality for Egs. (2.1) with
generic perturbation parameters have also been considered by the authors, by Pidstrigach
and Tyurin in [56] and by Teleman in [65]: see [13] for further details.

We now turn to the question of compactness of My, g, for the given generic parameters
(10, %, T, 15) We say that a sequence of points [Ag, P3| in Cw g converges to a point
[A,®, 2] in Cw g_, x Sym*(X) if the following hold:

e There is a sequence of determinant-one, L}, ,,. bundle maps

ug: Elx\{a} = E-tlx\(2}

such that the sequence of monopoles ug(Ag, g) converges to (A, P) in Li,loc over
X \ {z}, and
e The sequence of measures |Fa,|?> converges in the weak-* topology on measures

to |[Fal? + 877 Y, cp ().
We let My g_,(x) denote the moduli space of pairs (A, P) solving (2.4) with perturbing
sections 7 - m(-, ) and ¥ - @(-,z), let My g_, denote the moduli space of triples
(A, D, ) solving (2.4) for £ > 0, and let Mw. g_, = Mw,g. We define My to be the
Uhlenbeck closure of My, g in the space of ideal PU(2) monopoles,

N N
IMwEg = U MwEg_, C U (Cw,e_, % Sym‘(X))
£=0 £=0
for any integer N > N, where N, is a sufficiently large constant. Analogues of Bochner
formulas used in the proof of compactness for the Seiberg-Witten equations [34,66]
provide a universal energy bound for solutions to (2.4), guaranteeing that the constants
N, and N, exist. By combining the methods used in the proof of compactness for the
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Seiberg—Witten moduli space [34] and Uhlenbeck compactness for the moduli space of
anti-self-dual equations {11] we obtain:

Theorem 2.3 [13]. Let X be a closed, oriented, smooth four-manifold with C* Rieman-
nian metric, spin® structure (p, W) with spin® connection, and a Hermitian two-plane
bundle E with unitary connection on det E. Then there is a positive integer N, depending
at most on the curvatures of the fixed connections on W and det E together with c;(E),
such that for all N > N, the topological space My, g is compact, second-countable,
Hausdorff, and is given by the closure of Mw g in Ué\;o MwyE._,.

Remark 2.4. The existence of an Uhlenbeck compactification for the moduli space of
solutions to the unperturbed PU(2) monopole equations (2.1) was announced by Pid-
strigach [54] and an argument was outlined in [56]. A similar argument for Egs. (2.1)
was outlined by Okonek and Teleman in [51]. Theorem 2.3 yields the standard Uhlen-
beck compactification for the system (2.1) and for the perturbations of (2.1) described in
[56]. A proof of Uhlenbeck compactness for (2.1) (and for certain perturbations of these
equations) is also given in [65].

We use the term (Uhlenbeck) level to describe the spaces My, g_, for different values
of ¢ > 0, with Mw, g comprising the fop (Uhlenbeck) level. The space Sym‘(X) is
smoothly stratified, the strata being enumerated by partitions of £. If X' C Syrng(X }isa
smooth stratum, we define

Mwg_|s:={[A,®,z] € My, e L}
The proof of Theorem 2.1 shows, more generally, that for each ¢ > 0 the moduli spaces
MJI}?EJIE =Mwr_|zN M;I}?E;g

are smooth and of the expected dimension, and over the complement in ' of a first-
category subset, the projection M{,’}}?E_/Z |z — X is a fiber bundle. See [13] for the general
statement. In the more familiar case of the Uhlenbeck closure of the moduli space of
solutions to the unperturbed PU(2) monopole equations (2.1), the spaces My, g_, would
be replaced by the products My g, x Sym®(X). In general, though, the spaces My z_,
are not products due to the slight dependence of the lower-level analogues of Eqgs. (2.4)
on the points & & Syme(X ). A similar phenomenon is encountered in [10, Sections 4(iv)-
(vi)] for the case of the extended anti-self-dual equations.

While the description of the holonomy perturbations outlined above may appear fairly
complicated at first glance in practice, they do not present any major difficulties beyond
those that would be encountered if simpler perturbations not involving the bundle su(E)
(such as the Riemannian metric on X or the connection on det W) were sufficient to
achieve transversality [14—16]. We note that related transversality and compactness issues
have been recently considered in approaches to defining Gromov—Witten invariants for
general symplectic manifolds [41,58,59].
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3. Cohomology and cobordisms

The moduli space Mw, g contains singularities: it is a smoothly stratified space, with
strata diffeomorphic to the moduli space of anti-self-dual connections on su(E) and to
moduli spaces of U(l) monopoles (which are in turn cobordant to moduli spaces of
Seiberg—Witten monopoles). The space M;VOE therefore gives a cobordism between the
links of these two types of singularities. In this section, we introduce cohomology classes
on ]\/IC‘}?E and define the links of these singularities.

3.1. Singularities

We see from Theorem 2.1 that the moduli space M;“}?E of PU(2) monopoles [A, 9],
where A is not reducible and ¢ # 0, forms a smooth manifold. We now describe the
subspaces where A is reducible or ¢ = 0.

Let M4 ¢ My, g denote the subspace of points [A, §] where & = 0; we refer to pairs
representing points in M %9 as zero-section pairs. Equivalently, we may view M%¢ C Bg
as the moduli space of fixed-determinant connections A on E solving the anti-self-dual
equation,

(F3)o =0, @3.1)

or simply F{ =0, if Bg is viewed as the quotient space of connections A on su(E).
Suppose we have a reduction of the U(2) bundle E' given as an (ordered) direct sum
of line bundles,

E=L,&L,.

Note that gauge transformations of E (in °Gg = S} X (+idp} YE) which interchange
the line bundles L; and L, only exist if L; = L,. We let M{f{‘,‘fﬂ L, C Mw, g denote
the subspace of points [A,®] with Stabs s = S}, where S}, = S' acts by constant
multiplication on the line bundle L,. We refer to pairs representing points in Mﬁ,"‘ E.L, a8
reducible pairs: they have the form (A; & A,, $;), where A, is a unitary connection on
Ly and A; = A, ® A} is the corresponding connection on L, = (det E) ® L}, where A,
is the fixed connection on det E, while &, is a section of W+ ® L. The pair (4, )
is a solution to the U(1) monopole equations,

Fi — 1(d+ m0) (& ® &) — 3F4, =0,

Dy @ =0. 3.2)
The moduli space of solutions to (3.2), which parameterizes {f,dE L,» is smooth and of
the expected dimension for generic 7o away from the zero-section solutions (see [14])

and is cobordant to the standard Seiberg—Witten moduli space M7y, associated to the
spin® structure (p, W ® L) (as defined, for example, in [44]).

Proposition 3.1 [14]. Let X be a closed, oriented, smooth four-manifold with bH(X) =
1 and generic Riemannian metric. Suppose the pair (A, ) on (E,W™T ® E) represents
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a point [A,®] € My, g with nontrivial stabilizer Stab A,». Then one of the following,
mutually exclusive situations holds:

(1) The pair (A, ®) is a zero-section pair (& = 0) and the connection A is irreducible.
The pair (A,0) has stabilizer Stabs o = S, the connection A has stabilizer
Staby = S}, and A is projectively anti-self-dual (so (F{)o = 0). The quotient
space of zero-section pairs is identified with the moduli space M%® of anti-self-
dual connections on su(E).

(2) The pair (A, D) is reducible and & # 0. The bundle E splits as E = L, & L, the
pair (A, ) has stabilizer Staba ¢ = S}, and A has stabilizer Staby = S} x St
If ME' Mg 1, = 0, then My, | is smoothly cobordant to the Seiberg-Witten
moduli space My s .

(3) The pair (A, d) is a reducible, zero-section pair. The connection A is projectively
flat (so (Fa)o = 0) and & = 0. The bundle E splits as E = L, & (L1 ® N), where
N is a torsion line bundle, so ci(N) € Tor H*(X;Z). The stabilizer of the pair
is StabA,o = Stab 4.

