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ABSTRACT

Geometry of the Moduli Space of Self-Dual
Connections over the Four-Sphere

Paul Matthew Niall Feehan

A Riemannian metric on a compact four-manifold induces a natural L? metric
on the corresponding moduli space of (anti-) self-dual connections on a principal G-
bundle P. When the bundle structure group G is SU(2) and —cz(P) = k, Groisser,
Parker and others have found explicit formulas for the components of the L? metric
on the moduli space My when k = 1 and the four-manifold is the sphere S* or the
complex projective space CP2 The moduli space M;(S*) is diffeomorphic to the
open five-ball, while M;(CP?) is diffeomorphic to the open cone over CP?: these
moduli spaces have finite volume and diameter with respect to the L? metric.

Donaldson, Groisser, and Parker have conjectured that the moduli space My
has finite volume and diameter with respect to the L? metric for any integer k. We
consider the case where the four-manifold is the sphere S* with its standard round
metric, the group G is SU(2), and k = 2. We obtain estimates for the components
of the L? metric on the moduli space M3(S*) of self-dual SU(2)-connections over
the four-sphere, a non-compact 13-dimensional manifold which is homotopic to the
Grassman manifold of real 2-planes in R5. As an application, we show that the
space M (S*) has finite volume and diameter with respect to the L? metric.
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INTRODUCTION

A Riemannian metric on a compact four-manifold M induces a natural L? met-
ric on the corresponding moduli space M} of (anti-) self-dual connections (or k-
instantons) on a principal SU(n)-bundle with second Chern number —k [G-P1].
This metric has been studied by Groisser and Parker and others, and explicit for-
mulas have been found for the metric components when % is 1, the four-manifold
is the sphere S* or the complex projective space CP2, and the bundle structure
group is SU(2) [G], [G-P1, 2], [Hab], [D-M-M], [I]. The space M;(S* SU(2)) is
diffeomorphic to the open five-ball [A-H-S], [Har|, and M}(CP?,SU(2)) is diffeo-
morphic to the open cone over CP? [Bu], [D2], [G]. With respect to the L? metric,
these moduli spaces have finite volume and diameter. These finiteness results were
extended by Groisser and Parker to the case where M is any compact, oriented,
simply-connected, Riemannian four-manifold with positive definite intersection form
[G-P3]. In contrast, relatively little is known about either the geometry or topology
of the moduli spaces M} when |k| > 1.

Donaldson and Groisser-Parker have conjectured that the moduli space of
multi-instantons M} has finite volume and diameter with respect to the L? metric
for any integer k [D4, 5], [G], [G-P2]. One of the motivations for studying the asymp-
totic behaviour of the L? metric arises in physics [G-P3], [O]. Path integrals over
the infinite-dimensional space of connections modulo gauge transformations arising
in quantum Yang-Mills theory are thought to be well-approximated by integrals
over the finite-dimensional moduli spaces with respect to an appropriate quantum
measure. The standard definitions of this measure involve the L? metric [G-P3].
Another motivation comes from the definition of Donaldson invariants arising in
the differential topology of four-manifolds [D6], [D-K], [F-M]. For even-dimensional
moduli spaces, the Donaldson polynomial invariants may be expressed — at least
formally — as integrals of certain differential forms over the moduli space [D-K],
[D5], [Wi]. Donaldson has then posed the problem of showing that these integrals
converge and that their values coincide with the polynomial invariants as defined
in [D6].

We have obtained estimates for the components of the L? metric on the moduli
space M3(S* SU(2)) of self-dual SU(2)-connections over the four-sphere. This
moduli space is a non-compact 13-dimensional manifold homotopy equivalent to
the Grassman manifold Go(R?) [Au-Do], [Har2], [Hat] [S-T]. With regard to its

geometry, we have the

Theorem A. The moduli space M3(S* SU(2)) of self-dual SU(2)-connections
over the four-sphere S* with its standard round metric gy has finite volume and
diameter with respect to the naturally induced L? metric.

The result also holds for any metric ¢ on S* which is globally conformally
equivalent to the standard round metric. We require the metric on S* to be con-
formally equivalent to the standard round metric ¢g¢ in order to apply the ADHM



construction, and we need compactness of the base four-manifold M in order to
achieve finiteness of volume and diameter of the moduli space M}(S*, SU(2)).

The author is currently investigating the problems of (1) extending these finite-
ness results to more general four-manifolds and arbitrary values of k, and (2) ex-
amining whether the Donaldson invariants may be represented by integrals of dif-
ferential forms over moduli space.

In order to describe our results in more detail, we recall the definition of the L2
metric on Yang-Mills moduli spaces [G-P1]. We let (M, ¢) be a compact, oriented,
Riemannian four-manifold and let P be a principal bundle over M with structure
group G. The space of smooth connections A on the G-bundle P — M is an
infinite-dimensional affine space whose tangent space may be identified with the
Hilbert space completion of Q'(M,ad P), with respect to a suitable Sobolev L?
norm. Here, QP(M,ad P) is the bundle of smooth p-forms on M with values in
the associated vector bundle ad P = P X,q g, where g is the Lie algebra of G. We
assume that G is a compact, semi-simple Lie group, and that the vector bundles
QP(M,ad P) have fibre metrics ( , ) induced by the Riemannian metric ¢ on M and
a constant negative multiple of the Cartan-Killing form on G. The L? inner product
of such forms defines an inner product on A which is invariant under the action of
the group of gauge transformations G — the group of automorphisms covering the
identity of M, and so induces a metric on the infinite-dimensional space B* = A*/G,
of irreducible connections modulo gauge transformations. For G = SU(2), the space
B* is a smooth Hilbert manifold.

The tangent space T}, B* is identified with the horizontal subspace Ker d7, of
T,A*. Let a, 3 be tangent vectors in T, A4* and define

gla,B) = / (hwo, hoB)Gdz,  hy=1I—d,Gd",
M

where d,, is the exterior covariant derivative associated with the connection w, h,,
is the L? orthogonal projection onto the horizontal subspace Kerd*, and G° is
the Green’s operator corresponding to the Laplacian A? = d*d,, on Q°(M,ad P).
One obtains a well-defined, Riemannian metric g on the quotient space B* = A*/G
G-P1), 1.

For convenience we assume G = SU(2) and let P be a principal G-bundle with
topology fixed by choosing the second Chern number ¢2(P) = —k. A connection
w on P whose curvature 2-form F,, satisfies xF, = F, or xF,, = —F,, is called
self-dual or anti-self-dual, respectively, with respect to the metric ¢; the self-dual
connections have k¥ > 0 and the anti-self-dual connections have & < 0. Here, *
denotes the Hodge star-operator. The self-dual connections on P are solutions of
the Yang-Mills equations, d',F, = 0. Under a variety of different combinations
of conditions on (M,g), group G, and topology of P — see for example [A-H-
S|, [T1], [T2], [F-U], [D-K] — the moduli space M} of gauge-equivalence classes
of self-dual connections is non-empty and is a smooth, finite-dimensional, non-
compact submanifold of B*. The tangent space Tj, M} = Kerd /Imd, = H!
may be identified with the harmonic space H, = {a € Q'(M,adP) : dfa =



0 and d«a = 0}, where dj o = p_d,a, with p_ denoting the projection onto anti-
self-dual 2-forms. Exactly analogous statements hold for the moduli space of anti-
self-dual connections. Applying an orientation-reversing map to M identifies the
moduli space of self-dual connections over M with the moduli space of anti-self-dual
connections over M, where the manifold M denotes M with the opposite orientation.
In either case, one obtains the L? metric g on M} by restriction [G-P1], [I].

One of the first difficulties one encounters when attempting to evaluate com-
ponents of g is that of finding a suitable basis for the harmonic subspace H!
corresponding to an appropriate choice of local coordinates on the moduli space.
When G is SU(2), the space M3(S* SU(2)) has a global coordinate system given
essentially by the centre and scale of the self-dual connection and the required hor-
izontal projections may be computed explicitly [D-M-M], [G-P1], [Hab]. However,
the space M3(S* SU(2)) has a more complicated topology and a good system of
local coordinates is not so readily apparent. Moreover, it no longer seems possible
to perform the horizontal projections explicitly and hence obtain a basis for H. .
Also, as |k| increases, the topology of the moduli spaces becomes more difficult to
identify [Bo-Ma], [Hur].

The moduli spaces M} have topological compactifications W as subsets of
the space of ideal connections, which may be viewed as connections with curvature
densities possibly having é-measure concentrations at up to k points of M [D-K,
p. 157]. The ideal boundary connections in M7 are then self-dual connections
w with (normalized) curvature density of mass k — [, where 1 < I < k, together
with ‘curvature densities’ given by é-measures of mass k; at m points of M, where
1 <m <, sothat Y~ k; = [ and the curvature density of the ideal boundary
connection has total mass k. Neighbourhoods of the boundary corresponding to
[ distinct points with é-measures of mass 1 may be described explicitly with the
aid of Taubes’ gluing construction [T1, 2], [D3]. Using gluing maps onto neigh-
bourhoods of the [ distinct centres, one attaches concentrated self-dual connections
with k; = 1 over S* to a backround self-dual connection on a bundle P’ — M with
—c2(P") = k — [, producing a family of almost self-dual connections on a bundle
P with —c2(P) = k. One then perturbs this family slightly to produce a family
of self-dual connections on P — M parametrizing an open neighbourhood of the
ideal boundary. A difficulty now arises when one wishes to explicitly parametrize
neighbourhoods of the moduli space boundary corresponding to configurations of
points in M and associated é-measures with at least one of the masses greater than
1. One must now attach concentrated self-dual connections over S* with k; > 1.
Thus, a better understanding of the ends of the moduli space M}(S*) for k > 1
would aid our understanding of the ends of M} of more general four-manifolds —
for example, compact, oriented, simply-connected, Riemannian four-manifolds with
positive definite intersection form.

To determine whether the Riemannian manifold (M3, g) has finite diameter
and volume, we examine the asymptotic behaviour of the L? metric g as one ap-
proaches the boundary of moduli space. When k is 2, M is §*, and G is SU(2), our
approach to this problem makes use of an explicit parametrization of the moduli
space.



When M is S* and G is one of the classical Lie groups O(n), SU(n), or Sp(n),
then the moduli space of self-dual connections may be parametrized, at least in prin-
ciple, using the Atiyah-Drinfeld-Hitchin-Manin correspondence [A-D-H-M]. This
correspondence gives a diffeomorphism from the space of ADHM matrices, consist-
ing of isomorphism classes of solutions to the non-linear ADHM matrix equations,
and i1somorphism classes of solutions to the non-linear self-duality equations. When
G is SU(2) and —c(P) = k, the moduli space is an (8k — 3)-dimensional manifold
[A-H-S]. As is well-known, the construction of the connection 1-forms provided by
the ADHM map becomes very unwieldy when |k| is greater than 1, and it has proved
difficult to study the moduli space for arbitrary values of k£ by appealing directly to
the ADHM correspondence [A].

We employ the parametrization, due to Hartshorne [Har| and Jackiw-Nohl-
Rebbi [J-N-R], of the moduli space M3(S* SU(2)) in terms of three distinct points
P; in S* and three positive weights \; (up to a common rescaling). We let TQ
denote the space of unordered pairs (P;, \; ), with P; € S* distinct and (Ao, A1, A2) ~
(Ao, A1, A2) for v > 0. The space T, is a 14-dimensional non-compact manifold,
while M3%(S* SU(2)) has dimension 13. There is an induced action of the group of
gauge transformations on Ty: this action has been interpreted as a motion of the
points P; around the circle in S* determined by those points [Har2, 3], [J-N-R]. This
gauge equivalence is most easily understood in the context of algebraic geometry.
The space M}(S*,SU(2)) is connected, with fundamental group Z, [Au-Do], [Har2],
[Hur].

The parametrization of Hartshorne and Jackiw-Nohl-Rebbi corresponds to a
particularly convenient choice of ADHM matrices. Our principal SU(2)-bundles P
with —cy(P) = 2 are the pull-backs of the quaternionic Hopf bundle S'' — HP?
via suitable classifying maps provided by the ADHM construction from S* = HP!
into the quaternionic projective space HP2 For the moduli space M3(S* SU(2)),
we obtain the following

Theorem B. Let M3(S* SU(2)) denote the moduli space of self-dual connections
on a principal SU(2)-bundle P over the sphere S*, where —cy(P) = 2 and S* has its
standard round metric go. Let these connections be parametrized by the space Ty of
unordered pairs (P;, \;), where Ao, A1, A2 are positive weight parameters satisfying
the scaling condition A3 + A2 + A2 = 1, and Py, Py, P, are distinct points in S*. Let
c! denote the standard inhomogeneous coordinates of the point P; € S* = HP',
for i = 0,1,2, p = 0,...,3, so that ¢; = a; it P; = [a;,1], lying in the southern
hemisphere, or ¢; = b; if P; = [1,b;], lying in the northern hemisphere. With respect
to this choice of parameters, we have the following estimates for the corresponding
components of the L? metric g:

Ow Ow 1 1
Brix g(axi’mi)—c 1+10g<&>+210g<1+|Ci—cf|) 7

Ow Ow 1 1
— ) < - o
g<307’50f>_0 1+10g<%>+210g<1+|Ci—c]‘|) ’

gc?c

s



where C' is a universal constant independent of moduli parameters, and w denotes
the family of self-dual connections parametrized by Ts.

Again, the estimates continue to hold for any metric ¢ on S* which is globally
conformally equivalent to the standard round metric, the constant C' now depending
on g: it is just the compactness of (S* ¢) which is required when deriving the
estimates. We need a metric ¢ on S* in the conformal class [go] in order to apply
the ADHM construction. The tangent space T M3(S* SU(2)) is spanned by the
vectors Ow/0N;, Ow/dct, for i = 0,1,2 and p = 0,...,3. Non-diagonal components
of g may be estimated via the Schwarz inequality. By seeking upper bounds on the
metric components, we avoid the difficulties associated with explicitly computing
the horizontal projections appearing in the definition of the metric components —
apparently a difficult problem when |k| is greater than 1.

We now provide an outline of the remaining chapters. In Chapter I we establish
our notation and conventions, and we review some of the basic concepts of gauge
theory. We describe the moduli space of self-dual connections and define the induced
L? metric. The ADHM construction produces a family of self-dual connections
on a family of principal G-bundles over S*, parametrized by the space of ADHM
matrices. So we review the concept of a family of connections and discuss some
related issues concerning infinitesimal deformations and horizontal projections. The
ADHM construction defines certain classifying maps from S* to a classifying space
B@G, and so we obtain self-dual connections on G-bundles P — S* by pulling back
a canonical connection on a universal G-bundle EG — BG.