If b (X) = 0 or the Riemannian metric metric on X is nongeneric, the pair (A, ®) can
have stabilizer Stabs,g = S} x S}, where = 0 and A is a reducible projectively
anti-self-dual, but not projectively flat connection.

Remark 3.2. If X is simply-connected, then the third case only occurs when the con-
nection on su(£) induced by A is trivial. The stabilizer of the pair is then U(2).

The undesirable third case in Proposition 3.1 (see [14]) can be excluded with the aid
of a criterion due to Fintushel and Stern [17]:

Proposition 3.3 [17]. If c € H*(X;Z) and ¢ (mod 2) € H*(X;Z,) is not a pullback
from H*(K(m1(X),1);Z,), then there are no SO(3) bundles V. — X with wp(V) = ¢
(mod 2) which admit a flat connection.

We can choose the class wa(su(E)) = ¢;(E) (mod 2) so that su(E) does not admit a
flat connection using the blow-up trick of [45]): If ¢ € H*(X;Z) and e* is the Poincaré
dual of the exceptional class of the blow-up X=X #@2, then ¢ + e* does not admit a
flat SO(3) connection. As the Donaldson polynomials and Seiberg—Witten invariants of
X and its blow-up X determine each other, no information is lost in this process [19,20].
Therefore, assuming this third possibility does not occur, the moduli space Mw g has a
smooth stratification

Mw,p = My’ UME UM, with M = | Mis 1, (3.3)

L
where the union is over the finitely many line bundles L; € H*(X;Z) for which (i) there
is a topological splitting E = L; ® Ly, where L, = (det E) ® L] and recalling that det £/
is fixed, and (ii) the moduli space M{‘“’VdE 1, is nonempty. One can show directly that
there are only a finite number of line bundles L; with M{,%,‘fE r, honempty by repeating
the usual argument for the standard Seiberg—Witten moduli spaces [44, Theorem 5.2.4].
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For the remainder of this article we shall assume that X is equipped with an orienta-
tion, a homology orientation, has b*(X) > 0, and is equipped with a generic Riemannian
metric. In the case b*(X) = 1, the Donaldson invariants refer to the specific chamber
in H*(X;IR)/R* defined by the choice of metric. The dimensions of our moduli spaces
are then given by

2d(su(E), F) := dim My’ = 2d, (su(E)) + 2nqe(su(E), F) — 1,
2d,(su(E)) := dim ME* = —2p; (su(E)) — 3 (e(X) + 0 (X))
= —2p(su(E)) —3(1 —b'(X) + b (X)),
2na(su(E), F) :=2Indc Da = Ipi(su(E)) + 3 (F? - o(X)),
where p;(su(E)) = ¢1(E)? —4cy(E) and F = ¢ (W) + ¢, (E), while
2dy(K) := dim Mg, = 1 (K — (2e(X) + 30(X)))
=HK?~ o(X)) — (1 - b"(X) + b7 (X)),
where K := c;(W+ ® L).

3.2. Cobordisms of links via moduli spaces of PU(2) monopoles

The essential idea is to use the moduli space M;,?E as a cobordism between the
‘links’ of Mgs‘j and M{,;dE In Section 3.3 we define cohomology classes and their
dual geometric representatives on M;‘VOE The pairing of a product of these cohomology
classes (or intersection of their dual geometric representatives) with the link of M ng
can be expressed as a multiple of the Donaldson polynomial (Lemma 3.17) while the
pairing of these classes with the link of M{,?,‘”E gives multiples of the Seiberg—Witten
invariants (Theorem 3.23). The intersection of the geometric representatives in MV"}’,OE
is a family of oriented one-manifolds, whose boundaries should lie in the links of Mﬁd
and M{;‘}E, yielding an equality between these pairings and thus a relationship between
the Donaldson and Seiberg—Witten invariants.

Two technical difficulties arise in the above program. The first problem is that M;‘VOE
is not compact. Thus the boundaries of the one-manifolds might not lie on these links,
but in the lower levels of My, 5. One can work instead with MafE, the subspace of
Mw. g given by triples [A, &, ] where & # 0 and A is not reducible. In Section 3.4, we
describe the intersection of the closure of the geometric representatives in My g with
the lower strata of _M;{,?E. This description and a dimension-counting argument show
that the one-manifolds given by the intersection of the geometric representatives do not
have boundary points in the lower levels of M”&VJ?E.

The second problem is to define links of the singularities M5 and M3, | . Egs. (2.4)
cutting out My g C Cwg do not vanish transversely along these singularities and
so the local topology of My, could be quite intricate near Mg and Myt ; . In
Section 3.6 we define a smoothly-stratified, codimension-one subspace L C H;VOE
and in Lemma 3.17 we compute the intersection of some geometric representatives with
this link. In Section 3.7 we outline our definition [14] of a link Lw. g1, C M{fVOE of the
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stratum Myi? ; in Mw, g and describe the intersection of the geometric representatives
with this link in Theorem 3.23.

If all the reducibles lie only in the top level of My, &, the cobordism My 5 yields an
explicit formula relating the Donaldson invariant and Seiberg—Witten invariants (Theo-
rem 3.21). In general, however, there will be reducible pairs in the lower levels of MW; E-
The one-manifolds given by the intersection of the geometric representatives can then
have boundaries at reducible pairs in the lower levels of Mw, g. The space H’{,{,O g yields
a cobordism between L%f‘}f g and the links of all the reducibles, including these lower-
level reducibles. The definition of the links of the lower-level reducibles is considerably
more involved and is discussed in Section 4.

3.3. The cohomology classes

In this subsection we define the cohomology classes on A, ;‘}UE, referring the reader to

[14] for detailed description of their dual geometric representatives. Recall that 5W, E=
Ag x 2°(W+ ® E) is our pre-configuration space of L2 pairs, where we have omitted
Sobolev indices as these play no role in the present discussion. Let Cjj, 5 denote the

subspace of pairs which are not reducible, let 53‘, g denote the subspace of those which

are not zero-section pairs, and let CN;VOE denote the subspace of those which are neither
zero-section nor reducible pairs. Let P be the principal U(2) bundle underlying the vector
bundle £ and define

P:=Cyp Xog, P.
The space PP is a principal U(2) bundle over C;[‘,?E x X. The associated SO(3) bundle,
P2 .= P/S}, extends over Cyy, . Indeed, the space PP is isomorphic to P/S} over the
zero-section pairs. Over the reducible pairs, the space P becomes an SO(3) fiber bundle,

but is not principal as the stabilizers of these pairs are not normal subgroups of U(2).
We define maps from the homology of X to the cohomology of C;‘}?E via

por Ho(X;Q) = H*(Clpi @), B ci(P)/5,
fp t Ho(X;Q) = H ™ (Cly g3 @), B —3pi(P/S3)/B,
where
p1(P/Sy)/B = (a(P) — ;i (P))/B.
Following [11, Definition 5.1.11] we define a universal SO(3) bundle by
PY = A} xg, (P/Sy) — B x X
and set
peHo(X:Q) —» H**(B5:Q), 8 —i;(PE)/B.
If 7:Cyyp — By is the projection [A, @] — [A], we see that (7 x id x)*P¥ = P, This

implies the following relation between the cohomology classes on C&’,?E and Bj;:

Lemma 3.4. If 3 € Ho(X;Q), then m*pp(8) = up, (B).
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The class p., () is nontrivial on the link of the zero-section pairs [14]. It does not pull
back from the quotient space of connections and does not even extend over the subspace
M?;Sd C MW, E.

By analogy with the construction of geometric representatives for cohomology classes
in Donaldson theory [6,10,11,35], we define geometric representatives V' (3) and W (z)
to represent y, (8) and p., (), respectively. Some features of the definition of these
geometric representatives are worth mentioning. For a smooth submanifold ¥ C X
representing 3 € Ho(X;Q), we let Uy be a ‘suitable’ neighborhood [35, Section 2].
The representatives V() are the pullbacks of the usual usual geometric representatives
of Donaldson theory [35] from the quotient space of connections BE(Uy U; B;), where
B; are the balls supporting the holonomy perturbations. If the energy of a connection
Alsp,, is greater than a certain universal bound, the representative V'((3) is independent
of its restriction to Bj.

As in [35], we let

A(X) := Sym (Hevea(X;Q)) ® A(Hoaa( X Q))

be the graded algebra, with z = 3,3, - - - 8, having total degree deg(z) = > .(4 — ip),
when 3, € H; (X;Q). We write

Hp, (z) ‘= Mpy (ﬁ‘) o By (ﬂT)7
V(z) =V(@B)n--nV(G),
for z = (3182 - - - By, and similarly for g (z). We write

e (&™) = e, (8) = - = pre(z) and W(@™) = W(z) - N W(a),

s

~~ ~~
m times m times

for products of the class p., (x) and its dual W (z).
3.4. The closure of the geometric representatives

We now describe the intersection of the geometric representatives with the lower strata
of MW’ g.-Let X C SymZ(X ) be a smooth stratum. Counting dimensions, one sees that

dim My’ (Z) = dim Mg — 6¢ + dim X

<dimMEY. — 26, 0<E< N,
W.E 2

so the strata MC‘}?E_[(E) (with £ > 1) of the compactification —MW‘ £ have codimen-

sion at least two less than the top stratum M;VOE This would allow the definition of a

relative fundamental class (with boundaries given by the links of the zero-section and
reducible pairs) if we knew M, r had locally finite topology. We consider intersections
of geometric representatives whose total codimension is one less than the dimension of
M;“}?E. Thus, if these geometric representatives intersect the lower strata of Mw,g in

. . .. . . 0 . .
sets of the same codimension as their intersection with the top stratum My, dimension



PM.N. Feehan, T.G. Leness / Topology and its Applications 88 (1998) 111-145 125

counting shows that the intersection of these geometric representatives, away from the
zero-section and reducible pairs, occurs only in the top stratam.

Definition 3.5. The closures of the geometric representatives, V(3), W(z), in Mw g
are denoted by V(3), W (z), respectively. For z = 3y --- 3, € A(X), a generator = €
Hy(X), and an integer m > 0, we denote

Viz):=V(3&)n---NV(B.) and W(z™) := W(z)N---NW(x).

~~
m times

The description of the intersection of V/(3), W (x) with the lower strata given below
in Lemma 3.6 is incomplete, as it (i) gives only an inclusion and not an equality and
(ii) does not give the multiplicities of components of these intersections occurring in
lower levels. A more complete description is given in [16], using ‘tubular neighborhood’
descriptions of the lower strata in My, obtained from gluing maps.

Fori=1,...,4 letm:X x---x X — X be projection onto the ith factor. Let S¢(Y")
be the projection of | J, 7, ' (Y) to Sym®(X) under the map X — Sym*(Y) and denote
Se(Y)=Sym*(Y)n 2.

On each space M, ;‘}?EJ, there are geometric representatives Vg(/3) and Wy (x) defined
in exactly the same way as the geometric representatives V(3), W(z) on AIQ}?E, except
that we use bundles P_; and P, := (P_,)/S} with ¢;(P_¢) = ¢;(P) and ¢;(P—;) =
c2(P) — £. We then have the following description of the intersection of the extended
geometric representatives V(3), W(x) with M":‘}?E_Z(Z‘):

Lemma 3.6. For a smooth stratum % C Sym‘(X), let WZM;‘}?E_Z(E) — X be the
projection map. Let x € Ho(X) be a generator, let 3 € Ho(X:;Q) have a smooth
representative Y C X, and let Uy be a suitable neighborhood of Y. Then the following
hold:

(1) V(8) N Myl (2) S Vi(B) Un (S (Uy)),

@) W(z) N My, (8) € We(z) Un~ (S (Us)).
Furthermore, if £ = 0 and 3 € Hy(X;Q) is a two-dimensional class with (2L, —
c1(E), B) # 0, then we have the following reverse inclusions:

1) M, < V(5)

) Mgty C V(z),

(3) M UMy, C W().

Remark 3.7.

(1) The intersections of the geometric representatives with the strata of reducible pairs
and of zero-section pairs in Mw g generally do not have the expected codimen-
sions. Indeed, Lemma 3.6 shows that almost all geometric representatives will
contain reducible pairs in the top level.

(2) To get equality in the first assertions (replacing S=(Uy) with Sx(Y')), we use
gluing to describe the geometric representatives in an Uhlenbeck neighborhood of
the lower level.
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One cannot use dimension counting directly at this point as the open subsets
7 YSx(Uy)) in M;‘}?E_E(E) do not have positive codimension. However, it can
be shown that the restrictions of the geometric representatives Vi(5), We(z) to
7~ 1(S5(Uy)) are given by a pullback from 7 ~! (S5 (Y)). The intersection of the geomet-
ric representatives with M{,}’,?E_l (X) may thus be computed by replacing 7! (S5 (Uy))
with 7= (Sx(Y)).

We then see from Lemma 3.6 and the transversality results of Section 2 that although
the closures V() and W (z) do not intersect every stratum of My, in a set of the
expected codimension, they do intersect the strata of M;",OE in sets of the expected
codimension. A dimension-counting argument then yields: ’

Corollary 3.8 [14]. Let n,, and n., be nonnegative integers such that ny, +ne, = do +
na—1. Let B1,..., B, € Ho(X; Q) be homology classes such that ), (4 —dim §3;) = nyp,
andlet z = 318, - - Br € A(X). If the collection (3, . . ., Br does not contain both a zero-
dimensional class and a three-dimensional class, then for generic choices of geometric
representatives, and appropriate choices of suitable neighborhoods, the intersection

V(z)nW(a") N Mg

is a collection of one-dimensional manifolds, disjoint from the lower strata of M;{,O B

Remark 3.9. The condition in Corollary 3.8 about the absence of either three- or zero-
dimensional homology classes is necessary because the definition of a suitable neighbor-
hood includes loops which weaken the conclusions one can reach by dimension counting
(see [35, p. 593] or [14]).

3.5. Orientations and the deformation complex

The deformation complex for the PU(2) monopole equations (2.4) is given by

& Q'(su(E))  ay, 27(su(E)

2°(su(E)) @ iRz —=> D 2 ® (3.4)
(Wt QE) (W~ ®E)

where iR is the Lie algebra of S}. Here, d% 4 is the differential of the action of
the gauge group °Gg at (A, ®), while dh@, is the linearization of the PU(2) monopole
equations (2.4). Let

Dae = d?ﬁiip + d}cx,:p

be the ‘rolled-up’ deformation operator. For any point [A, ] € M. ;[}?E, there is an isomor-
phism, TA@M{,*",OE ~ KerD4 . In [14] we prove that M;VOE is orientable by showing
that the real line bundle det D is trivial.

An orientation for M{,“}?E can be specified by choosing a value for a section of detD
at any point [A,®] € Cw,g. At a zero-section PU(2) monopole (A4,0), the deformation
complex (3.4) splits into the direct sum of complexes:
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2 (su(E)) —4> 021 (su(E)) — > 0+ (su(E)),
PW+ ® E)—24 (W @ E).

The first complex is the elliptic deformation complex for the moduli space M%% of
anti-self-dual connections and iRz is in the cokernel of D4 ¢. Because

detD 4 ~ det(dy + df}) ® det D4 ® (iRz)*, 3.5

we can specify an orientation for detD by specifying one for the anti-self-dual moduli
space, using the complex orientation on det D 4, and fixing an orientation for iRz.

Definition 3.10. If w € H?(X;Z) is an integral lift of w,(su(E)) and 2 is a ho-
mology orientation for X, let o(f2, w) be the corresponding orientation defined in [11,
Section 7.1.6] for the moduli space M%? of anti-self-dual connections on su(E). Let
0®4(2,w) be the orientation for det D, and so MC‘}?E, defined through the isomorphism
(3.5), the orientation o(f2,w) for the moduli space M2, the complex orientation for
det D and the fixed orientation for iRz. The moduli space M% is equipped with the
standard orientation o2, c;(E)), if no other orientation is specified.