In Chapter II we review the correspondence between the moduli space of self-
dual SU(2)-connections over S* and the moduli space of instanton bundles over CP?3
which are stable, holomorphic, rank 2 vector bundles over CP? satisfying certain
technical conditions. This allows us to relate the picture of M3(S* SU(2)) in terms
of distinct points P; in S* and positive weights \; due to Jackiw, Nohl, and Rebbi,
with that of Hartshorne, where the instanton bundles £ correspond to curves Y in
CP?. The curve Y associated to a bundle £ arises as the zero-set (s)p of a global
section s of the twisted bundle £(1) = £ ® Ocps (1).

In Chapter III, we describe the ADHM construction of self-dual SU(2)-
connections over S*. As an application, we explicitly construct the sections s €
H°(&(1)) arising in Hartshorne’s study of M3(S*, SU(2)).

In Chapters IV and V, we come to our main goal, which is to examine the
asymptotic behaviour of the L? metric g on M3(S*, SU(2)). In Chapter IV, we
describe in detail the parametrization of the self-dual SU(2)-connection 1-forms for
k = 2. In Chapter V, we give the local 1-forms representing the tangent vectors to
the moduli space M3(S*,SU(2)). We avoid the difficulty of computing horizontal
projections and obtaining harmonic representatives of the tangent space by instead
deriving estimates for the L? norms of the tangent vectors and hence the corre-
sponding components of the L? metric. With these estimates at hand, we are then
able to show that the space (M3(S* SU(2)),g) has finite volume and diameter.



CHAPTER 1
MODULI SPACE OF SELF-DUAL CONNECTIONS

We review the standard description of the moduli space of self-dual connections
on a principal G-bundle 7 : P — M, where G denotes a compact, semi-simple Lie
group with Lie algebra g, and (M, ¢) is a compact, connected, oriented, Riemannian,
smooth four-manifold without boundary. We define the L? metric on the moduli
space and discuss related issues of deformation theory and problems arising in the
computation of the L? metric components. General references for this chapter are

[A-B], [A-H-S], [D-K], [F-U], [G-P1, 2], [I], and [L].

§1.1. Preliminaries on Gauge Theory

We recall some aspects of gauge theory which will later prove useful and establish
our notation. General references for this section are [Fi], [F-U], [Hu], [K-N], [Mo],
[M-V], and [St].

Definition 1.1.1. We define the following infinite-dimensional topological groups:

(i) Aut(P) = {f € Diff(P) : f(pa) = f(p)afor all p e P,a € G, and 7o f = n};
(i) C(P,G) = {p € C®(P,G) : p(pa) = a~'p(p)a, for all p € P and a € G},

where C*°(P, @) denotes the space of smooth maps from P to G;

(iii) G(P) = T'(AdP), where Ad P denotes the bundle of groups P xaq G and

I'(Ad P) denotes the space of smooth sections of Ad P.

As topological groups, Aut(P), C3(P,G), and G(P) are naturally isomor-
phic and comprise alternative descriptions of the group of gauge transformations,
which we will usually denote simply by G(P) — unless we wish to emphasize a
particular description [Fi], [Mo]. If f € Aut(P), then the corresponding element
v € C5(P,G) is defined by letting ¢(p) be the unique element of G such that
f(p) = pp(p), for each p € P. Conversely, a map ¢ € C3(P,G) determines an
element f € Aut(P) by setting f(p) = pp(p).

To describe a gauge transformation in terms of a section in G(P), let {O,}
be an open cover of M and let o, : O, — P be a system of local sections, with
corresponding transition functions T4 : Oq N Og — G defined by

03 = 0aTup on O, N Og,
and satisfying the cocycle condition
TopgTpTya =1 on O, NO0gNO,.
The corresponding local trivialisations 7o : Plo, — O4 X G, p = (7(p), pal(p)),

may be defined by setting 74(0q(2)a) = (x,a), for (z,a) € On X G. As usual,
0a(p)es(p)™! = Tap(x), for any p € (), and 74 0 Tﬂ_l(aﬁ,a) = (z,Top(x)a).



If f € Aut(P), we obtain induced maps g, : Oy — G defined by f(oq(z)) =
0a(2)ga(x). Hence,

98 = Ty 9aTap = Ad(T 5 )90 on Oa N Og,

and so we may glue the g, together along overlaps to give a global section ¢ €
['(AdP). If ¢ € C(P, @), then the section ¢ € I'(Ad P) may be defined by setting
Jo = ¢ 0 04. Conversely, a section ¢ € I'(Ad P) determines elements f € Aut(P)
and ¢ € C(P,G).

More generally, let E — M, E' — M be fibre bundles with base M, fibre F,
and structure group G. Let Ty, Téﬂ be the transition functions of the bundles E,

E’ with respect to the open cover {Oy} of M. Then, there exists a fibre bundle
isomorphism f : E — E’ if and only if there exist maps g, : On — G such that

o'[ﬁ = g;ITaﬂgﬁ on O, N Og,

where f(o4) = 0l,ga on O, [St, p. 12], [Hu, p. 61].

Let 0o : G — GL(V) be a representation defining a left action of G on a vector
space V and let E = E(p) be the associated vector bundle P x, V. When V =g
and 0 = Ad, then E(p) is denoted ad P. Where convenient, we let ad E ~ ad P
denote the subbundle of End(E) whose sections have values ¢(z) € g C End(E,)
for all z € M.

Let C2°(P, V') denote the space of smooth maps ® : P — V such that ®(pa) =
o(a™!)p for all @ € G and p € P. There is a bijection C°(P,V) — I'(E) defined
by ® — ¢, with ¢(x) = [p, ®(p)] for + € M and any p € 7! (z), where [p,£] =
{(pa,o(a™)) : a € G} [Hu, p. 46]. A section ¢ € I'(E) may then be represented
locally by maps ¢4 : Oy — V, with ¢4 = ® 0 g, so that

¢ﬂ = _O(Ta_ﬂl)¢)a, on Oy, N O’g.

Hence, E has corresponding transition functions o(Ts4). The action of Aut (P) on
P induces an action on the associated vector bundle E: if ¢ € G(P) is represented
locally by 04 + 0aga, then do = 0(g5"1)da on O,.

Definition 1.1.2. We define the following bundle-valued forms:
(i) QI(P,g) =T(A(T"P) ® g);

(ii) QUM,E)=T(AN(T*M) ® E);

(iii) QU(M,ad P) =T(AY(T*M) ® ad P).

The action of Aut (P) on P induces a right action Q¢(P, g)x Aut (P) — Q4(P,g)
by pull-back, (w, f) + f*w, where we will often denote f*w by w/ or f(w) for
convenience. Moreover, there is an induced right action of Aut (P) on the bundle-
valued g-forms QI(M, E) and QI(M,ad P): the action of G(P) on QI(M, E) may
be represented locally by ws + 0(9; " )wa, where w, € Q1(0,,V) [Mo], [K-N1, p.
75]. Where convenient, we denote the corresponding global form by w9 or g(w).



Let A(P) C Q'(P,g) denote the affine space of connection 1-forms on P and
let wo = ofw € 2'(O0a,,g) be the corresponding local connection 1-forms [K-N1, p.
64-66]. Then
wg = Ad(Ta_ﬂl)wa + Ta_ﬂldTaﬂ on Oy N Og,

where Ta_ﬂ1 dTap = Ty 48, if 6 denotes the Maurer-Cartan form of G. If we fix any
connection wy € Q4(P,g) and let w € QI(P,g), then the difference w — wy defines
an element 6 of Q4(M,ad P) by setting 6o = 0 (w —wg) € Q9(Oq,g) [Mo].

The group Aut(P) induces a right action on A(P) x Aut(P) — A(P) by
pull-back, (w, f) = f*w [Mo]. Denoting f*w by w’, the corresponding action of
v € C5(P,G) on A(P) is represented by

W' =Ad(p Hw + ¢*0 € Q'(P,g).

Denoting w!, = o}w’, the corresponding action of ¢ € G(P) is represented locally
by
Wy, = Ad(ggl)wa + ggldga € Ql(Oa,g),

where g5 1dg, = g6 [Fi, p. 239].
Next we consider the tangent space T, A(P) to A(P) at a connection wy.
If w(t) is a smooth curve in A(P) with w(0) = wy, then &(0) € T, A(P). If

wa(t) = oXw(t) are the local connection 1-forms, then

d
Ga(0) = —orw(t)| = 0%e(0) € Q1(Oa, g).
dt =0

Then wg(0) = Ad (Ta_ﬂl Jwa(0), and so w(0) defines an element of Q9(M,ad P). This
gives the standard identification of T, A(P) with Q4(M,ad P).

Let w € A(P) and let V¥ : Q°(M, E) — Q' (M, E) be the covariant derivative
on an associated vector bundle E(p) [Mo], [K-N1]. The exterior covariant derivative
dy : QUM,E) — Q1T (M, E) is defined by requiring that

(i) d, is R-linear;

(ii) du(d @ Y) =VYd A + ¢ @ dy for all ¢ € T'(E) and v € QI(M).
Consequently, du(¢ A) = dud A + (=1)1¢ A dyp for all ¢ € QI(M,E) and
¢ € QP(M). The formal adjoint, 8, : QU(M,E) — Q=1 (M, E), of d,, with respect
to the metric ¢ on M is defined by 6, = d}, = — x d,*. The connection V¥ on E
naturally induces a connection on End(E) by setting [K-N1, p. 124]:

(V¥9)(¢) = V*($()) —¥(V¥6), for all v € T(End(E)), ¢ € T(E).

The curvature F = F,, € Q*(M,End(E)) may be defined invariantly by d,, o d,¢ =
F,¢ for all ¢ € I'(E) and defined locally by

F, =dw, +wy Nwgy € QZ(Oavg)a



with Fg = Ad (T34 )Fo on O4NOg, with values in g C End(V), so that {F,,} defines
an element of Q?(M,End(E)), [G-H], [K-N1]. More explicitly, a calculation shows
[F-U, p. 31]:

Owg,j  Owg,i
Faoij = 8ri] oz, + [Wa,irWa,j)s where
1
Fo = § ZFa,ijdl'i A dl’j = ZFa7ijdxi A Cl:L‘j.
i,] i<j

If G =SU(n), p is the fundamental representation on C*, and E = P x, C", then
the instanton number of P may be computed by

1
k= —co(E)[Mo] = 3.2 tr (F, A FL).
M

Moreover, ¢1(E)[M] = 0, and SU(2) bundles on any closed, oriented, four-manifold
M are classified topologically by co(E) € HY(M,Z) ~ Z [F-U, p. 179].

§1.2. Moduli Space of Self-dual connections

We review the description of the moduli space of self-dual connections. General
references for this section are [K-D], [F-U], [M].

We fix the topology of a principal G-bundle P — M and denote A(P) and
G(P) by A and G, respectively. The metric on Q¢(M,ad P) is induced by the
Riemannian metric g of M and a constant negative multiple of the Cartan-Killing
form K on G: if X|Y € su(n), we have K(X,Y) = tr(XY) for the fundamental
representation of su(n). We recall that w is a Yang-Mills connection if it satisfies the
conformally invariant Yang-Mills equations: d,F, = 0 and d},F,, = 0. A connection
w is self-dual (SD) (respectively, anti-self-dual (ASD)), if it satisfies the conformally
invariant equation *F, = F,, (respectively, *F,, = —F,), and consequently is a
solution of the Yang-Mills equations [F-U, p. 35].

A G-connection w is reducible if its holonomy group @, is a proper subgroup
of G, and is irreducible otherwise [D-K, p. 131]. For any connection w, if I',, =
{9 € G : g(w) = w} denotes the isotropy group of w, then Iy, is isomorphic to
{9 € G: ghg™' = hforall h € ®,}, the centralizer of ®, in G, where we view
I', and @, as subgroups of Aut (E;) for some fixed + € M [D-K, p. 131]. Let
Z = Z(G) denote the centre of the gauge group G and let Z = Z(G) denote the
centre of G. We recall that Z = T'(P xaq Z) ~ Z. For example, if G = SU(2), we
have Z = {+1} and so Z ~ {£1}.

When G = SU(2), o is the fundamental representation of SU(2) on C*, and
E =P x,C?, the following are equivalent [F-U, p. 47]:

(i) The connection w is reducible;

(ii) The connection d,, and bundle E split, so that d, = d; © dy on E = Ly @ Ly;
(iii) Ty /{+1} = U(1);
(iv) Ker{d, : Q°(E) — Q'(E)} # (0).



We note that if H*(M,Z) = (0), (for example, if M = S*), then there are no
reducible connections [F-U, p. 33]. The affine space of irreducible connections on
P is denoted by A*. Fix a Sobolev index s > 2 and define the following Hilbert
manifolds [F-U, p. 46]:

(i) Let As = wy + L2Q' (M, ad P), the affine space As of Sobolev L%-connections,
where wy € A is a fixed basepoint connection;

(ii) Let p : G — Aut (V) be a faithful representation, so that G C I'(P x, Aut (V))
and G411 C Lg_H(P X, Aut(V)). Then G,41 is an infinite-dimensional Lie
group with Lie algebra L2 Q°(M,ad E);

(iii) Let G C T(P xaa Aut(g)) and Gsp1 C L2, (P xaq Aut(g)). Then Gyqq =
Gs+1/Z and Gs41 is an infinite-dimensional Lie group with Lie algebra
L? ,Q°%(M,adP).

We denote the space of all irreducible Sobolev connections by A%. For s > 2,
there is a smooth action A% x Gs41 — Gsy1. Let BY denote the orbit space A:/C;S+1
endowed with the quotient topology. The topology of the moduli space of self-dual
connections M* C B} is independent of s > 2, so we will henceforth omit Sobolev
subscripts and denote A*, B, G,11, and G,11, by A*, B*, G, and G respectively.