Remark 3.11. Since p;(su(E)) = c1(E)? — 4c2(E) and wr(su(E)) = ¢1(E) (mod 2),
then p, (su(E)) = w? (mod 4) if w is an integral lift of w,(su(E)). The orientation for
M9 is then determined by the addition of —(p;(su(E)) — w?)/4 instantons to the U(2)
bundle C & w, with corresponding SO(3) bundle R & w™!.

As shown in [8], the difference between the orientations o(§2,w") and o({2,w") for
M4 is given by

e(w,w'") = (1)@= (3.6)

where w', w” € H*(X;Z) are any two integral lifts of ws(su(E)).
3.6. Geometric representatives and zero-section monopoles

The stratum MY C My, g of zero-section pairs is identified with the moduli space
of anti-self-dual connections on the SO(3) bundle su(F). Because the geometric rep-
resentatives V ((3) are pulled back by the map Cyy,  — B given by [4,9] — [4],
the following computation of the intersection of the geometric representatives with the
stratum M&¢ of zero-section monopoles is clear:

Lemma 3.12. Let E be a Hermitian two-plane bundle over a four-manifold X with
b+ (X) > 0 and generic Riemannian metric. Choose c\(E) (mod 2) so that su(E) does
not admit a flat connection. Let z € A(X) have degree 2ny,, where n, > do. For a
generic choice of geometric representatives, the intersection of V(z) with the strata of
zero-section pairs in My g is a finite number of generic points in ME°,



128 P.M.N. Feehan, T.G. Leness / Topology and its Applications 88 (1998) 111-145

If M®4 is given its standard orientation then the number of points in this intersection,
counted with sign, is given by

E .
#(V(z) N M%) = { DS (z) ifny, = da,
0 if np, > da.
As we shall see in the following lemma, it is important that the above intersection take

place at generic points in M%9. A neighborhood of a zero-section pair [4,0] € Mw g
can be described by the following Kuranishi model.

Lemma 3.13. For any point [A] € M %9, there is a smoothly stratified diffeomorphism
between a neighborhood of [A,0] in Mw,r and a neighborhood of zero in m~(0)/S),
where m is an Slz-equivariant map

m: TAME?d @ Ker DA,& — CokerDAﬁ.

If Ind D Ad > 0 then for generic points [A] € M®9, the cokernel of the Dirac operator

vanishes for generic perturbations .

The cokernel of the perturbed Dirac operator D , 5 vanishes at generic points [A] €

M j‘}:s'd because the map A — D 4,5 from M 2 to the space Fredholm operators, for a given
index, is transverse to the jumping line strata. As described in [30], the ‘jumping line
strata’ are the strata of Fredholm operators indexed by the dimension of their cokernels
and the top stratum consists of operators with vanishing cokernel. Lemma 3.13 then
describes the normal cone to M%¢ at a generic point [A, 0] as a cone on CP?~!, where
KerD, 5o Cre.

We have described the geometric representative V (3) near the anti-self-dual moduli
space; W (z) can be described as follows.

Lemma 3.14. When restricted to the link in the normal cone of M;;Sd in Mw g at a
generic point [A,0] € M¥9, the geometric representative W (x) is Poincaré dual to 2h,
where h € H*((Ker D 4 5\{0})/S};Z) is the positive generator.

Remark 3.15. Lemma 3.14 shows that W (z) will have nontrivial intersection with the
normal cone of any generic point in M®d. Thus, the closure of W(z) in Mw,g will
contain all generic points and thus all points in M %9,

Let M3%¢ denote the closure of M&% in Mw g; note that this may properly contain
the closure M4 of M%? in TMEd.

Definition 3.16. The link of M % in Mw, g is given by
Lyt = {[A.8,7] € Mw,g: [|8]7: =<}

It is a simple matter to show that the map ¢ — |®||3. is continuous on Mw.Eg

and smooth on each stratum. Thus, for generic values of ¢ > 0, the link L“‘;}fé is a
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smoothly stratified, codimension-one subspace of ﬁM—WY g. The intersection of Lﬁ,d’; with
an appropriate number of generic geometric representatives is then a finite number of
points which can be calculated using Lemmas 3.12 and 3.14.

Lemma 3.17 [14]. Let E be a Hermitian two-plane bundle over a four-manifold X
with b*(X) > 0 and generic Riemannian metric. Choose c|(E) (mod 2) so that su(E)
does not admit a flat connection. Let ny,, and n., be nonnegative integers such that
Np, + N, = dq + Na — 1. Suppose z € A(X) has degree 2n,, > 2dq. If Mw, g is given
the orientation O™3((2, c;(E)), then there is a positive constant €y such that for generic
£ < g9 we have

— — na—1nct(E) : _
#(V(2) N\W(z") N Liys) = { 202 Dy 2) g, = da,
’ 0 if np, > da.

3.7. Links of the strata of reducible monopoles

To describe the geometric representatives in a neighborhood of the reducible
monopoles, AI{,%,‘?E’ 1,» it does not suffice to produce a Kuranishi model at a generic
point. Neither of the geometric representatives, V(3), W (x) intersects IM“;?E’ 1, in aset
of the expected codimension so we cannot use them to cut down to a set of generic
points as we did with the stratum of zero-section monopoles. Instead, we must give a
global description of the link of My ; in ]LIC‘}?E. We may assume without loss of
generality that JVI{,‘{'},’E’ 1, contains no zero-section solutions.

Even in the case where M{%,dE 1, is in the top level My, g, the problem of defining a
link is nontrivial when the dimension of M ;%,‘f 2,1, 1s positive. The techniques we employ
in [14] follow the ideas of Atiyah and Singer for stabilizing index bundles [3,11]. Related
methods have also been used in a variety of recent applications of Gromov and Seiberg-
Witten invariants (including those of [4,24,40,41,57,58], for example) which essentially
involve ‘excess intersection theory’ in situations where transversality cannot be achieved
by ‘generic parameter’ arguments via the Sard—Smale theorem.

In this subsection, we sketch our construction of the link of M{f,"’ E.L in M;‘}?E when
these reducibles lie in the top level [14]. Let (A, ) represent a point in ]VI‘S%?E‘ 1, and
recall that Dy ¢ = d(i{j@ +dly g Let

E: =1} (At®su(E))eLi_(W ®E)
and let & :C~W7 g — E be the °G g-equivariant map defined by the PU(2) monopole

equations (2.4), so d}4’¢ = (D®)a,¢. It is convenient to temporarily pass to an S L.
equivariant setting, so let

°Cw,e = Cw.e/GE,
and note that Cw g = °Cw.5/S5 = °Cw,p/SL,. We then have
OMW’E = 6'1(0) N OCV[/"}_:;7

with quotient My, g = °Myw,g/Sy = °Mw,g/S},. If [A,®] is a point in My |, the
stabilizer Staba ¢ of the pair (A, ®) is S} in °Gp but is trivial in Gg.
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If (A, P) represents a point [A, ] € M{,%,‘ny 1,» the full elliptic deformation complex
d% ¢ of (3.4) for the PU(2) monopole equations splits into a tangential deformation
complex, d:"f(p, and normal deformation complex, d%}'y (see [14]). The tangential defor-
mation complex is isomorphic to the elliptic deformation complex for the U(1) monopole
equations (3.2). The rolled-up elliptic deformation complex Dsgs = dg’} ® dy 5
also splits, of course, into tangential and normal rolled-up deformation c;omplexés:
Dap =Dy ¢ @ D} 4, with Coker DY ;, =0 and

KerD) o~ TaoMiilp;, and KerD} ,~ KerDao/Ta oMy 1, -
Let 74 ¢ denote the L? orthogonal projections onto the subspaces
Coker d)y g =~ Coker D ¢ ~ Coker D 4 =~ Cokerdl{f;,

noting that Coker dgi} = Kerd) 4 = 0. The Kuranishi model of a neighborhood in
Myw,g of a point [A, @] € M, | is given by

s Oqup C KerDA,ds — 0CW,E,
p:0406 CKerDy g — CokerDy o, 3.7

where Q4.4 is an Siz invariant open neighborhood of the origin in KerDyo =
KerDY 5 @ KerD} 4, v is an S} -equivariant embedding, and ¢ is a smooth Si,-
equivariant map. The map + descends to a smoothly stratified diffeomorphism from
%~'(0)/S}, onto an open neighborhood of [4,&] in My, 5. The obstruction map ¢ is
givenby I 0o G o .

Since the construction of the link of Mii?y ; in M;}}?E is complicated in general, it
is helpful to begin by considering some simple special cases. When M{?}fﬂ L, 1s zero-
dimensional, links in M;VOE of the points of M’y | are defined by the Kuranishi
model (3.7): The link of a point [A, @] is simply given by the S} quotient of the
zero-locus of ¢ in an e-sphere around the origin in Ker Dy o.

For the remainder of this subsection we assume that M{,%,‘,IE 1, may be positive-
dimensional. If CokerD vanishes along M5 ; , then KerD™ is a finite-rank, S} -
equivariant vector bundle over M5 ; with fibers KerD% , over points [4,P] €
Mg . There is an S} -equivariant diffeomorphism ¢ from an open neighborhood
O of the zero-section AI{/IC/?E, 1, C KerD" and an open neighborhood of M{,f,“iEY L, in
Mw,g.

More generally, if the cokernel of D 4 ¢ has constant rank as [A, @] varies in Afﬁ'f,‘!i E.L
(that is, no spectral flow occurs), then Ker D™ and Coker D both define finite-rank, Sle'
equivariant vector bundles over Mﬁ,‘”E’ L

Ker D™ Coker D

x / (3.8)

red
MW,E,L1

Let 2v be the least positive eigenvalue of the Laplacian A4,¢ 1= D4, 6D} ¢ as [A, )]
varies along the compact manifold M{‘{‘,‘?E, 1, and let I1,; 4, denote the L? orthogonal
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projection from F onto the subspace spanned by the eigenvectors of A4 ¢ with eigen-
value less than v. The vector bundle CokerD over Mis 'y ; then extends to a vector
bundle

=, :=Ker(id — I1,)) o A = Coker(id — IT,) o D

of the same rank over an open neighborhood of M’y | in °Cw, g. The obstruction
section @ over O C Ker D" of the vector bundle

~v*EZ, — KerD" (3.9

is given by ¢ = IT, o G o~ on O C KerD"”, where the S}Lz—equivariant embedding
v:0 — °Cw,g gives a diffeomorphism from an open neighborhood O of the zero-
section ]\/I{,?,‘} .1, in Ker D™ onto an open neighborhood of Mg ;, inthe S} invariant
thickened moduli space

°Mw.p,0,(Z) = ((id - I,) 0 §) " (0) C °Cw, .
Then - descends to a smoothly stratified diffeomorphism from the zero locus
~1(0)/S}, C KerD"/S}, (3.10)

containing M$, ; onto an open neighborhood of M5y | in Myw,z. On the comple-
ment of the zero-section M{,?,‘}E 1, C KerD", the S}, quotient of the projection (3.9)
given by

~¥*Z,/S}, — KerD*/S} (3.11)

is a vector bundle. The homology class of the zero locus (3.10) of the obstruction map
can be calculated from the Euler class of the vector bundle (3.11) or, equivalently, from
that of

m} CokerD/S} — KerD"/Sp,,

as is easily seen.

In general, though, one cannot guarantee that Coker D will either vanish or have
constant rank. Let M{f,dE L, C CW g be the pre-image of MW .1, under the projection
from the pre-configuration space Cw, g onto the quotient °Cw g = CW, £/GEr. Because
]V[{)?,‘?E, L, 1s compact, we can construct a finite family of gauge-equivariant ‘stabilizing
maps’ from My ;. to E such that

e the image =4 ¢ of these maps at (A, P) € M{,%,‘?EL spans Coker D4 ¢,

e the subspace =4, C E is S} invariant,

e the dimension of =4 ¢ is constant for all pairs (A, P) € M{,%,dE L
The subspaces =4 ¢ then fit together to form an St ,-€quivariant vector bundle = over
M{,‘{‘,dE 1,» Which extends to an S},-equivariant vector bundle = over an open neighbor-
hood of M{g}iE L, 1In °Cw,g. Let II=,4 ¢ denote the L? orthogonal projection from E
onto the subspace =4 4. The properties of the stabilizing sections ensure that the space

Nw.g.,(Z) = Ker(id — IIz) o D"
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is a vector bundle over M'; | with fibers which are closed under the S}, action:

Nw.g,1,(Z)

R ﬂs (3.12)

—

The bundle = plays the role of =, while Nw, g, 1,(Z) plays that of Ker D™ in the simpler
case (3.8) where the cokernel of D has constant rank along M ;%}}E’ 1,- In [14] we construct
a smooth, S‘L2 invariant thickened moduli space,

n

*Mw.g.,(Z) = ((id— M=) 0 &)™ (0) C °Cw,p,

using the stabilizing bundle =. Then Ny g,1,(Z) is the S}Jz-equivariant normal bundle
of the smooth submanifold Mi'y ; C M,z L,(5), recalling that Mgy | is the
fixed-point set of S7 .

The equivariant tubular neighborhood theorem provides an S'Lz-equivan'ant diffeomor-
phism v: 0O — °Cw g from an open neighborhood O of the zero-section M{,‘f,‘fEY L, C
Nw.g,1,(Z) onto an open neighborhood of the submanifold My | C °Mw,g,,(Z)
which covers the identity on M{,%,‘TE, 1,- The map - then descends to a smoothly strati-
fied diffeomorphism from the zero locus ¢~'(0)/S}, in Nw, g 1,(£)/S}, onto an open
neighborhood of M{%,‘TE, L in the actual moduli space, M, g, where

p=lz086o0%y

is a section over O C Nw,g,1,(Z) of the S} _-equivariant vector bundle
Y*E - Nwer,(5).

As in the constant rank case, this descends to a vector bundle
v*Z/S1, = Nw,e,1.(2)/5L,

on the complement of the zero section, M{,?,‘fﬂ 1, € Nw,g.1,(E)/SL,, whose Euler class
may be computed from

nE/SL, = Nw,g,0,(Z)/SL,-

While the bundle ~* = given by this restriction to the complement of the zero-section is
trivial—because it is spanned by the stabilizing sections—the quotient v*=/S} , has a
nontrivial Euler class.

Definition 3.18. Let Ny, ; ; (=) denote the sphere bundle of fiber vectors of length ¢
and let

PNw,5,.,(Z) = Ny 1,(Z)/SL,-

The link of the stratum M“j,dE 1, € Mw,g of reducible pairs is given by

Lwer =@ '0)NNyg1, (£))/SL,
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and thus
[Lw,e,0,) = e(v*Z/51,) N[PNw,g,1,(Z)]

is its homology class.

Remark 3.19. The orientation given to Ly, z 1, by the orientation on Mﬁ,‘}E’ 1, from the
homology orientation {2 and the complex structure on the fibers of Ny g 1,(Z) (from
the S}Jz action) is equivalent to the orientation given by 0*%(2, L, ® L7) (see [14]).

3.8. Reduction formulas for Donaldson invariants: U(1) monopoles in the top Uhlenbeck
level

In this subsection we describe some of our results from [14], where we compute
Donaldson invariants in terms of Seiberg-Witten invariants when the U(1) monopoles
in Mw g lie only in the top level My g.

Definition 3.20. The set of moduli spaces of U(1) monopoles contained in the top level
Myw . g is enumerated by

Red(W, E) := {L1 € HA(X;Z): Mip,, # 0 and

(2L - ei(E))” = pi (su(B)) }.

The set of moduli spaces of U(1) monopoles contained in the compact space of ideal
PU(2) monopoles I My g is enumerated by

Red(W, E) := {Ll € H3(X;Z): Mg , ., #0and
2Ly + i (B)) = pi(su(E_r)) + 44, L€ ZZO},
where c((E_¢) = ci(F) and e2(E_¢) = c2(E) — £.