We recall the construction of local coordinate maps for the principal G-bundle
7: A* = B* w— [w] [F-U, p. 48]. I w is irreducible, then its holonomy group is
¢, =G, and ', = Z. Then G/Z = G acts freely on A* and B* = A*/G Fix a
connection w € A* and let G - w denote the orbit of the gauge group through w. We
have smooth maps:

0— G —5G w—s A

Computing differentials gives:

0 — TG =2 T,(G -w) = T, A"

where T1G = Q°(M,ad P) is the Lie algebra of G and T, A* = Q'(M,ad P). In

particular,
T,=(G w)=Im{d, : Q°(M,ad P) — Q' (M,ad P)},

which we denote by V,, = Imd,,, the vertical subspace through w. Then Ker {d} :
QY (M,ad P) — Q°(M,ad P)} is the L*-orthogonal complement of Imd,,, which
we denote by Kerd! = H,, the horizontal subspace through w. This gives the
L?-orthogonal decomposition

T.A*=H, OV,

for each w € A*. The corresponding horizontal and vertical projection operators
on T,A* are:

ho =1—d,G0d’, and v, =d,Gd*

w W
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where G? is the Green’s operator for the Laplacian A? = d*d,, on Q°(M,ad P).
There is an open neighbourhood O, of w in A*, and a diffeomorphism

P:A* D0, — HoxG, B+ (p(B)95)

onto an open neighbourhood of (0,1) € H,, x G. The corresponding open neigh-
bourhood 8, of 0 € H,, is a slice for the action of G on A* [F-U, p. 49]. The map
g: 0, — G, B — gp is obtained by solving

di(95(8) —a) =0,

so that g/’g(ﬁ) € w+ H, for w € O; the submersion ¢ : O, — S, is then given by
B+ g3(B) —w. In particular, O, may be chosen to be G-invariant, and (@, g) is
G-equivariant, in the sense that

(e(f*B).gse8) = (0(B),f " ogs) for feg.

Hence, we get an induced diffeomorphism
0:B*D>0,/G6 — S, CHo,

with inverse 7 : S, — Ow/é, the restriction of the natural projection 7 : A* — B*.
In particular, B* is a smooth Hilbert manifold, = : A* — B* is a principal G-bundle,
and the maps ¢ : (O, ) — S, provide a system of local coordinate charts on B*
[F-U, p. 50], [L, p. 33]. Computing differentials at [w] € B* gives an isomorphism
@« Tj,)B* = Hu, and this provides the standard identification of the tangent space
TiB* with H,,.

We consider the tangent space to B* in more detail and compute the differential
©xq] © Tlu)B* = Hu. First, we examine the action of the gauge group on paths of
connections and their tangent vectors. A calculation yields [I, p. 16]:

Lemma 1.2.1. Let w(t) be a smooth path of connections in A* through w(0) = w,
with w(0) € T, A*. If ¢(t) is a smooth path of gauge transformations in G through
g(0) = g, we obtain a new path w9(t) in A* through w9(0) = w9. Then

w?(0) = Ad (g7 ") (w(0)) + duws (g7 9(0)) € Q' (M,ad P).

Proof. Calculation. a

Lemma 1.2.2. Let g € G, ¢ € QI(M,ad P) and w € A*. Then
(i) 9(dwtp) = dy(uy9(¥);
(ii) g(éﬁid}) = dZ(w)g(?/’);
(ili) g(Awt) = Agy)g(¥).
Proof. Calculation. a
(We recall that G acts on A* by w + g(w) = w? = Ad (¢~ " )w + ¢~ 'dg, and on
QU(M,ad P), by ¢ = g(1) = Ad (97 "))



Lemma 1.2.3. Let g € G, a € Q'(M,ad P) and w € A*. Then

hyyg(a) = g(hoa).
Proof. Calculation. O
Let w(t) be a path in A* through w(0) = w, with w(0) € T, A*. Let ¢(t) be a

path in G through ¢(0) = 1, with ¢(0) = ¢, for some € Q°(M,ad P). Then w9(#) is
a path in A* through w?(0) = w, with tangent vector at w given by

wI(0) =w(0) +dy¢ €T,A".
Choosing the path ¢(¢) such that d*(w9(t) — w) = 0, ensures w9(t) —w € H,, (for
small #), so p(w(t)) is a path in the horizontal slice S,,. Moreover,

©x(w(0)) =w?(0) =w(0) + dpop € Hy.

Enforcing the horizontality condition, d}(w9(0)) = 0, gives ¢ = —Gg,dle(O). Hence,

wI(0) = w(0) — d,G2 d*w(0)

= how(0) € Ho,

and so w9(0) is the horizontal projection of w(0).

Lemma 1.2.4. The differentialof p : O, — S,, at w € A* is given by the horizontal
projection operator

Oyt TWAY — Ho, o — hyo.
Proof. This follows from the above calculations, since ¢, (a) = hya where w(t)
is a path of conections with w(0) = w, @ = @(0) and ¢(¢) is a path of gauge
transformations chosen as above so that ¢(0) = 1, w9(0) = h,a. O

Next, we observe that the paths w9(t) through w9(0) = w9, corresponding to
different choices of ¢(t), ¢(0) = ¢, all project to the same path [w9(¢)] through [w]
in B*, for each ¢ € G. We have exact sequences,

0 — T1G 24 T, A = T B* — 0,
so that the tangent space to B* at [w] is given by
B QY (M, ad P)
Im{d, : Q°(M,ad P) — Q'(M,ad P)}
~ Ker {d* : Q' (M,ad P) — Q°(M,ad P)} = H..
We have canonical isomorphisms T, A* /Imd, = T, e A* /Imd,e and H,, ~ Hye for

any g € G. The spaces Tj B* = T, A*/Im d,, and H,, are identifed via the induced
isomorphism:

Ty B*

@x : Tj) B — Ho, [a] — hya,

where [a] € T} B* = T, A*/Imd,,.
Finally, we define the self-dual moduli space M by

M=A{[w] € B: F, =0}.
We recall the
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Proposition 1.2.5. [D-K, p. 138] If w is a self-dual G-connection over M, then a
neighbourhood of [w] in the moduli space M is modelled on a quotient f~1(0)/T,,
where

f:Kerd, — Cokerd

is a I',-equivariant map and

Kerd* = Ker{d* : Q'(M,ad P) — Q°(M,ad P)},
02 (M,ad P)

Cokerd, = — .
Im{ds : Q" (M,ad P) — Q* (M,ad P)}

Here, d = p_d, and p_ denotes the projection Q*(M,ad P) — Q% (M, ad P)
onto anti-self-dual 2-forms, with p_ = %(1 —x) in terms of the Hodge star operator.
Indeed, f is induced by the map (o) = F_, , = dja + (a A «a)” for a in an

w

open ball around 0 € Kerd} [D-K, p. 134]. Hence, a neighbourhood of [w] in M

has a local model:
{a € Q' (M,adP):d:a =0and dja+ (a« Aa)” = 0}/Ty,

The first equation dfa = 0 defines the construction of a local slice through the
G-orbit; the second equation is the self-duality equation F_, , = 0. The self-duality
condition ensures that d_ o d, = 0 and so one obtains an elliptic deformation
complex:

0 — QO(M,ad P) —%5 Q'(M,ad P) -5 Q2 (M,ad P) — 0
with associated cohomology groups H?, HL, H?, where

. Ker{d; :Q'(M,ad P) — Q% (M,ad P)}
“  Im{d,:Q°(M,adP) — Q' (M,ad P)} ’
e 02 (M, ad P)

Y Im{ds : QYM,ad P) = Q*(M,ad P)}’

while H? is the Lie algebra of T',,. The negative Euler characteristic
s = —dimH? + dim H — dim H?

gives the wvirtual dimension of the moduli space. By the Hodge theory for this
complex we have natural isomorphisms:

H! ~H!, ={ac Q'Y(M,ad P):d o =0 and d*a = 0},
H:~H? ={ac Q> (M,adP):d a =0}

We recall that an irreducible self-dual connection is reqular if H2 = 0 and the moduli
space M* is regular if all its points are regular points [D-K, p. 146]. The moduli
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space of regular, irreducible connections M*' is a smooth manifold of dimension s.
For G = SU(2), the space M* coincides with M*' for generic metrics g on M, and
so is a smooth manifold [F-U, p. 61], [D-K, p. 149]. Alternatively, under a certain
curvature condition on (M, g), we have H? = 0 and so the moduli space M* will
be a smooth manifold [A-H-S]. This curvature condition is satisfied by S* with its
standard round metric.

Indeed, a computation shows that the tangent space at any regular point [w] €

M* is given by [G-P1, p. 670]:
T yM* = H, ~H],.

The description of T}, M™* as the cohomology group H 1 will be more useful for our
purposes, due to the difficulty in finding a suitable basis for the harmonic space

H..

§1.3. L? Metric on Moduli Space

We describe the construction of the natural Riemannian metric on the quotient
space B* and the moduli space M* < B* of self-dual connections. General refer-
ences for this section are [G-P1, 2], [I].

The affine space A* has a (weak) Riemannian metric via the identification

T,A* = Q'(M,ad P) and the L?-inner product on Q'(M,ad P):
(a1,a2) = / (a1, a2) /g dzx for aq,ay € QY (M, ad P),
M

where ( , ) denotes the fibre metric on T*M ® ad P. The gauge group G acts
isometrically on A*, preserving the L2-orthogonal splitting of each tangent space
T, A*. The orbit space B* inherits a (weak) Riemannian metric by requiring that
the natural projection 7 : A* — B* be a Riemannian submersion [C-E, p. 65].
Hence, the differential 7., : Hy — Tj,1B* is required to be an isometry, while m,,,
is zero on V,,. The moduli space M* is a smoothly embedded submanifold of B*,
and so there is an induced smooth Riemannian metric on M* [G-P1, p. 671].

In order to obtain a more explicit expression for the metric on B*, choose a
representative w € [w] and observe that, by definition, the Hilbert space isomor-
phism

Prfw] = (o) " T B — Ho C QY (M, ad P)

is an isometry. Hence, TjB* acquires an inner product by pulling back the natural
L? inner product on Q'(M,ad P). Then, the L? metric on B* is given explicitly by:
8l ([a1]; [az]) = o[, ([a1], [a2])
= (@*[w] [a1], Px[w] [a2])
= (thzl, théQ).
Observe that for a given [w] € B*, we may choose different coordinate charts ¢ :

B* D 7(Sus) — Swe, where S,o are the horizontal slices through w9 € A* for each
g € G, and the inner product apparently depends on this choice. However, we have

the
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Lemma 1.3.1. [I, p. 16] The above expression for the L? inner product on T B*
is independent of the choice of slice neighbourhood, and so we obtain a well-defined
(weak) Riemannian metric on B*.

Proof. Let S, Sus be two slice neighbourhoods with associated local coordinate
charts

v:B* D 7(S,) = Su C Ha,
QO/:B* D) F(Swg) —>8w9 C Heys.

Choose tangent vectors [a;] € T}, B*, with «; € T,A*. Let w;(t) be paths of
connections through w;(0) = w, with tangent vectors w;(0) = a;, for ¢+ = 1,2, and
let g(t) be any path of gauge transformations through ¢(0) = g. Then w/(t) =
g(t)*w;(t) are paths through w{(0) = w9, and the tangent vectors at w9 are given
by

w!(0) = Ad (g7 ")wi(0) + duws (g7'4(0)) for i = 1,2.

7

Computing differentials, we get

P lai] = howi(0),
Pl = hue o (0)
= Ad (97" )hewi(0) fore=1,2.

Now computing inner products, we obtain

(¢ ) (Lol [az]) = (@l lanl, @iy laz])
= (Ad (g_l)hwoq,Ad (g_l)hwag)
= (hyo1, hoas),
= S‘o*w]([alL [a2]),

making use of the Ad-invariance of the L? inner product on Q%(M,ad P). Thus,
g ([an], [a2]) is independent of the choice of slice neighbourhood. O

Hence, the L? metric g as described above is well-defined. We restrict g to
M* — B* and this defines a smooth Riemannian metric on the moduli space [G-

P1, p. 671].

§1.4. Families of Connections

In our description of the moduli space of self-dual connections on a principal G-
bundle P, we assumed that the bundle P was fixed. However, in our discussion of
the ADHM construction, we will be required to consider the more general situation
— familiar from the Kodaira-Spencer deformation theory [Ko|] — of a family of
connections defined on a family of principal G-bundles. We review this idea and
describe the implications for the definition of the L? metric g on M*. General

references for this section are [D-K]|, [Ko], [M], [A-J].
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Definition 1.4.1. A family of connections in a principal G-bundle P — M
parametrized by a topological space T' is a G-bundle

P — MxT

with the property that each slice P; = P|p; (s is isomorphic to P, together with
a connection wy in Py for each ¢, forming a family of connections w = {w; : t € T}
[D-K, p. 173 & p. 237], [Ko, p. 124 & p. 324]. We will generally assume that T is
a smooth manifold.

By analogy with [Ko, p. 61 & p. 192], we say that two families (P,w,T) and
(P',w',T) are equivalent if there exists a G-bundle map @ so that the following

diagram commutes, >

P — P’

MxT — MxT
where w; = ®jw; for all t € T, and ®; = ®|py (4}.

Remark 1.4.2. It is not necessarily true that P ~ P x T.
It is useful to consider framed families of connections. We recall the definition
of a framed connection [D-K, p. 173]:

Definition 1.4.3. Let zo be a basepoint in M. A framed connection in a G-bundle
P — M is a pair (w, ), where w is a connection and ¢ is an isomorphism of G-
spaces, p : G — Py, .
The gauge group G acts naturally on framed connections, and we denote the
quotient by
B = (w x Homg(G, P,,)) /G.

Alternatively, if we fix a framing ¢ and define the group of based gauge transforma-
tions,

Go={9€G:g(x) =1},

then the isotropy groups I'y ., = {9 € Go : g(w) = w} are trivial for all w € A, Gy

acts freely on A, and B = A/Gy. There is a natural map B — B which forgets the
framing. Alternatively, B is the quotient by the residual of the gauge group:

B=A/G~(A/Gy)/(G/Gy)=B/(G/Gy),  where G/Gy~ Aut(P,,)~G.

Restricting to irreducible connections, we recall that G = G/Z acts freely on A*.
We have o )
B* = A* /G ~ B/ (g/go) . where /Gy ~ G/Z.

Then B* — B* is a principal G*! -bundle, where G* = G/Z. (We note that G4 is
isomorphic to the image of G under the adjoint representation Ad : G — Aut (g).)
For example, if G = SU(2), then Z = {£1}, G* = SO(3), and B* - B*is a
principal SO(3)-bundle.