Note that 2L, —¢;(E) = K — F, where K = ¢;(WT®L) and F = c;(W) +c1(E).
The compactification M, r may be a proper subset of IMyw, g. If the reducibles in
Mw, g appear only in the top Uhlenbeck level My, g then M;V‘? [ serves as a cobordism
between the link Lﬁ}j’é of the anti-self-dual moduli space J\l}{jd and the links Lw g 1,
of the strata of reducibles Myt 1, This gives the following formula:

Theorem 3.21 [14]. Let E be a Hermitian two-plane bundle over a four-manifold X
with b+ (X) > O and generic Riemannian metric. Choose c(E) (mod 2) so that su(E)
does not admit a flat connection. Suppose z € A(X) has degree 2d,. If Red(W,E) =
Red(W, E), so the reducible PU(2) monopoles in Mw,g appear only in the highest
Uhlenbeck level, then

DB == 3 (D) (2) = e @) [Ewpn]) B13)
Li€ERed(W,E)
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The sign (—1)% in (3.13) comes from the parity change e(c1(E), L, ® L}) of (3.6),
noting that ¢|(E) = L, + L.

The restriction of the cohomology classes up, (8) and p., () to Lw, g 1, are computed
in [14] in terms of the hyperplane class on M{,%,‘fE’ 1, and the generator of the cohomology
of the fiber of PNy, z,1,(Z). The Euler class, e(v*=/S},), can also be expressed in
these terms. From the Atiyah-Singer index theorem for families, one can compute the
Segre classes of the bundle Ny, g1, (£) under the assumption b'(X) < 1. If b1 (X) > 1
the computation is still possible in principle, but becomes unmanageable in practice. To
describe the results of these computations, we introduce some standard expressions to
describe certain constants arising in our reduction formula:

Definition 3.22 [27, Section 8.96]. The Jacobi polynomials are defined by

P (g) 1= 27 2": (" + “) ( n+b ) (z— )" ™(z + 1)™

m n—m
m=0

Functional relations, relations with other special functions, and the generating function
for the Jacobi polynomials can be found in [27, pp. 1034, 1035]. Recall that s = (p, W)
is a choice of fixed spin® structure on X. For line bundles L; € H 2(X ; Z), we denote
s0® Ly := (p, W ® Ly).

Theorem 3.23 [14]. Let E be a Hermitian two-plane bundle over a four-manifold X
with b+ (X) > 0, b1(X) < 1, and generic Riemannian metric. Choose ci(E) (mod 2) so
that su(E) does not admit a flat connection. Let ny, +ne, = dgq +nq — 1, where np,, ne,
are nonnegative integers. For the stratum of reducible solutions M{,“’,dE L, contained in
the highest level ofMW,E, a generator z € Hy(X;Z), classes (31, . .. 1 Bn,, € H(X:Q),
and integers 0 < m < nyp, /2, we have

</1';m By 'ﬁnpl~2m$m) ~ He; (5’371cl )v [LW,E,L1]>
= (_l)mz—npl+ds CW,E,Ll (nm ) nCI)SW(50 ® Ll)

np, —2m

x ] (Li-al(E)8), (3.14)

=0

where, for I = np, — nﬁ —ds and J = n., — ds, the constants né‘ and Ck r are given

by
nd(su(E)) = —pi(su(E)) — 1 (e(X) + 0(X)),
d, 4
n — (1,7) — n—ds _1\u T, Np, — N .
Gl me) 1= P =2 S0 (7 ) (" 2
Remark 3.24.

(1) Note that 2L; —¢;(E) = K — F, where K = i(W* ® L;) and F = ¢;(W™) +
c1(E), and that the polynomial Cw, g, 1,(-) only depends on the classes K and '
(together with the Euler characteristic and signature of X).
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(2) The constant n is the index of the elliptic complex on §2*(L; ® L) induced by
homotoping the normal deformation complex at a reducible pair, determined by
the reduction £ = L; & L,, to a diagonal complex.

(3) If ds = 0 we have PO(I‘J) (0) = 1 and so for manifolds of Seiberg-Witten simple
type, the constant Cw, g 1, (Rp,, e, ) is not interesting. It should, however, prove
useful for understanding the relation between the Donaldson and Seiberg—Witten
invariants for any manifolds which are not of simple type.

Combining Theorems 3.21 and 3.23 yields:

Corollary 3.25 [14]. Let FE be a Hermitian two-plane bundle over a four-manifold X
with bT(X) > 0, b'(X) < 1, and generic Riemannian metric. Choose ¢|(E) (mod 2)
so that su(E) does not admit a flat connection. Let x € Ho(X;Z) be a generator, let
Bi,. ..y Ba, € H2(X:Q), and suppose

2= Ba—2ma™ € A(X),

for 0 < m < dg/2. If Red(W, E) = Red(W, E), so reducible PU(2) monopoles in
_M_W, £ appear only in the highest level Mw g, then the following holds:

_2na—1D§é(E)(z) — Z (_I)L}(_l)mz—da+ds(c.(W+®L|))
LiERed(W, E)
do—2m
x CVV,E,L,(da, Ng — I)SW(SO ® Ll) H <2Ll —C (E)1Bl>3
i=0
where Cyw,g.1,(da,Na — 1) is defined in Theorem 3.23. If X has Seiberg—Witten simple
type then

) do—2m
— Z (-l (=1)ym1plmde=na G (5 @ Ly) H 2Ly — c1(E), ;).
Ly€Red(W, E) =0

The formula in Corollary 3.25 differs what one might expect from Eqgs. (1.1) and (1.2)
as it contains terms of the form

<2L] - (E),ﬂz> = <K - F, ,82>,
where K = c;(W+ ® Ly) and F = ¢;(E) + ¢;(W™), rather than the terms (K, ;). In
addition, the power L? of —1 does not match the exponent (w? + wkK)/2 given in (1.1)
for any obvious choice of line bundle w over X.

As shown by our examples in [14], the condition Red(W, E) = Red(W, E) puts severe
restrictions on the class F and the intersections F K., where the K, are basic classes.
Under these restrictions, combinatorial identities give a cancellation of the factors of F
in the formula of Corollary 3.25. One sees from these examples that one should not
assume that the terms

(— 1)@+ w2 exp(Q/2) SW (K, ek
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in (1.2) translate directly into values for pairings with the link of the reducible M {f}f E.L
when K = ¢;(W+ ® L;). In the sum over all links, there can be many cancellations
between terms contributed by different links. We illustrate the use of Corollary 3.25
below; see [14] for further examples.

Example 3.26 [14]. We use Corollary 3.25 to calculate the first nontrivial Donaldson
polynomial of the elliptic surface E(n) with Euler characteristic e(F(n)) = 12n and
signature o(E(n)) = —8n. Let f € H*(E(n);Z) denote the fiber class of the elliptic
fibration. For suitable perturbations, the only nonempty Seiberg—Witten moduli spaces
correspond to spin® structures with

K,-::CI(W+®LI,T):(n_2-2r)f7 7"20,...,71—2.

The Seiberg—Witten invariants of the spin® structures with these classes are given by
(see, for example, [21]):

r

SW(KT)z(—l)T(n—2>, r=0,...,n—2.

Because
pi(su(E)) = (L1 — L)* = (K, — F)?,

where E = L, , @ (det E) ® L7 ,, we can ensure that all the reducibles are in the same

level (and make this the top level) by requiring that K, F = 0. Then p,(su(F)) =
(K, — F)* = F2. Since (1 + b7 (E(n))) = 2n, we find that

do(su(E)) = —F? — 3(2n) = —F* - 3n,
na(su(E)) = H2F* 4+ 8n) = 1F? + 2n.

Thus, to obtain d, > 0 and n, > 0, we impose the constraint —4n < F' 2 £ =3n.
Note that as K, is characteristic and K, F' = 0, we must have F? even. Applying
Corollary 3.25 with 8 € H>(X;Z) we find, after some calculation, that

, 0 ifj>1lorm>0
F(on—23=2m_,m\ _ ’
o) = {2 apiggp it Zm o

in agreement with the results of [21,35].

4. Gluing PU(2) monopoles and the PU(2) monopole analogue of the
Kotschick-Morgan conjecture

The problems involved in computing intersection numbers for the link of a fam-
ily of lower-level reducibles are similar to those encountered in attempts to prove the
Kotschick—Morgan conjecture [32]. In this section we first discuss the Kotschick-Morgan
conjecture for Donaldson invariants, describe its analogue for pairings with links of lower-
level moduli spaces of U(1) monopoles in the Uhlenbeck compactification of the moduli
space of PU(2) monopoles, and outline how a resolution of this analogue should lead in
turn to a proof of Witten’s conjecture.
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4.1. The Kotschick—-Morgan conjecture for Donaldson invariants

The conjecture of Kotschick and Morgan for Donaldson invariants of four-manifolds
X with bt(X) = 1 gives a prediction of how the Donaldson invariants vary when
the underlying Riemannian metric changes. More precisely, it asserts that the invariants
computed using metrics lying in different chambers of the positive cone of H*(X; R)/R*
differ by terms depending only homotopy data [32]. The definition of the Donaldson
invariants requires a choice of Riemannian metric on X and they are only independent
of this choice when b+ (X) > 1.

The Donaldson invariants of a manifold with 5™ (X) = 1 are not independent of the
metric because the cobordism formed by taking the moduli space of connections anti-self-
dual with respect to elements of a path of metrics may contain reducible anti-self-dual
connections. The Donaldson cohomology classes evaluate nontrivially on the links of
these reducible connections, so the values of the Donaldson invariant given by the metrics
at the ends of this path will differ by the pairing of the top power of the cohomology
classes with these links. Directly evaluating such pairings or even showing that they
depend only on homotopy data is a difficult problem when the reducible connection lies
in a lower level of the Uhlenbeck compactification. The conjecture of [32] asserts that
these pairings only depend on homotopy data: this has been verified for reducibles in the
levels ngs‘_‘Z(X) x Sym?(X) when ¢ < 2 [7,31,32,39,67] and for much higher ¢ when
X is algebraic [12,23].

Motivated by related work of L. Gottsche on the Kotschick—-Morgan conjecture for
Donaldson invariants [25] and by Fintushel and Stern on the general blow-up formula
[20], Pidstrigach and Tyurin suggested that the conjecture of Witten should then follow by
calculations—analogous to those of Gottsche—from the Kotschick—-Morgan conjecture
for PU(2) monopoles [56]. In the case of PU(2) monopoles there are further complica-
tions, not present in Donaldson theory, due in part to the many additional obstructions
to gluing PU(2) monopoles.

4.2. PU(2) monopoles: gluing and ungluing

The cobordism scheme requires the use of analogues of Taubes’ gluing maps to pa-
rameterize neighborhoods of moduli spaces of U(1) monopoles lying at the Uhlenbeck
boundary of the moduli space of PU(2) monopoles and in particular, to construct links
of these singularities.

In our articles [15,16] we first construct approximate gluing maps—giving approxi-
mate solutions to the PU(2) monopole equations—by grafting anti-self-dual connections
from the four-sphere, which are concentrated at the north pole, onto a background PU(2)
monopole at distinct points which are allowed to vary. We then show that these approxi-
mate gluing maps can be perturbed to give a collection of gluing maps v, : Ny — C;{,?E
and obstruction maps ¢, : N, — V, which parameterize open neighborhoods of the
ends of the noncompact moduli space of PU(2) monopoles in the following sense: The
image Im~, of a gluing map is a finite-dimensional submanifold of the configuration
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space C;;,?E of pairs of connections and spinors; an open neighborhood ~,(;'(0)) in

the moduli space M;VOE of PU(2) monopoles is then cut out of the gluing map im-
age Im~y, by an obstruction section of a finite-rank obstruction bundle defined over the
gluing parameter data N,,.

A gluing map =y, is constructed by solving the ‘infinite-dimensional part’ of the PU(2)
monopole equations (2.4), essentially obtained by projecting out the eigenspaces corre-
sponding to the finitely many ‘small eigenvalues’ tending to zero. More precisely, the
scheme we are forced to use is a variant of that developed by Donaldson [6,11], where
we keep the metric fixed and adapt methods of Taubes [62,63] to allow us to glue in
entire moduli spaces of anti-self-dual connections on S*: Donaldson’s scheme assumes
that the connections are restricted to precompact subsets of their moduli spaces, while the
Riemannian metric on X is allowed to vary conformally. The obstruction map ¢, is then
defined by ~, and the ‘finite-dimensional part’ of the PU(2) monopole equations (2.4)
which cannot be solved directly (due to the small eigenvalues and the resulting growth
of Green’s operator norms needed to solve the quasi-linear equation by the Banach space
fixed-point theorem). These small eigenvalues arise here because neither the background
monopole nor the anti-self-dual connections over S*—now viewed as ‘zero-section PU(2)
monopoles’—are smooth points of their respective moduli spaces in the sense of Kodaira—
Spencer. These small-eigenvalue phenomena are reminiscent of those in Taubes’ earlier
work on gluing anti-self-dual connections [61,63] where they arise when the background
connection is trivial. However, for the purposes of differential-topological calculations,
the difficulties surrounding them can generally be circumvented by working with con-
nections on SO(3) bundles with nonzero w, or via blow-up tricks [45]: such a strategy
does not work in the case of PU(2) monopoles.

The construction of gluing and obstruction maps for PU(2) monopoles is given in
[15], where their existence is established, and the proof that they parameterize the ends
of Mw. g is completed in [16]. The difficulties in constructing PU(2) monopole gluing
maps come from several sources:

e There are always obstructions to gluing coming from the anti-self-dual connections
over the four-sphere S4, because of the nonzero cokernel of the Dirac operator D 4,
and from the background moduli spaces of U(1) monopoles.

e The PU(2) monopole equations, like the Seiberg—Witten equations, are not confor-
mally invariant. Hence, the gluing technology for the conformally invariant anti-
self-dual equation developed by Donaldson in [6,11] cannot be used directly for
PU(2) monopoles.

e The gluing theory of Taubes [60-63] is difficult to adapt to the case of PU(2)
monopoles because the Bochner formula for d}id;”*—on which the estimates of
[60-63] rely and which is well-behaved when the connection A bubbles—must be
used in conjunction with a Bochner formula for D 4D?% which is badly behaved
when the connection A bubbles.

e In the work of Donaldson [6] and Mrowka [48] on the ‘gluing theorem’ for anti-
self-dual connections, the anti-self-dual connections being glued up are assumed to
vary in precompact subsets of their respective moduli spaces. While such restrictions
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always simplify the analysis greatly, they cannot be imposed here since we need to
ensure that the entire ends of the moduli space of PU(2) monopoles are covered by
gluing maps.

The Bochner formulas relevant for Taubes’ method are given by

2didy = ViV —2{WT, 1+ iR+ {F;, -},
DaDy = ViVa+ iR+ 3p(F(Ag ) + p(F7)

The term FX will be uniformly L° bounded while the term F', is only uniformly
bounded in L? and its L> norm tends to infinity as the connection A bubbles. This
phenomenon makes it extremely difficult to produce Green’s operator estimates which are
uniform with respect to a degenerating, approximate PU(2) monopole (A4, ®) and hence
solve Egs. (2.4) for exact, nearby PU(2) monopoles. These problems are overcome in
[15,16] by developing a combination of the gluing methods of Donaldson and Taubes, but
the above difficulties make the gluing theory and the construction of links much more
involved than it is for either anti-self-dual connections or Seiberg—-Witten monopoles
(the simplification in the latter case stems from the fact that the Seiberg—Witten moduli
spaces are compact [47]). For example, we need estimates not only for the gluing maps
but also for their differentials (and their inverses) to prove that the gluing maps are
diffeomorphisms and cover the moduli space ends [16].