16



We have a framed family of connections if there is an isomorphism:
@ £|{r0}><T — T xG@G.

Then for each ¢, the pair (w¢, ;) is a framed connection. We recall the construction
of the universal family of framed connections parametrized by B [D-K, p. 175]. Let
m M x A — M be the projection onto the first factor and let 7P — M x A
be the pull-back bundle, so 7P = P x A. The G bundle Px A - M x A
carries a tautological family of connections w, in which the connection on P, =
(P x A)|pxqay is mfw. The group Gy acts freely on M x A as well as on P x A, by

(p,w) = (pg,g(w)) for g € Gy, and so there is a quotient bundle
P — M xB,
where P = (P x A)/Go = P xg, A.

The family of connections w and the framing ¢ are preserved by Go, so P carries
an inherited family of connections (A,¢). This is the universal framed family in

P — M parametrized by B.
If (w,p) is a framed family of connections parametrized by a space T and
carried by a bundle P — M x T, there is an associated map

f:T — B, t— [wy, Py

Conversely, given a map f : T — B, there is a corresponding pull-back family of
connections carried by (1 x f)*P:

=k

Iy x f)'P —

! J

1 ~
MxT 2 MxB
These two constructions are inverses of one another:

Lemma 1.4.4. [D-K, p. 175] The maps f : T — B are in one-to-one correspon-
dence with framed families of connections on M parametrized by T, and this corre-
spondence is obtained by pulling back from the universal framed family, (A, P, p).

Lemma 1.4.5. [D-K, p. 175] The homotopy classes of maps [T, B] parametrize
isomorphism classes of pairs (P, ), where

(i) P — M x T is a G-bundle with P; ~ P for all t;

(ii) @ : Pligoyxr — G x T is a trivialization.

Restricting to irreducible connections on P — M, we let P x A* — M x A*
denote the pull-back G-bundle, carrying the tautological family of connections. Now
taking quotients by G, we obtain a bundle

P2 — M x B*,
where P* = (P x A*)/G.
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Then P24 — M x B* is a principal G*! -bundle. For example, if G = SU(2) =
Spin(3), then P34 — M x B* is an SO(3)-bundle carrying a family of connections
(without framing) for the SO(3)-bundle P/{+1} — M parametrized by B*. This
lifts to an SU(2)-family if and only if the second Stiefel-Whitney class wq(P*?) in
H?(M x B*,7Z3) is zero.

Example 1.4.6. Suppose w is a family of G-connections in a G bundle P — M
carried by a G-bundle P — M x T, where T is a contractible space. Then the
identity map 17 : T — T is homotopic to a constant map to : T — {to} C T, and
we obtain the pull-back bundle (13 X tg)*P = P x T, where P = Py:

PxT —— P

J l

1ar Xtg

MxT — MxT

Pulling back by the identity map 13 X 17 gives (137 X 17)* P = P, and since 137 X 11
is homotopic to 13 X tg, then P ~ P x T as G bundles [St, p. 49].

A more direct argument that P ~ P x T when T is contractible, may be given
by analogy with [Ko, p. 66 & p. 327]. The essential point is that when T is
contractible, we may assume that connections w; are connections on a fixed bundle
P — M. Indeed, if we denote the above bundle isomorphism by ® : PxT — P, then
we have isomorphisms ®(-,t) : P — Py, and we may replace the family {w; : t € T'}
by the equivalent family {®(-,t)*w; : t € T} on the fixed bundle P.

Remark 1.4.7. If T — B* is contractible and M is spin, then P?d | a1 s lifts to an
SU(2)-bundle P|s 7, since wq( P)[M] will be zero in H*(M,Z,).

Example 1.4.8. Suppose T is the moduli space M} (S* SU(2)), or the framed
moduli space ./\;12(84, SU(2)), of self-dual connections on an SU(2)-bundle P — S*
with topology fixed by —ca(P)[M] = k. When k = 1, we have M} (S* SU(2)) ~ B°,
and so T' is contractible, with P ~ P x T'. The family of connections parametrized
by T are connections on a fixed SU(2)-bundle defined by the quaternionic Hopf fi-
bration 1 — Sp(1) — S” — HP' — 1. However, for k > 1, we have the fundamental
groups [Hur]:
T (AZZ(S‘% SU(2))) =7y for all k;

if k& odd;

if k even.

m (M}(S*,SU(2 )_{Zz

Hence, at least for k even, we should not expect P to be isomorphic to P x T.
For k = 2, we have that m (/M;(S‘l, SU(Z))) = Z» and moreover, that this moduli
space is homotopy equivalent to the Grassmann manifold Go(R®) [S-T, p. 342],
[Au]. Hence, we should not expect that the family of connections parametrized by

T = M3(S*,SU(2)) are carried by a bundle P = P x T.
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§1.5. Infinitesimal Deformations and Horizontal Projections

We now consider infinitesimal deformations of a family of irreducible connections
w(t) = w¢ on P(t) = Py — M, where t varies in a parameter space T. The topology
of a principal G-bundle on M, for simple, simply-connected Lie groups G, is fixed
by specifying —cy(P)[M] = k, so the G-bundles P(t) are all isomorphic to some
fixed G-bundle P [T1, p. 168].

For any two isomorphisms f; : P — Py, hy : P — Py, we have h; ' o f; € G(P),
and consequently, the quotient spaces B*(P), B*(P;) may be canonically identified
[T2, p. 528], [T3, p. 344]. Suppose I — T is a small interval around 0 € R.
We may choose a smooth family of isomorphisms f(t) = f; : P — P(t), t € I,
where P(0) = P, f(0) = 1p, the identity automorphism of P, and pull back the
connection w(t) on P(t) — M to give a connection w/(t) = f(#)*w(t) on the fixed
G-bundle P — M. Then w/(#) is a family of connections in the fixed bundle P — M
parametrized by the interval I, with w/(0) = w = w(0). We may then, as usual,
compute the derivative w/(0) € T, A*(P) = Q'(M,ad P).

Lemma 1.5.1. h,w/(0) is independent of the path of isomorphisms f(t), and so
@w7(0) defines an element in T; ) B*(P) ~ H., independent of f.

Proof. If k(t) is another choice, then w/(t) is gauge equivalent to w*(t), using the
gauge transformation k; ' o f; € G(P), and so &f(0), w*(0) define the same element
in the tangent space T}, 1B*(P) ~ H,,. Hence, how?(0) is independent of f. O

We consider some of the consequences for local calculations. The isomorphism
f(t) : P(0) — P(t) is represented locally by fi(04(0)) = 04(t)ga(t), where we
choose {04} to be a fixed open cover of M, the corresponding local sections are
oq(t) € T(Oq, P;), and the mapping transformations ¢g,(t) : O — G relate the
transition functions of P and P; by:

Top(t) = ga(t)_lTaﬂ(O)g‘@(t) on Oy N Og.
A calculation shows that
wl(t) = Ad(ga(t) " walt) + ga(t) ' dga(t) € Q'(Oa,9),

relating the local connection 1-forms of w/(¢) € A*(P) and w(t) € A*(P;). Com-
puting derivatives, we get:

&1(0) = Ad (9a(0)7") @a(0) + dur (o) (9a(0) ' §a(0)) € Q'(O4,g).
Since f(0) = 1p, we have g,(0) = 1, and so
04(0) = @a(0) + du (§a(0)) € 2'(Oa,0).

We cannot immediately take horizontal projections, since w4 (0), §o(0) do not
transform as global sections of Q'(M,ad P) and Q°(M, ad P), respectively. Unlike
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the cases considered earlier — where f € Aut (P) was a gauge transformation —
we now have f; € Iso( P, P;), and consequently the local maps

§a(0): Oq — g

do not necessarily transform correctly to give a global section ¢ in Q°(M,ad P).
Indeed, using gg(t) = Tap(0) ' ga(t)Tas(t), we may compute gg(0):

95(0) = Ad(Tap(0) ™" )9a(0) + Tas(0) "' Tup(0).

A similar calculation shows that the local 1-forms w,(0), do not necessarily trans-
form correctly to give a global section of Q'(M,ad P).

In order to take care of this difficulty, we consider the calculation of horizontal
projections in more detail. Suppose we have a local map ¢, € Q0. g), where
Ol, is a coordinate patch in M and P|O!, ~ O, x G. If O, € O.,, we obtain a

smooth map by restricting ¢, to the closed set O,. Lifting this restricted map

to an element in Q9(0,,ad P) via the trivialization, the local section extends to a

global section, denoted ¢**% in Q7(M, ad P) [K-N1, p. 58], [St, p. 55].

Lemma 1.5.2. Let {O,} be a refinement of the cover {O!} of M, with O, € O,
and P locally trivial over O!,. For each patch O', let ¢°*%*(0) be a global extension
of 4o(0) on O, to a section in Q°(M,ad P). Define corresponding global sections
wt2(0) by setting

W (0) = W1 (0) — dyg®™*(0) € Q'(M,ad P).
Then:
(1) Locally, we*"*(0) = wq(0) on O4;

(ii) Globally,
hoiof (0) = hoo®™5*(0)  for all a.

Proof. By definition, ¢°***(0) = ¢4(0) on O, and so

wg(0) = &l (0) = duga(0)
= &l (0) on O,,

since w?(0) = wf(0) — ¢%(0) on O, and this gives (i). Moreover,
Of(0) = & (0) + dbg™=t*(0) € QY(M,ad P),

and taking horizontal projections gives (ii). O
We obtain the following useful consequence:



Lemma 1.5.3. Let the coverings {O,} and {O)} be as in the previous lemma.
Then, we have the estimate:

170t (0)| 22 (21(04 ad Py < [9(0)|L2(01 (0. ,0a PY)-

Proof. Observe that how/(0) = hew®™4*(0) by the previous lemma, and so

- ext,a

1P (0)]| 22 (21 (0 aa PY) = [P (0)]| 12(21 (0, 2d PY)

< @™ (0)]| L2(01 (0w ad PY)

= [wa(0)ll2 (21 (0u.0))>
and this gives the desired inequality. a

Remark 1.5.4. The essential point is that we can estimate %,/ (0) without any
explicit knowledge of the 1-parameter family of isomorphisms f(¢).

§1.6. Classifying Maps and Canonical Connections

We review some examples of classifying spaces for G bundles and canonical connec-
tions which we will later use in our application of the ADHM construction. General
references for this section are [F-U], [Hu|, [M-S], and [K-N].

If G is a Lie group, we let BG denote the corresponding classifying space and
let EG denote the total space of the universal G-bundle 1 -+ G —- EG — BG — 1.
For G = SU(2) = Sp(1), we have BSU(2) = HP*> and ESU(2) = S*, and if
f: M — BSU(2) is a map, then we obtain a principal SU(2)-bundle on M by

pull-back:
P — S%

! J

M Ly mp~

In particular, all G-bundles P — M arise this way and two classifying maps are
homotopic if and only if they induce isomorphic bundles [F-U], [Hu].
We review the construction of the canonical SU(2)-connection vy on the SU(2)
bundle
S*+ — HPF,

where S**+3 = {¢q ¢ HF! : |¢| = 1} [K-N2, p. 6]. We consider H**! as a
right vector space over H and define the right quaternionic projective space HP*

as {(¢0,---qk) € W'\ {0} : (g0,--,qk) ~ (904, -, q9), ¢ € H*'}, where H* =
H\ {0} and k& > 1. The symplectic group Sp(k) may be defined by {@Q € GL(k, H) :
(Qp)"(Qq) = p'q}, where piq = Zf:o D;¢; denotes the standard symplectic scalar
product on HF, for any k& > 1. Then, HP* and S***3 may be viewed as homogeneous
spaces:

HP* = Sp(k +1)/Sp(k) x Sp(1),
S+ Sp(k + 1)/Sp(k).
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We have the following principal bundles over HP*:
(i) An Sp(k) x Sp(1)-bundle Sp(k + 1) — HP*, denoted by Q;
(i) An Sp(1)-bundle S**% — HP*, denoted by Q.
The bundle S*¥*3 — HP* is the quaternionic Hopf fibration, with Sp(1) acting
on S***3 by right scalar multiplication.
Let © be the Maurer-Cartan form of Sp(k + 1) with values in sp(k + 1) [K-N1,
p. 41]. Let v be the sp(k)+sp(1) component of © with respect to the decomposition

sp(k +1) = sp(k) +sp(1) +a(k, 1),

where g(k, 1) is the orthogonal complement of sp(k)+sp(1) in sp(k+ 1) with respect
to the Cartan-Killing form of Sp(k+1). Then, v defines an Sp(k)+Sp(1) connection
on Sp(k 4+ 1) — HP* by [K-N1, p. 103], and 7 is the canonical connection for this
bundle.

Let 7 : Sp(k + 1) — Sp(k + 1)/Sp(k) = S***3 denote the natural projection.
Then 7y defines a bundle map Q — Qo, and by [K-N1, p. 79], there is a unique
connection vy on Qo — HP* such that v = (m0)*v0, and 7g is the canonical Sp(1)-
connection for this bundle. With respect to the coordinates qq, ..., qr on H¥ ! we
have

k
Yo=Y Gdgi = q'dg € Q' (S sp(1)),
1=0
where ¢' denotes the quaternionic conjugate transpose of ¢q. If E; — HP* is the
universal quaternionic line bundle, then Qg is the associated principal Sp(1)-bundle,
and so Fy inherits a covariant derivative V7. This covariant derivative may be
obtained by orthogonal projection of the standard flat connection on the trivial
bundle HP* x H¥! — HPF.
Finally, if f : M — HP¥ is a classifying map inducing an Sp(1)-bundle P — M
by pull-back, ,
P, gk

! !

M Ly mpk

then P inherits a connection w = (f')*v, by pulling back the canonical
Sp(1)-connection on S**+3 — HP*. The ADHM method constructs the classifying
maps f. Note that the total space P is

P = {([z,y],p) € HP' x SRS flz,y) = =(p)},

and if mp : HP' x S**+3 5 S*+3 denotes the projection onto the second factor,
then the induced map f’ on total spaces is just f' = my|p : P — S* 3, Then

w=(f)v%=(f)df" €Q'(P.g)

is the corresponding SU(2)-connection 1-form on P.
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CHAPTER 11
STABLE VECTOR BUNDLES OF RANK TWO

It will be useful — especially in view of our later discussion of the moduli space
My of self-dual SU(2)-connections with k = 2 over S* — to consider the correspon-
dence between anti-self-dual (ASD) connections and holomorphic vector bundles.
This correspondence was employed by Hartshorne to discuss certain families of ASD
SU(2)-connections discovered by Jackiw, Nohl, and Rebbi using techniques of alge-
braic geometry [Har2], [J-N-R]. General references for this chapter are [A], [A-H-S],
[A-W], [Har2, 3], [O-S-S], [Wa-We|.

§2.1. Atiyah-Ward Correspondence

The Atiyah-Ward correspondence which gives a bijection between the moduli
space of ASD SU(2)-connections with second Chern number k over S* (endowed
with its standard round metric ¢g¢) and the moduli space of instanton bundles over
CP3, which are rank 2 holomorphic vector bundles over CP? satisfying certain tech-
nical conditions. We summarise the main features of this correspondence. General
references for this section are [A], [A-H-S], [A-W], [Har2], [Wa-We].

Let H denote the space of quaternions, with basis 1, ¢, 7, k over R, and let HP! =
S* denote the (left) quaternionic projective space. As left complex vector spaces,
we identify C? with HH = C @ Cj by (20,21) = 20 + 21j. More generally, we have
the following isomorphisms of left complex vector spaces, C*"* — H" = C" ¢ C"j,
given by

(20,21, -3 22n—2,22n—1) —> (20 + 21, - -, Z2n—2 + Z2n—17] ).
In particular, we have a fibre bundle,
7 :CP?* — HP', (20,21, 22, 23] — [20 + 217, 22 + 237]

with fibre CP?.

Definition 2.1.1. Let X be a complex algebraic variety. A real structure on X is
a conjugate-linear map ox : X — X with 0% = 1x. The fixed points (if any) of
ox are the real points of X with respect to the real structure ox. If there is no
ambiguity, we often denote ox simply by o.

Left multiplication by j on H? induces a conjugate-linear map,

c: Ct — (20,21,22,23) — (=Z1,Z0, —23,22),

and this induces a map o : CP3 — CP3. Note that 0> = —1 on C*, and so C*
and H? are identified as quaternionic vector spaces. We have 0 = 1¢ps on CP? and
hence o defines a real structure on CP3, preserving the fibration = : CP? — HP!.
The map o : CP? — CP? has no fixed points, but the fixed lines of o are precisely
the fibres =1 (z) ~ CP', € HP'. These are the real lines of CP? with respect to
the real structure o.
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Definition 2.1.2. Let X be a complex algebraic variety with a real structure ox
and let £ be a vector bundle over X. An anti-linear map og¢ : £ — & covering
ox : X = X, or equivalently a bundle ismorphism o¢ : £ = 0*€, is a real structure
if 02 =1 and a symplectic structure if o2 = —1.

Two real or symplectic structures og¢ and o, are equivalent if o, = Aog, for
some A € C, |A| = 1. If there is no ambiguity, we often denote o¢ simply by o. We
recall the fundamental

Theorem 2.1.3. (Atiyah-Ward) Let E — HP' denote a smooth, complex, rank 2
vector bundle with Hermitian metric h, and let gy denote the standard metric on
HP!. There is a natural bijection between
(1) Isomorphism classes of go-ASD SU(2)-connections on E — HP', with ¢3(E) =
k > 0; and
(ii) Isomorphism classes of rank 2 holomorphic vector bundles £ — CP3, with
c2(€) =k >0, such that:
(a) & has a holomorphic bundle isomorphism b : £ — £* covering the identity
leps and defining a symplectic form b( , ) on &;
(b) € has a conjugate-linear isomorphismog : € — &, covering o : CP? — CP?,
such that 02 = —1g and o¢ is compatible with the symplectic form, in the
sense that b(c€&,on) = b(&,n);
(¢) € is holomorphically trivial when restricted to real lines L C CP? and the
Hermitian form h on O(E|L), defined by h(&,m) = b(€,0om) for £ € E,, n € &gz, is

positive definite.

Proof. See [A-W, p. 119], [A, p. 49], [A-H-S, p. 441], or [Wa-We, p. 390]. O

The rank 2 holomorphic vector bundles £ on CP? arising from ASD SU(2)-
connections over S* as above are known as instanton bundles. We describe briefly
how one passes from ASD SU(2)-connections over S* to the associated instanton
bundle £ on CP? via the Atiyah-Ward correspondence. If w is an ASD SU(2)-
connection on E, let £ = n* E with pull-back connection @ = 7*w. Let QP(CP?,€)
be the space of smooth p-forms on CP? with values in £ and let Q(p’q)(é’) be the
space of smooth (p, ¢)-forms on CP? with values in £. Then we have the associated
covariant derivative

dz - Q(CP%, &) — QYCP3,¢),
and using the splitting
QY(CP?, &) = QLO(CP?, &) @ 0V (CP?, €),
we let d = 85 4 85. Then we have
Js : Q°(CP%, &) — QOD(CP?, &),

and the connection w is ASD if and only if the curvature Fj of the pullback con-
nection is a (1,1)-form, so that Fy € QUD(CP?, End(€)) and hence, 95 defines a
holomorphic structure on € [A, p. 48], [A-H-S, p. 441].

The following slight reformulation of the Atiyah-Ward correspondence shows
that the identfication of the moduli space of ASD SU(2)-connections over S* may
be viewed as a problem in algebraic geometry:
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Theorem 2.1.4. (Atiyah-Ward) Let E — HP' denote a smooth, complex, rank 2,
Hermitian vector bundle with Hermitian metric h, and let gy denote the standard
metric on S*. There is a natural bijection between
(1) Isomorphism classes of go-ASD SU(2)-connections on E — HP' with c2(E) =
k > 0; and
(i) Isomorphism classes of holomorphic rank 2 vector bundles £ — CP? together
with a map og : € — € (up to multiplication by A € C*, || = 1), such that:
(a) c1(€) =0, c2(E) =k > 0;
(b) & is stable;
(¢) For each x € HP', £|r~'(x) is holomorphically trivial — so € has no real
Jumping lines;
(d) The map o¢ : € — € is conjugate-linear isomorphism, covering o : CP? —
CP?, such that 02 = —1, and so € has a symplectic structure.

Proof. [Har2, p. 3], [A, p. 51], [A-W, p. 119]. O

Definition 2.1.5. We have the following moduli spaces:
(i) The moduli space N (0, k) of stable holomorphic rank 2 vector bundles over

CP3 with ¢;(€) = 0 and c3(€) = k;

(ii)) The moduli space N7(0, k) of instanton bundles over CP? satisfying the condi-
tions of the Atiyah-Ward correspondence;
(iii) The moduli space My of go-ASD SU(2)-connections on E — S* with cy(E) =

k.

The problem of identifying the moduli space N7(0,%) of instanton bundles
may then be solved in two steps. One first identifies the moduli space N(0, k)
of holomorphic rank 2 stable vector bundles on CP? with ¢;(€) = 0 and c3(&) = k.
One then identifies the points in N(0, k) corresponding to bundles with symplectic
structure and having no real jumping lines — this gives N(0,k) C N (0, k).

§2.2. Stable Vector Bundles on Complex Projective Space

We describe Hartshorne’s approach to the problem of identifying the moduli space
N(0,k) of holomorphic, stable, rank 2 vector bundles over CP? with ¢; = 0 and
¢y = k, employing the correspondence between rank 2 bundles over CP? and certain

algebraic curves in CP? [O-S-S, p. 90], [Har2, 3].

Definition 2.2.1. A holomorphic, rank 2 vector bundle & — CP” is stable (re-
spectively, semistable) if for every line bundle £ C &, we have ¢1(L) < ¢1(€)/2
(respectively, <).

Let Ocps(1) denote the hyperplane bundle on CP? and let £(m) denote the
twisted bundle € ® Ocps (1)®™. Then a bundle £ is stable if and only if £(m) is
stable, for any m € Z [Har3, p. 241]. Moreover, if ¢1(£) = 0 or —1, then & is stable
if and only if H°(CP3 €) = 0 [Har3, p. 241].

By a theorem of Serre, H*(CP?,&(m)) # 0 for m sufficiently large, and so one
may choose a non-zero global section s € £&(m) [G-H, p. 700], [O-S-S, p. 9]. Let
Y = (s)o C CP? be the zero-set of that section: for sufficiently general s, Y will be
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an algebraic curve in CP? [Har3, p. 234]. If ¢1(€) = 0 and ¢2(€) = k, then [Har2,
p. 4]:

degree(Y) =k + m? and genus(Y) = max{(k + mZ)(m —-2)+1, 0}

(See also [Har3, p. 236] and [O-S-S, pp. 90-110].) The canonical bundle Ky on Y
is isomorphic to Oy (2m — 4) and is the restriction of a line bundle on CP? [Har2,
p. 4]. The precise correspondence between rank 2 bundles over CP? and curves Y
in CP? is given by the following

Theorem 2.2.2. [Har2, p. 4], [Har3, p. 232] A curve Y in CP? is the scheme of
zeros (s)g of a section s of a holomorphic rank 2 vector bundle € — CP? if and only
if'Y is a locally complete intersection and Ky 1is isomorphic to the restriction to
Y of some line bundle on CP3. More precisely, for any fixed line bundle £ — CP?
there is a bijection between (i) and (ii):
(i) The set of triples (€, s, p) modulo the equivalence relation ~, where
(a) &€ is a rank 2 vector bundle on CP?;
(b) s € HY(CP3,€) is a global section whose scheme of zeros (s)y has codi-
mension 2;
(¢c) ¢ :det& — L is an isomorphism; and (E,s,p) ~ (€', s, ') if there is an
isomorphism v : € — £ and A\ € C* such that

s’ = X(s) and o' = Ao (dety)t,

where det £ = A% and det ) = A%,
(ii) The set of pairs (Y, £), where
(a) Y is a locally complete intersection curve in CP?; and
(b) £€: L. Kcps ® Oy — Ky is an isomorphism.

Remark 2.2.3. By a curve, we mean a 1-dimensional closed subscheme of CP?
which may be reducible, disconnected, and may have nilpotent elements.

In particular, one has a criterion for distinct sections of a bundle to have to
the same scheme of zeros:

Proposition 2.2.4. [Har3, p. 234| Let £ be a rank 2 bundle on CP? and assume
that for every nonzero s € H°(CP3, £), the scheme of zeros (s)y has codimension
2. (This will be the case if H*(CP?,&(—1)) = 0.) Then two non-zero sections s, s'

have the same scheme of zeros if and only if s’ = \s for some A\ € C*.
We recall the criterion for the scheme of zeros of a section to be non-singular:

Proposition 2.2.5. [Har3, p. 234] Let £ be a rank 2 bundle on CP3. If £ is
generated by global sections, then for all sufficiently general s € H°(CP?, &), the
scheme of zeros (s)y will be non-singular.

By a theorem of Maruyama, the set of stable, holomorphic, rank 2 vector
bundles over CP? with given Chern classes ¢; and ¢y has a coarse moduli scheme
N (e, e2) which is separated and of finite type [Har3, p. 245], [Mu-Fo].
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Proposition 2.2.6. [Har3, p. 245] Let £ be a stable bundle over a non-singular pro-
jective variety X. Then H'(X,End £) is naturally isomorphic to the Zariski tangent
space of the moduli scheme N at the point corresponding to £. If H*(X,End £) = 0,
then N is nonsingular at that point and its dimension is equal to dim H' (X, End &).

Proposition 2.2.7. [Har3, p. 245] Let € be a stable bundle over CP?, with ¢1€) =
0 and ¢2(€) = k. Then

dim HY(X,End ) — dim H*(X,End £) = 8k — 3.

If ¢1(€) = 0, then det& ~ Ogps and det (1) ~ Ocps(2). One obtains a
bijection between
(i) The set of pairs (£, s), where € is a rank 2 vector bundle on CP? with ¢{(€) = 0,
and s € H°(CP?3,&E(m)) is a non-zero section for some m; and
(ii) The set of curves Y in CP?, together with a given isomorphism Ky ~ Oy (2m —

4). Furthermore, the bundle is stable if and only if the curve Y is not contained

in any surface of degree < m [Har2, p. 4], Har3, p. 241].

The curve Y obtained in this correspondence depends on the section s €
H°(CP?,&(m)), as well as the bundle £. To obtain the moduli space for the bundles
&, one needs to eliminate the ambiguity introduced by s.

We next describe Hartshorne’s example of the family of holomorphic rank 2
bundles over CP3. When these are endowed with a symplectic structure, this exam-
ple corresponds to the Jackiw-Nohl-Rebbi family of ASD SU(2)-connections over
St

Example 2.2.8. [Har2, p. 5], [Har3, p. 242 & p. 247 Let Y = Y, U ... U Y}
be a disjoint union of k + 1 lines Y; ~ CP! in CP3, with k¥ > 1. For CP", the

canonical bundle Kcpr = Ogprn (—n — 1) and so the canonical bundle of a line is
Kepr = Ogp (—2) [G-H, p. 146]. Thus, Ky ~ Oy(—2), and this isomorphism is
determined by k + 1 non-zero complex numbers (g, ..., (x € C*. Taking m =1, we

have H°(CP3 £(1)) # 0 [Har3, p. 263] and we obtain a bundle £ for each choice of
Y and each choice of isomorphism Ky ~ O(—2). Since degree(Y ) = k+ 1, we have
c1(€) =0 and ¢3(€) = k. For k > 2, Y is not contained in a plane, therefore £(1)
and hence € will be stable [Har3, p. 241]. By [Har3, p. 246], H?(CP3,End€&) = 0
and the moduli space N (0, k) is non-singular of dimension 8k — 3.

One can then compute the dimension of this family of bundles: the Grassman
variety G(1,3) of lines CP' in CP? has dimension dim¢ G(1,3) = 4: hence the choice
of Y C CP? requires 4(k+1) complex parameters. The choice of isomorphism Ky ~
Oy (—2) depends on the k 4+ 1 complex parameters (o, ..., (r. Hence, the pair (€, s)
depends on 5k + 5 parameters. One then needs to subtract dimge H°(CP3, £(1)),
the number of parameters used in the choice of s € H*(CP?,£(1)):

5 i k=1;
dimc H°(CP?,£(1)) = { 2 if k=2;
1 ifk>3.
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One then finds that the bundles constructed by this method form an irreducible
algebraic family parametrized by a non-singular variety 7' of complex dimension

5 if k=1;
dim@T:{l?) if k=2
5k+4 if k> 3.