In [16] we show that (i) the PU(2) monopole gluing maps are ‘surjective’ in the sense
that every PU(2) monopole lies in the image of a gluing map (so it can be ‘unglued’),
(ii) they are diffeomorphisms onto their images, and (iii) the gluing map images have
an invariant characterization in the quotient. The surjectivity property of Taubes’ gluing
maps for anti-self-dual connections is a special case of a more general gluing result for
critical points of the Yang-Mills functional [62, Proposition 8.2]. Like the proof of a
particular case of the surjectivity statement for anti-self-dual connection gluing maps
given by Donaldson and Kronheimer in [11, Section 7.2], Taubes’ argument essentially
relies on estimates for the inverse of the differential of the gluing map and the ‘method
of continuity’ to show that a given point lies in the image of a gluing map. Again, the
main new difficulty here lies in getting estimates which are uniform with respect to an
approximate PU(2) monopole connection which is ‘bubbling’ (and thus approaching the
Uhlenbeck boundary). Our construction in [15,16] shows that open neighborhoods of the
lower-level strata of My i are modeled by zero sets of sections of finite-rank obstruction
bundles: this generalizes the description given in Section 3.7 of open neighborhoods of
the singular strata in the top level Mw g.

4.3. General reduction formulas and the PU(2)-monopole analogue of the
Kotschick—Morgan conjecture

In this section we sketch some of the ideas underlying our approach to the PU(2)-
monopole analogue of the Kotschick—-Morgan conjecture.

The first observation one needs in order to appreciate why the PU(2)-monopole pro-
gram should work is that, as discussed in Section 3 and shown in [14], the intersection
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V(2) NW(z"=~1) of geometric representatives is a collection of smooth one-manifolds,
with one set of boundaries near the moduli space Mg?“ of anti-self-dual solutions and
the other boundaries in neighborhoods of Seiberg—Witten reducible solutions of the form

Migfe , 1, % Sym*(X) C IMw,g. 4.1

Because of the obstructions to gluing, it is not clear that all the points of (4.1) are
necessarily contained in _MW, E, and so —MW, £ may be a proper subset of /M g.

In [14] we analyze the intersection of these geometric representatives in a neighborhood
of the anti-self dual solutions and reducible PU(2) monopoles in the top Uhlenbeck level
(as described here in Section 3). To generalize Theorem 3.21 to the case when there are
reducible pairs in the lower levels of HW, £, we need a precise construction of the links
Lw g_, 1, of the lower-level reducibles (4.1). In [16] we use the gluing and obstruction
maps to construct an open neighborhood Uy, g_,, 1, of the points (4.1) in —MW, g with a
‘piecewise smoothly-stratified boundary’

LW,E—e,LI = aUW,E—e,Ll'

This boundary serves as a link of the reducible solutions (4.1) in the compactified moduli
space MW’ E. Because there are obstructions to gluing coming from both the background
PU(2) monopoles and the anti-self-dual connections over S*, it is not known if the
Uhlenbeck compactification has locally finite topology at points in the lower levels.
Although the link given by 0Uw,g_,,r, might not have finite topology, its intersection
with the geometric representatives of the cohomology classes is a finite set of points,
as this intersection takes place in the top stratum (in the top level, away from any
reducibles).

The above remarks suggest that one should obtain a ‘reduction formula’, conjectured
by Pidstrigach and Tyurin, expressing the Donaldson invariants in terms of integrals over
links of Seiberg—Witten moduli spaces:

Conjecture 4.1 (Pidstrigach and Tyurin). If z € A(X), then

2 1D F ) = Y V() nW" )N Lwe_,L, if degz = 2d,
L,ERed(W,E)
0= Z Vi) nW(z™ YNLwe_, L, if degz > 2d,.
L, €Red(W,E)

Note that the level index £ appearing in the right-hand side the above formulas is
determined by the reduction F_; = L| @ (det E) ® L} defined by L, since detE_; =
det E is fixed and c2(E_¢) = o(E) — £.

The second formula, while not directly interesting, could be useful in deriving recur-
sion relations determining the intersections with Ly, g , r,. An important step towards
proving Witten’s conjecture would be to show that the intersection on the right has some
universal expression (whose precise form might not be known) in terms of Seiberg—Witten
invariants:
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Conjecture 4.2 (Pidstrigach and Tyurin). The pairing on the right-hand side of Conjec-
ture 4.1 is given by a universal formula depending only on ¢, F, Ly, SW(sy ® L,), the
intersection form @ x, and invariants of the homotopy type of X.

This is the Pidstrigach-Tyurin version of the ‘Kotschick—Morgan conjecture’ [32, Con-
jectures 6.2.1 and 6.2.2]. More specifically, one would like to show that the pairing on
right-hand side of Conjecture 4.1 is given by

gx (£, F,L1,Qx) - SW(so ® L)

for some universal polynomial gx(-), where the dependence on X is just through its
homotopy type (although even getting the terms on the right-hand side of Conjecture 4.1
to be divisible by SW(sp ® L) is a highly nontrivial problem). Naturally, the ultimate
aim is to evaluate these pairings explicitly, following the example of Géttsche in [25]
for the b* = 1 wall-crossing formula, and show that they coincide with the prediction
of Witten in the case of simple type. We gave calculations of this type for top level
reducibles in Theorem 3.23, when £ = 0, and outline the idea for lower-level reducibles
below, when ¢ > 0.
The calculations are simplest when M{‘{',C"E_b 1, 18 zero-dimensional,
MﬁgE—z,Ll = {[A“@T]}n

r=17

so we sketch the basic idea for this special case below. Note that when X has Seiberg—
Witten simple type it may still have positive-dimensional Seiberg—Witten moduli spaces
and though the associated Seiberg—Witten invariants will vanish, one cannot a priori
rule out their contributions to the Donaldson polynomials. Hence, even assuming X has
Seiberg—Witten simple type, we still need the thickened moduli spaces of Section 3.7 to
show that positive-dimensional Seiberg—Witten moduli spaces do not in fact contribute
to the Donaldson invariants.

Let {U,}"_,, be neighborhoods of zero in H}; 4 _for the reducibles {[A,,®.]}7_, in
the background moduli space Mw, g_, and let GI(U,, Z) be the gluing data associated
with U, and a (precompact open subset of a) smooth stratum X C Sym‘(X). We can
cover a neighborhood of [A,., @,] x Sym®(X) in My, g with the images under the gluing
maps

¥,z (¢} 5(0) N Gy, X))

of the zero loci of the obstruction sections <, 5. The pairing on the right-hand side of
Conjecture 4.1 then takes the form

> V() nW(z" "N Ly, (4.2)
r=lI1

where L, is the link of [4,, ®,] X Syme(X ) in Uy e, 5(GU(U:, X)). If one could show
that the pairing V (z) "W (z"*~1) N L, were a multiple of sign[A,,®,], with coefficient
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independent of r—that is, independent of the background pair, then the sum (4.2) would
be a multiple of

n
SW(so® Ly) = #Miifp , 1, = sign[A,, &].
r=I

Independence of the background pair can be shown by direct calculation when ¢ = 1,
much as in [31,32,67]. The fact that the individual pairings may depend on the background
pairs is essentially because the gluing maps do not quite ‘commute’: gluing up the same
gluing data in different orders yields slightly different composite gluing maps. Similar
difficulties have been encountered in attempts to prove the Kotschick-Morgan conjecture
of Donaldson theory [32,46].

In the positive-dimensional case there are additional problems due to ‘spectral flow’
or ‘jumping lines’ and this makes it difficult to describe the links of the lower-level
moduli space of U(1) monopoles, ]\J{,}",‘?E_b L X Sym‘(X ). In general, there is no global
Kuranishi model for M{,{’,‘fE_ ,., Which is defined naturally by small-eigenvalue cutoffs
which we can glue up with $* gluing data to form open neighborhoods in My, p—one
encounters ‘jumping lines’ as the points in a neighborhood of the background moduli
space Mw,g_, vary. (Models which are global with respect to the background Seiberg—
Witten moduli space are desirable for the purposes of calculating Euler classes of the
obstruction bundles.) As outlined in Section 3, we employ stabilization methods [3,11]
to address these problems when they are caused by reducibles in the top level in [14],
where no gluing is needed. In the general case, we use gluing to parameterize the links
of lower-level reducibles in combination with this stabilization procedure [15,16] when
¢ > 0 and verify Conjectures 4.1 and 4.2 by direct calculation when ¢ < 1.
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