Further details may be found in [Har3] — in particular, see [Har3, p. 238].

§2.3. Real Structures and Jumping Lines

The moduli space of instanton bundles Aj(0, k) is obtained as an open subset of the
set of real points of the moduli space N (0, k) of holomorphic rank 2 stable bundles
over CP?® with ¢; = 0 and ¢; = k. In order to make this more precise, we first
need to specify the required real structures and recall the concept of a jumping line

[Har2], [O-S-S].

Proposition 2.3.1. [Har2, p. 9] If n is even, then CP™ has a unique real struc-
ture, the standard one given by complex conjugation of the coordinates. If n is
odd, then CP"™ has two possible real structures: the standard one, and another,
with no real points. In the latter case, Ocps(1) has a symplectic structure and
one can choose homogeneous coordinates zy,z1,...,2z, such that o is given by

J(Zo,Zl,...,Zn_l,Zn) = (—51720,...,—5717571_1).

For example, the non-standard real structure ¢ on CP? canonically induces
a map o, @ Ocps(m) — 0*Ocps(m), with 02, = (=1)™, so that Ocps(m) has a
real structure for m even and a symplectic structure for m odd. Also, if a bundle
& — CP? has a real structure, then £ ® Ogps (1) has a symplectic structure and vice
versa [Har2, p. 9], [A-W], [S-T, p. 341].

We consider CP? with its (non-standard) real structure o. Via the Pliicker
embedding, G(1,3) may be viewed as a quadric hypersurface in CP°. The real
structure o on CP? induces a real structure on G(1,3) and the (standard) real
structure on the CP® in which it is embedded. In particular, the set of real points
of G(1,3) is HP!, corresponding precisely with the real lines of CP3.

For any holomorphic rank 2 vector bundle & — CP3, consider its restriction £|L
to a line L C CP?: then &|L ~ Of(a) ® OL(b) for some a,b € Z, and if ¢;(€) = 0,
then a4+ b = 0. Furthermore, if £ is stable, then ¢ = b = 0 for lines L corresponding
to an open dense subset of the Grassman variety G(1,3) and £|L for such an L will
be holomorphically trivial. A line for which a,b # 0 is called a jumping line of £.
The set of jumping lines of a given bundle £ corresponds to a divisor Z C G(1,3)
of degree ¢3(€) [Har2, p. 10].

The problem of identifying the moduli space N(0, k) of instanton bundles over
CP? may then be solved in the following steps [Har2, p. 10]:

(i) Identify the moduli space N(0, k) of stable, rank 2 vector bundles on CP? with

c1(€) =0 and ¢2(€) = 2;

(i1) Identify the real structure on N(0, k) induced by o, and find its real points
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(ii1) Among the real points Nr(0, k), identify the points ./\/E(O,k) corresponding
to bundles & with a real structure, and the points M (0, k) corresponding to
bundles with a symplectic structure.

(iv) Among the points Ny (0, %), identify those corresponding to bundles whose
divisor Z C G(1,3) of jumping lines has no real points. This will be the moduli
space N7(0, k) of instanton bundles and will be an open subset of Ng(0, k).

In the following sections, we will review Hartshorne’s construction of the moduli

space N(0,2).

§2.4. Moduli Space of Rank Two Stable Bundles

We review Hartshorne’s construction of the moduli space N(0,2) of stable bundles
on CP? with ¢; = 0 and ¢ = 2 [Har3], [S-TJ.

If ¢1(€) = 0 and ¢2(€) = 2, then H°(CP? £(1)) # 0, while H*(CP?,&) = 0
since € is stable [Har3, p. 263]. Let 0 # s € H°(CP?,£(1)) and let Y = (s)p denote
the zero set of s. Then Y will be a curve of degree 3 such that Ky ~ Oy (—2). One
has the

Proposition 2.4.1. [Har3, p. 267] Let Y be a curve of degree 3 in CP® such that
Ky ~ Oy(-2). Then Y consists of either 3 skew lines, a single line plus a double
line, or a single line of multiplicity 3.

Lemma 2.4.2. [Har3, p. 268] IfY denotes any curve of degree 3 in CP? and Ky ~
Oy (—2), then Y is contained in a unique nonsingular quadric surface @ C CP?3.

Recall that any non-singular quadric surface  C CP? is isomorphic to CP! x
CP' [G-H, p. 478]. The curve Y is a divisor of type (3,0) on Q: the divisor class
group of Q) is Z @ 7Z, generated by a line in each of the two rulings and the type
refers to the class in Z & Z [Har3, p. 268].

Lemma 2.4.3. [Har3, p. 268] Let £ be a holomorphic rank 2 vector bundle on
CP? with ¢;(€) = 0 and ¢2(€) = 2, and let s € H*(CP? &(1)) be a section with
zero set (s)g = Y. Then the nonsingular quadric surface () containing Y depends
only on &€, and not on the choice of s. There is a linear map

HO(CPY,E(1) — H'(Oq(3,0), s sIQ,
so that as s varies in H*(CP?,£(1)), Y cuts out a linear system on Q of type (3,0)

and dimension 1.

Lemma 2.4.4. [Har3, p. 269] With £ and Q) as in the previous lemmas, the linear
system of curves Y on @ obtained by varying s € H°(CP?,£(1)) is a linear system
without basepoints.

One then has the important
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Corollary 2.4.5. [Har3, p. 270] For ¢;(€) = 0 and ¢3(€) = 2, there exists a section
s € HY(CP3,&(1)) whose zero set (s)g is three skew lines.

Remark 2.4.6. Thus, the rank 2 vector bundle construction described earlier gives
all stable bundles with ¢;(€) = 0 and (&) = 2.

The linear system of curves Y of type (3,0) on @ ~ CP' x CP! is induced by
a linear system g¢i, without basepoints, of degree 3 and dimension 1 on one of the
factors CP!. The general member of the g3 will consist of three distinct points and
the corresponding curve Y on @ will be three skew lines [Har3, p. 270].

In summary, a stable bundle £ over CP? with ¢;1(€) = 0 and ¢3(€) = 2 corre-
sponds to a curve Y of degree 3 with Ky ~ Oy(—2), where Y consists of 3 skew
lines in CP3. A set of 3 skew lines in CP? determines a unique nonsingular quadric
surface ) in CP3, where the quadric may be constructed as the union of all other
lines which meet each of the given lines [G-H, p. 478]. The points of the CP! factors
correspond to the lines on the quadric surface Q. As the section s € H°(CP3 £(1))
varies, the curves Y move in a linear system on the same quadric (). Each divisor
Y consists of three lines in one of the two families of lines on (). This selects one
of the two factors CP! of ) and the linear system of curves Y then corresponds to
a linear system ¢i on this CP!, without basepoints, of degree 3 and dimension 1.
Collecting all these observations gives the following

Theorem 2.4.7. [Har2, p. 13|, [Har3, p. 270] A stable holomorphic bundle £ on
CP3 with ¢1(€) = 0, c2(€) = 2 determines

(i) A nonsingular quadric surface Q C CP?;

(ii) A choice of one of the two factors in the isomorphism Q ~ CP' x CP!;
(iii) A linear system g3 of degree 3 and dimension 1 on the selected CP', without
basepoints. Conversely, any such data arise from a unique such bundle £.

In particular, the moduli space N'(0,2) has a description as a fibre space [Har2,
p. 13], [Har3, p. 271], [S-T, p. 336]. The quadric surfaces in CP? are parametrized
by CP?: we let A C CP? be the subset corresponding to the singular or degenerate
quadric surfaces. Then N(0,2) is fibred over CP? — A:

N(0,2)
vuvu
CP? — A

The fibre is the disjoint union of two copies of the variety U wich parametrizes the
set of possible g1 without basepoints on CP!. A ¢1 is determined by a 2-dimensional
subspace of the 4-dimensional vector space H°(CP', Ogpi (3)). Thus, the set of all
possible g1 is parametrized by G(1,3) and those without basepoints form an open
subset U.
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Corollary 2.4.8. [Har3, p. 271] The moduli space N(0,2) is an irreducible non-
singular complex variety of dimension 13.

A stable, holomorphic, rank 2, vector bundle £ on CP? with ¢1(€) = 0 and
c2(€) = 2, determines a unique point in N(0,2). The effect of varying s €
P(H°(CP?,£(1))) may be described as follows. Recall that £ determines a quadric
@ in CP? and a choice of factor CP! of (). The points of CP! correspond to lines
in @, which in turn correspond to points of the Grassman variety G(1,3) of lines in
CP3. As p € CP! varies, its image in G(1,3) C CP? describes a conic v in G(1,3).
The ¢ on Q induces a g3 on 7. So as s varies in P(H°(CP?,£(1))), the correspond-
ing divisor Dy = Y7 + Y3 + Y3 varies in the g3 on the conic v C G(1,3) [Har2, p.
14], [Har3, p. 276].

§2.5. Moduli Space of Rank Two Instanton Bundles

We review Hartshorne’s description of the open set Nj(0,2) C N (0,2) parametrizing
isomorphism classes of instanton bundles [Har2], [S-T].

Considering the above fibration N'(0,2) — CP? — A, the induced real structure
on CP? is the standard one and its real points are RP?. The real points of A are given
by Ag which is isomorphic to the quotient space CP3 /o, a compact real 6-manifold.
Next one considers the fibre U LU U. A point in the base RP? — Ag corresponds
to a nonsingular quadric () with a real structure o. It will be convenient to label

the CP! factors in the quadric CP' x CP! as CP}, x C]P’}q. Then, Q ~ CP! x C]P’%

and o leaves each factor fixed so that each CP! has a real structure with one factor
— say CP! — having the standard real structure and the other — say C]P’% —
having the non-standard structure. The G(1,3) of which U is an open subset has
the standard structure in one case (as desired) and the non-standard one in the
other case. Bundles £ with a symplectic structure (as desired) correspond to the
choice of factor CP! with the standard real structure; those £ with a real structure
correspond to the other factor, C]P’}i. The required U in the fibre U U U 1is then the
one which is an open subset of G(1,3) with its standard real structure.

A triple (£, s,¢) consisting of a rank 2 bundle £ with ¢1(€) = 0, ¢3(€) = 0,
a suitably chosen section s € H°(CP? &(1)), and an isomorphism ¢ : det £(1) ~
Ocps (2), corresponds to three skew lines V; C CP? and three complex weights
(; € C*. If € is endowed with a real structure, then the lines Y; are real lines
(corresponding to points in S*) and the weights (; are real. Finally, the requirement
that the divisor Z C G(1,3) of jumping lines has no real points is equivalent to the
requirement that the real weights (y, (1, (2 are positive [Har2, p. 13-15], [Wa-We,
p. 412]. The moduli space N(0,2) of instanton bundles is the total space of a fibre
bundle over RP? — A, with fibre an open connected real 4-manifold [Har2, p. 13],
[S-T, p. 340].
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Theorem 2.5.1. [Har2, p. 12] The moduli space N1(0,2) of instanton bundles
is a connected, but not simply connected, real 13-dimensional manifold. Every
instanton bundle & — CP?3 may obtained by the construction of .Jackiw-Nohl-Rebbi
corresponding to 3 points Py, Py, P, in S* and 3 positive numbers (g, (1, (o.

Remark 2.5.2. The analogous theorem holds for the moduli space N;(0,1) ~ R?,
the instanton bundles then corresponding to 2 points Py, P; in S* and 2 positive
numbers (p, (7 > 0.

As observed by Hartshorne, it is difficult to use this method to explicitly con-
struct either the holomorphic bundles & — CP? or the corresponding complex
bundles £ — S* and their associated ASD SU(2)-connections [Har2, p. 4]. The
construction of the corresponding ASD SU(2)-connections over S* is outlined in [A-
W, p. 122] and described in detail in [Wa-We, p. 398 & 412]. We will instead use
the ADHM method to construct bundles £ — S* and all ASD SU(2)-connections
with ¢3(E) = 2. We describe this relationship between the two methods in the next
chapter.

§2.6. Real Structures on Complex Moduli Spaces

We discuss the parametrization of A'(0,2) in terms of skew lines Y; in CP? and
complex weights (;, and the corresponding parametrization of Ay(0,2) in terms
of real skew lines Y; in CP? and positive weights (;; we provide proofs for some
assertions whose proofs were omitted earlier. General references for this section are
[A-W], [Bu], [Har2, 3], [Wa-We|.

The moduli space N(0, k) parametrizes the set of isomorphism classes [£] of
rank 2, holomorphic, stable vector bundles £ — CP?, with ¢;(€) = 0 and ¢2(€) =
k > 0. Recall [A-W, p. 120] that the (non-standard) real structure ¢ on CP?
induces a real structure o on the moduli space N(0, k):

on N0, k) — N(0,k), €] — [07E].

Lemma 2.6.1. Let Ng(0,k) be the real points of N(0, k) with respect to the real
structure opr. Then Nr(0,k) = {[€] : [£] € N(0,k) and o¢ is a real or symplectic
structure on &, with og ~ o¢ if and only if A € C, || = 1}.

Proof. Suppose [€] € N(0,k) and that o¢ is a real or symplectic structure. Then
og : &€ — 0*€ 1s a bundle isomorphism. Hence

and so [£] € Nr(0, k).
Conversely, suppose [£] € Nr(0, k). Then

and so there exists a bundle isomorphism o¢ : £ — ¢*E. Hence, we obtain a bundle
automorphism o2 : £ — €. The holomorphic vector bundle & — CP? is stable and

32



therefore simple [O-S-S, p. 172]. Since &€ is simple, we have Aut (£) = C* [O-S-S,
p. 74]. Hence, 0% = p - 1g for some pu € C*. We claim that p € R*. Suppose
U C CP? is open, £]U holomorphically trivial, and {z,0z} C U for some z. (This
will certainly be true for instanton bundles £, since we assume that E|L is trivial

for all real lines L C CP?.) Let {¢1,¢2} € O(E)(U) be a local frame. Then,

2
oe: Elu — Elyvys ) — Z/\]Z oz)p;(0z)
1=1

2
»—>Z/\

J=1

and consequently, we have

2
ot — €, bi(z ZX 02)Akj(2)or(2),

1

biloz) — Z Ni(2)Akj(02)br(02).

But 07 = p1- 1¢ and so

j=1 J=1
2 2
= Z Aj2(02)Azj(2) = Z Aj2(2)A25(02)
j=1 J=1
Then,
2 2
dp= Y Niloz)hj(z) + Y Nji(z)Aj(o2)
J,k=1 J, k=1
and so g € R*. By replacing og with |u|~'/?0¢, we may assume ot = +lg,
corresponding to a real or a symplectic structure, respectively. O
Remark 2.6.2. (i) The condition 67 = 1 or 02 = —1 is constant on connected

components of Ng(0, k). Indeed, Ng(0,k) = N3 (0,k) U N (0,k), where N (0, k)
represent the required bundles with a symplectic structure and NIS{— (0, k) represent
bundles with a real structure.

(ii)) The condition that £|L be trivial for any real line L C CP? is an open
condition. Hence, the moduli space of instanton bundles Ny(0, k) is an open subset

of Ny (0, k).



Lemma 2.6.3. Let Y C CP? consist of k + 1 skew lines Yy,...,Y}: and let Ky
denote the canonical bundle of Y. Then Ky ~ Oy (-2).

Proof. From [Harl, p. 182] we have
Ky ~ Keps ® det Ny/@p?, ,

where Keps ~ Ocps (—4), Nyjcps = (Zy /I3 )* is the normal bundle of ¥ C CP?,
and Zy is the ideal sheaf of Y C CP3. By assumption, ¥ = Uf:o Y;, with each
line Y; ~ C]P’i an intersection of hyperplanes Y; = H; N ﬂi, where H; = {z € CP? :
fi(z) =0}, H; = {z € CP3: hiy(z) = 0}, for i = 0,..., k. Let {Uy,...,U} be an
open cover of CP? with ¥; C U; and £|U; holomorphically trivial. Then

Iy \U; = (fi, hi)Ocps |Us,
and consequently, as Oy = Ogps /Ty,
(Zy |I)|U: = (f:Oy @ hiOy)|U..
Taking determinants, we have
det (Zy /I3)|U; = (fi A hi)Oy|Us.

An ideal sheaf 7 that locally has a single generator is locally free of rank one. If
D is the corresponding divisor in CP3, then D = supp (Ocps /Z) and is an analytic
subvariety of CP3. Then denoting Z by Zp and Ocps /Z by Op, we have

Ip = Ocps(—D),
Ip/I} =Ip® Op,
where Ocps (—D) = Ogps ([—D]) and [—D] denotes the line bundle on CP? corre-
sponding to the divisor —D. If U C CP? is an open subset and DNU = {z € CP3:
f(z) =0}, then Zp|U = fOcps |U [G-H, p. 138 & p. 698], [O-S-S, p. 4].
Returning to the proof of the lemma, we have
fiOcps |U; = Ocps (—Hi)|U;
hiOcps |U; = Ogps (—H,;)| U,
and so
fiOy|Ui = Oy (—Hi)|Us,
hiOy Ui = Oy (—H;)|U..

Hence,

Iy /I3 |U; = Oy(—H;) © Oy (—H,)|U;,
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and taking determinants, we obtain

det (Iy/I%NUi ~ Oy(—Hi) & Oy(—ﬁiﬂUi
ZOY(—2)|UZ‘, fori:(),...,k.

Therefore, det (Zy /Z3 ) ~ Oy (—2), and
det Ny cps = det (Zy /I3 )* = Oy (2).
The canonical line bundle Ky is then given by

Ky ~ Keps ® Oy ® Ocps (2)
~ O@ps (—4) & OY & O@pS (2)
~ Oy(—?),

as required. a

Lemma 2.6.4. Let £ — CP? be a, holomorphic, rank 2 vector bundle with ¢1(€) =
0 and ¢2(E) = k. Then ¢1(E(1)) = 2 and ¢3(E(1)) = k + 1.

Proof. Immediate from the general formulas for ¢(APE) and ¢(€ ® L), where L is a
line bundle over CP? [O-S-S, p. 16]. O

Lemma 2.6.5. [Har3, p. 232], [O-S-S, p. 93] Let the triple (£(1),s,¢) be as
in the statement of Theorem 1.1. [Har3, p. 232], with ¢1(€) = 0, ¢ (5) = k,
line bundle L = Ogps(2), and fixed isomorphism ¢ : det £(1) ~ L. Then the
triple (£(1), s,) canonically determines an JSomorphlsm.f Oy(-2) ~ Ky and
corresponding element ( € H(Y, Oy ).

Proof. Recall from Theorem 1.1. [Har3, p. 232] that the triple (£(1),s, ) canoni-
cally determines an isomorphism £ : L& Keps ® Oy ~ Ky . Since £ = Ocps(2) and
Keps = Ocps(—4), we then have £ : Oy(—2) ~ Ky. From [Har3, p. 232], [O-S-S,

p. 90], we have a locally free resolution of Zy given by the Koszul complex for s:

0 — det&* s EF 2 Ty s 0

The bundle map ¢ induces an isomorphism det £ — L£*, and so we have an exact
sequence

0 — L* — & 5Ty — 0
Since L* = Ogps (—2), this global extension of £* determines an element of

Ext'(CP?; Ty, Ocps (—2)) [G-H, p. 725]. Proceeding as in [0-S-S, p. 97] or [Har3,

p. 233], we obtain a canonical isomorphism
Ext'(CP?; Ty, Ocps (—2)) ~ H(Y, Oy),

as required. a

35



Lemma 2.6.6. Let £ — CP? be a stable, holomorphic, rank 2 vector bundle with
c1(€) =0 and ¢3(€) = k. Let € be endowed with a real or symplectic structure og
and fix an isomorphism det (1) ~ Ogps (2). Suppose s € H*(CP3,£(1)) and that
(€,s) corresponds to k + 1 skew lines Y = Yy U---UY; C CP? and a choice of
isomorphism & : Oy(—2) ~ Ky specifed by (g, ..., € C*. Then:

(i) The linesY; are real lines;

(ii) The weights (; are real.

Proof. (i) Let s € H°(CP3 &(1)) with s7'(0) = Y. We have an isomorphism

og 1 £ — 0*E, and so the pair (¢*€,0*3) determines Y also. Hence,
Y =(Goo) ' (0)=(s00) 1(0)=0"1(Y)

and so 0(Y) =Y. Thus Y is preserved by ¢ and so consists of k+ 1 real lines. This
proves (i).

(i) Recall that the real structure ¢ on CP? induces a real or symplectic struc-
ture on any object that is functorially associated with CP? [Har2, p. 8]. For exam-
ple, a real structure is induced on A(0, k) by requiring that bundles £ and o*& be
isomorphic, the isomorphism being given by ¢ : £ — ¢*£. Hence, the bundles £
and 0*€ determine the same isomorphism ¢ : Oy (—2) ~ Ky, these isomorphisms
being parametrized by H°(Y, Oy ) = C**1. The space H°(Y,Oy) inherits a real
structure, so that H°(Y,Oy) = R¥*! and hence the weights (; are real. g

Lemma 2.6.7. With the hypotheses of the previous lemma, assume further that
€ is an instanton bundle with ¢3(€) = 2. Then the weights (; are positive.

Proof. See [Har2, p. 12], [Wa-We, p. 413]. O
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CHAPTER 111
ATIYAH-DRINFELD-HITCHIN-MANIN CONSTRUCTION

We outline the ADHM monad construction of rank 2 instanton bundles over the
complex projective space CP? and the corresponding complex vector bundles over
the four-sphere S* with anti-self-dual SU(2)-connections. We then have two meth-
ods of constructing these holomorphic rank 2 vector bundles over CP3, namely
the method of curves and the ADHM monad construction, and so we describe
the explicit correspondence between these two methods. General references for this
chapter are [A], [A-D-H-M], [B-H], [Bo-Ma], [D-K], [D-M,1-4], [G-H], [O-S-S], [Ra2],
[Sa].

£§3.1. ADHM Construction of Instanton Bundles

We recall the construction of instanton bundles £ — CP? corresponding to ASD
SU(2)-connections on a smooth, complex, Hermitian, rank 2 bundle £ — S* with

topology fixed by c2(E) = k.

Definition 3.1.1. Let X be a compact, complex manifold. A monad over X is a
complex

0 sy A B s 0

of holomorphic vector bundles over X such that fa = 0. The holomorphic vector
bundle € = Ker #/Im « over X is called the cohomology of the monad.

Lemma 3.1.2. [O-S-S, p. 240] If £ — X is the cohomology of a monad as above,
then the rank rk € and total Chern class ¢(£) are given by

tk€& =1tk B —rk A—rkC,
(&) = ¢(B)e(A)~te(C).

We next describe Horrocks’ monad construction of rank 2 instanton bundles
on CP? [A], [Wa-We]. The monad construction may be described in terms of the
following data [A, p. 59], [Wa-We, p. 415]:

Data 3.1.3. The linear algebra data for the monad construction of instanton bun-

dles & — CP? corresponding to ASD SU(2)-connections on a smooth complex rank

2 bundle E — S* with c3(E) = k is given by the following:

(i) A map o : C* — C* defined by o(29, 21, 22, 23) = (=21, 20, — 23, Z2).

(ii) A complex vector space W, with dim¢ W = k and a conjugate-linear map
ow : W — W, 0%, = 1. (When there is no ambiguity, ow is denoted by ¢.)

(iii) A complex vector space V, with dimc V = 2k + 2, with a symplectic form b
and conjugate-linear map oy : V — V| so that o} = —1, and satisfying:
(a) the form b is compatible with oy, in the sense that b(ou,ov) = b(u,v);
(b) the induced Hermitian form h(u,v) = b(u,ov) is required to be positive

definite. (When there is no ambiguity, oy is denoted by o.)
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(iv) A linear map A(z) : W — V, depending linearly on z = (zg, 21, 22, 23), S0
A(z) = EZ:O Anza, where A, : W — V are constant linear maps satisfying:
(a) (Rank or non-degeneracy condition.) For all z # 0, dime Im A(z) = k;
(b) (Isotropy condition.) For all z # 0, Im A(z) is an isotropic subspace of V|
so that Im A(z) C (Im A(z))°;
(¢) (Compatibility with ¢.) For all z € C*, w € W, then 0 A(2)w = A(cz)ow.
(If U is any subspace of V, then U° = {v € V : b(u,v) = 0for allu € U}
denotes the polar subspace corresponding to U.)
The symplectic form b: V ® V — C induces an isomorphism b : V — V* given
by v — b(v) = b(-,v). Since A*(z): V* — W*, we obtain a map A*(2)b:V — W*
defined by
(A*(2)b(v)) (w) = b(A(z)w,v) forveV, weW.

We then have the corresponding monad:

0 — W(-1) 2 v 2% wr1) — 0

where V denotes the trivial bundle V x CP?® — CP3. We use the symplectic form
b to define a conjugate-linear isomorphism b : V- — V*, v + b(-,v). The bundle
& — CP? is then defined as Ker (A*b)/Im A, with fibres

€. =Ker(A"(2)b)/Im A(z) = (Im A(2))° /Im A(z) for » € CP*.

If we let Ocps(—1) denote the tautological line bundle on CP? and recall that
V ~ C?*+2 W ~ C*, then we see that the above monad is equivalent to

0 — Ops(—1) =2 02542 2% @ Okus(1) — 0

One can then verify that the bundle £ constructed from this data is indeed an

instanton bundle [A], [Wa-We].
To explicitly construct £, one chooses bases on C*, W, and V, and one defines

maps o, ow, oy, and b as follows:

(i) The map o : C* — C* corresponds to left multiplication j : H* — H?.

(ii) Let wyq,...,wy be areal basis for W, so that the map ow : W — W is complex
conjugation after identifying W with C* and recalling that ow,, = w,,, for
m = 1,...,k. Then the vector space W with dim¢ W = k, may be viewed
as the complexification of the real vector space Wy left fixed by o, so that
W =C® Wk.

(iii) Let {vg,...,vk,000,...,00} be an orthogonal basis for V' with respect to the
Hermitian inner product. Then the complex vector space V with dimcV =
2k 4+ 2 may be viewed as a left quaternion vector space with dimygV =k 4 1,
with left multiplication by j on HFt! corresponding to oy : V. — V. The
symplectic form on V is now represented by a (2k + 2) x (2k + 2) complex

matrix,
0 I
7= (1),
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where I is the k x k identity matrix. Then if u, v are row vectors in C?*+2,
we have b(u,v) = uJv!. The Hermitian form h(u,v) = uv’, the standard
positive definite Hermitian scalar product on C***2. The quaternionic basis
{vo+ovy,..., v +ovr} is orthogonal with respect to the standard quaternionic
scalar product ¢(-,-) on HF'! given by ¢(£,n) = &énf. Note that ¢(-,-) =
h(+,+) 4 b(-,-)j on HFF! = Ck+1 @ CFH1 5.
(iv) After identifying V with C***2 the map oy : V — V is given by ov = Jov.

In matrix form, the isotropy condition is equivalent to

A(z)tJA(z) =0 for all z € C*.

The matrix representation of A(z) = 23 Aqzq 1s then defined by

a=0

3 k
A(2)wy, = Z Z ZaApnVn + 2o A% k1140000 form=1,... k.

a=0n=0

Then A, may be written as a block matrix A, = (AL, A”) for « = 0,...,3, where
Al A are complex k x (k4 1) matrices. The reality condition c A(z)w = A(oz)ow
now becomes N T A - AT
1 T A, Az = Ay,
AV =4, A = AL

Alternatively, we may write the reality condition as JA(z) = A(oz), and in terms
of the matrices Ag, ..., A3, this becomes

T =A, Th= 4
JA, = —Ay, JA3 = —A,,

and decomposing the matrices A, into blocks (AL, A”), we obtain the previous
matrix conditions. Letting C' = Aj + A7, D = A}, + Alj, we observe that

A(z) = z0Ao + 2141 + 2245 + 2345 = 2C + yD = A(x,y),

where & = zg + 21J, y = 22 + 2z37. This gives the convenient k X (k 4 1) quaternion
maftrix representation of A.

The quaternion formulation may be seen a little more directly as follows. We
have C* @c W ~ H? Q@r Wg, and the induced map ¢ on C* ®c W corresponds to
left multiplication by j on the left quaternion vector space H? ®g Wgr. The complex
linear map A : C* ®c W — V may now be viewed as a map

A @ We — V,

and compatibility of A(z) with o is equivalent to requiring that A be quaternion
linear. If C' = (Cq,...,Ck)" and D = (Dq,...,Dy)", where C; and D; denote the
rows of C' and D respectively, then

Ci = A((1,0) ® wy),
D; = A((0,1) ® w;) fore=1,... k.



The non-degeneracy or rank condition on A is equivalent to requiring that the
quaternion matrix A(z,y) have rank k for all (z,y) # 0. The isotropy condition is
equivalent to requiring that A(z,y)A(z,y)! be real for all (z,y), where AT denotes
the quaternionic-conjugate matrix transpose of A. Let HP' = S* denote the left
quaternionic projective space and recall that Sp(1) = SU(2). The Sp(1)-bundle
E — HP' is obtained by setting E(, , = (Im A(z,y))t c B for [z,y] € HP!,
and the ASD Sp(1)-connection is obtained by orthogonal projection from H*! to
E, where H*' denotes the trivial bundle HP' x H**! — HP!. where HP' = S*
denotes the left quaternionic projective space. We now have a quaternionic monad
over HP! given by
0 — F —s H*" —s kL —0

where L — HP'! denotes the tautological quaternionic line bundle and kL = L &
-+-@L. The kx(k+1) quaternion matrix A is now required to satisfy the conditions:
(i) A(z,y) has quaternion rank k for all (z,y) € H? \ (0,0);

(i) A(z,y)A(z,y)! is real for all (z,y) € H2.

In terms of moduli spaces, the main result is the following;:

Theorem 3.1.4. [B-H, p. 19], [A] There is a bijection between

(i) Isomorphism classes of instanton bundles & — CP3; and

(ii) Isomorphism classes of holomorphic bundles €& — CP? which arise from the
Horrocks construction via a linear map A(z): W — V.

Remark 3.1.5. Two bundles &€ ~ (A, W, V), & ~ (A", W', V') arising from the
Horrocks construction are isomorphic if and only if there are complex vector space
isomorphisms W — W', V' — V' preserving structures and taking A to A’. Hence,
A and A’ give isomorphic bundles £ and £’ if and only if

A'(z) = QA(z)R,  for Q € Sp(k +1), R € GL(k,R).

Here, Sp(k + 1) denotes the subgroup of GL(2k + 2,C) preserving the symplectic
form b and real form oy, and GL(k, R) denotes the subgroup of GL(k, C) preserving
the real form ow [A, p. 62], [A-D-H-M, p. 186], [Wa-We, p. 417], [B-H, p. 19],
[D-M4, p. 847].

In particular, if two triples (A, W, V'), (A", W', V') are isomorphic as above,
we then obtain isomorphisms between the complex vector bundles E, E’ over S*
and their associated principal bundles P, P’, sending the connection w to w’. So if
f: P — P'is the induced isomorphism of SU(2) bundles over S$*, then w = f*w’.

Let T} denote the space of quaternionic k x (k4 1) ADHM matrices C', D, such
that A(z,y) has rank k and A(z,y)A(z,y)" is real for all (z,y) € H?\(0,0), modulo
the action of Sp(k + 1) x GL(k,R). Then dimg T = 8k — 3 [A, p. 26], coinciding
with dimp My, where M, is the moduli space of ASD SU(2)-connections over S4.
In particular, the ADHM construction gives a diffeomorphism T} — M.
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£3.2. Global Sections of Twisted Instanton Bundles

In the next chapter, we construct a bundle E — S* with —cy(E) = k using the
ADHM monad construction with a choice of ADHM matrices corresponding to
k + 1 distinct points P; in S* and k + 1 positive weights A;. When E has an
ASD SU(2)-connection, this construction produces a stable, holomorphic, rank 2
vector bundle £ over CP? with ¢;(€) = 0 and ¢2(€) = k. We exhibit a section
s € HY(CP3,£(1)) with zero set (s)o given precisely by the real lines Y; = 7= 1( ;).
Fixing a choice of isomorphism ¢ : det £(1) ~ Ogps(2), we see that a choice of
complex weights or ‘residues’ (p,...,(; corresponds to a choice of isomorphism
Ky ~ Oy(-2). If the bundle £ has a real or symplectic structure, then the (;
are required to be real. Finally, the requirement that £ has no real jumping lines
is equivalent to the condition (; > 0 [Wa-We, p. 413]. The bundle £ constructed
explicitly from ADHM data corresponding to a choice of points P; in S* and weights
Ai > 0 gives (; = A\?. This shows the relationship between the ADHM monad
construction of instanton bundles over CP? and Hartshorne’s construction of the
same bundles using the method of curves [A], [Har2, 3], [Wa-We]. Moreover, we
obtain an alternative verification that our ad hoc choice of ADHM matrices gives
all ASD SU(2)-connections with k =2 on S*.

For simplicity, we assume k = 2. Let A(z) = Z?;zo zaAaq = 2C + yD, where
the A, are 2 x 6 complex matrices, and C,D are 2 X 3 quaternionic matrices. Let
HP' denote the right projective space. For points P, with homogeneous coordinates
[a;,b;] in HP', for i = 0,1,2, the corresponding matrices C, D may be chosen to be

o bo —bl 0 o —day aq 0
C_<bo 0 _62> and D_<—ao 0 a2>7

([ xbg —yag —zxbi +ym 0
Alz,y) = (l’bo — Yap 0 —xby +yay )

and so

Remark 3.2.1. If [z,y] denote homogeneous coordinates for the left projective
space HP! and [a, b] denote homogeneous coordinates for the right projective space
HP', then zb — ya = 0 if and only if [z,y] = [b~',a"'] = P € HP'. We have a
map, denoted HP' — HP', P — P, given by [a,1] — [a,1], [1,5] — [1,8], so that
on overlapping patches [a, b] — [b71,a™!].

Lemma 3.2.2. Suppose [a,b] € HP' (right projective space). Then zb — ya =0
or [z,y] = [b71,a™!], [z,y] € HP! (left projective space) if and only if € H N H,
where H = {z € CP?: f(z) =0}, H = {# € CP?: h(z) = 0},

f(z) = zb' — 215// — z9a' + z3a”,

_/ _
h(z) = zob" 4+ 210 — 2z9ad" — z3a@’
9

41



z = [z0,21,22,23], with * = 20+ 215, y = 22+ 2z3j, a=da +d"j, and b=V + b"j
under the standard identification H = C & C;y.

Proof. If 7 : CP?® — HP! is the standard projection, then [z,y] = 7[z0, 21, 22, 23],
where ¥ = z9 + 217, y = 22 + 237, and we observe that

b/ b// 7 I
xb—yaz(Zo,zl)<_Z~ Z’>_(Z2723)<_aa// %/>,

under the identification H = C @ Cy. O
Let a; = a} 4+ o'y and b; = b, + by, for ¢ = 0,1,2. Then the relationship
between the quaternionic matrices €', D and the complex matrices A.,, A” is given
by
C= Ay LAY, D= ALt A

so that the corresponding matrices A, are given by

Ag = (49, A7), A= (A7, A,

Ay = (43, A7), Az =(—AY, A}).
Then, the matrix A(z) has the following form:

A(z) = <fo(2) fitz) 0 ho(z) ha(z) O ) .

folz) 0 falz) ho(z) 0 ha(z)

Recall that € = Ker (A'J)/Im A, where
0 — O%a(—1) 25 0% 2 02.(1) — 0

and so the fibres are given by &€, = Ker(A'(z)J)/Im A(z), for = € CP?. Let
{eo, €1, €2, €9, €1, €2} be the standard ordered basis of C%, so that eg = (1,0,0,0,0,0),
etc. We let H;, H; C CP? be the associated hyperplanes

H;={zcCP?: fi(z) =0} and H; ={z e CP*: hiy(z) =0},

and so the lines Y; are the complete intersections Y; = H; N fL for2=10,1,2.
We define sections s; € H°(CP?, Ofps (1)) by setting

si(z) = fi(z)ei + hi(2)é; for z = [z9, 21, 22, 23] € CP3,

Then, sq is a section of OEZJP?’ (1) with zero set Yy = Hy N I-:TO. Moreover,

A(2)Tst(z) = A(2) < v é) si(z)=0  zeCP,
so that sp(z) € Ker A'(2)J, and hence sy defines a section in H°(CP3,£(1)). Then,
so(z) = 0 € &, if and only if z € Yj or so(z) € Im A(z), where Im A(z) denotes
the span of the rows of the matrix A(z) in C°. If sp(z) = 0 € &, and z # Y,
then fo(z) # 0 or ho(z) # 0, and it follows that either z € Y7 = Hy N ﬁl, or
2 €Yy = Hy N Hy. We observe that the sections s; € H°(CP?, O&PS(I)) all project
to the same section s € H°(CP? £(1)). We have the
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Lemma 3.2.3. Let Py, Py, P, be distinct points in HP' (left projective space), with
homogeneous coordinates given by P, = [a;,b;] in HP' (right projective space). Let
s € H°(CP3,&(1)) be the corresponding section constructed as above. Then (s)y =
Y, where Y consists of three skew lines Yy, Y1, Y, in CP3 given by Y; = ﬂ'_l(Pi).

Fix an isomorphism det & ~ Ogps, and hence an isomorphism ¢ : det £(1) —
Ocps (2). Note that e;,é; € C® project to elements in £, when z € Y; and f;(z) =
hi(z) = 0. Moreover, e; A é; = e;JéX = 1. For z in a neighbourhood of Y;, choose
€i(z), éi(z) vanishing along Y;, so that 6;(z) = e; 4+ ¢;(2), él(z) = & + &i(z) give
local frames for £. Then

and the A?s; are sections of detf = Ogps(2). Fixing a non-zero section 8§ €
H°(CP?, Ocps(2)), we have
A’s; =(7'0 € H(CP?, Ofps ) = C*,

Indeed, if (A%s;) = 6 and f;, h; are replaced by A;' fi, A7 'h;, where \; € C*, we
have ¢; = A\? for 1 = 0,1,2. Since £* is an instanton bundle, the constants (; are
required to be positive, and hence the \; are real.

The analogous relationship between the monad construction of rank 2 holo-
morphic bundles over CP? and the construction of bundles corresponding to config-

urations of points in CP? and complex residues at those points is described in [D-K,

p. 397].

£3.3. Conics in Complex Projective Space

Recall that the curve Y = Yy UY; UY; C CP? arises as the zero set of a section
s € HY(CP3,&(1)). As s varies in P(H°(CP?,£(1))) ~ CP', then the corresponding
points Yy, Y7, Y5 move in a conic v C G(1,3), inducing a linear system g3 without
basepoints on CP . General references for this section are [Har, 1-3], [G-H], [J-N-R],
[N-T, 1-3], [S-T].

In order to see the consequences for the space Nj(0,2), it is useful to follow
the approach of Singhof and Trautman in constructing this moduli space as the
total space of a certain fibre bundle [S-T, p. 336-342]. Fix a complex vector space
U~C*andlet V=UxU, with CP! = P(U) and CP? = P(V). Let Q C CP® be a
non-singular quadric surface, so that Q ~ CP! x CP!. For convenience, we use the

labelling CP!, x CP%. Let ¢ € GL(V) and let o denote the Segré embedding
(o C]I‘Dl X C]I:Dl — C]Pg, ([80781], [to,tl]) — [Soto,Sotl,Slto,Sltl].
Let g € PGL(V) be the induced automorphism of CP? and let

vy =goo:CP!'x CP' — CP?
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be the corresponding embedding. Let @, = Im ¢, ~ CP' x CP', with @, C CP?,
and note that every non-singular quadric arises via this construction [S-T], [G-H].

For convenience, let G = GL(V') andlet H C G be the subgroup H = GL(U ) x
GL(U). On U we have the real forms ¢, j, where ¢ = 1y (corresponding to complex
conjugation, the standard real structure) and j? = —1y (the non-standard real or
symplectic structure). Let Ug denote the real vector space fixed by ¢, so that
U ~ Ur Qg C. These structures are inherited by CP!, so P(Ur) = RP! denotes
the real points of CP! with respect to ¢. Moreover, U becomes a 1-dimensional left
H-vector space by setting 7 -u = j(u), and V becomes a 2-dimensional left H-vector
space using J = ¢ @ j. Let Gy = Autg(V') C GL(V) be the subgroup of complex
automorphisms ¢ such that ¢(Jv) = Jo(v), and hence G; = GL(2,H). Then for
any ¢ € Gy, the corresponding quadric (), is invariant under J. Let Hy = H NG,
and note that

Hj = GLg(Ug) x GLg(U) ~ GL(2,R) x GL(1, H).

As usual, 7 : CP?® — HP! denotes the standard projection, taking C-lines in V to
the corresponding H-lines in V. Then the J-invariant lines in CP? are precisely the
fibres of .
Fix a point t € CPj,. Then {t} x CP, C CP, x CPj, and so we have an induced
map
{t} x CP}, P9, CP? = S, (t,u) — mpg(t,u),

for any u € C]P’%. We recall from our discussion of Hartshorne’s description of the
space Nj(0,2), that the factor CP! had its standard real structure: the correspond-
ing real points in CP) are given by S! ~ RP! ¢ CPL. If t € RP! c CP], then
g maps {t} X C]P’% to a real line in CP3, and the projection = maps this real line
to a point P € S*. If we choose any fixed u € CPJ, we then have an embedding
(independent of the choice of u)

RP' — S*, t— gt u)

of S' ~ RP! into a circle in S* [S-T, p. 342]. So as t varies in S' ~ RP' C CP], the
corresponding point P; = mp,(t,u) moves in a circle in S*.

If t varies in CP', then the corresponding point Y; = mp,(t,u) in G(1,3) (or line
in CP?) moves in the conic v in G(1,3) which we described earlier. Recall that the
curve Y = Y5 UY; UY; C CP? arises as the zero set of a section s € H*(CP?, £(1)).
As s varies in P(H(CP?,£(1))) ~ CP', then the corresponding points Yy, Y7, V>
move in the conic v C G(1,3). Consequently, if the lines ¥; C CP? are real, then
the corresponding points Py, Py, P, — where P; = 7(Y;) € S* — move in a circle
in S* as s varies in P(H°(CP?,£(1)))r ~ RP'. Of course, the rank 2 holomorphic
bundle £ is fixed and so the pair (£,s) determines the same equivalence class of
ASD SU(2)-connections while s varies as above. This phenomenon was described
in [J-N-R] using different techniques.
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§3.4. Two Constructions of Instanton Bundles

We have described how one may use the ADHM method to construct complex, rank
2 bundles with ASD SU(2)-connection over S*, and then stable, holomorphic, rank
2 bundles over CP? with ¢; = 0 and ¢; = k, corresponding to configurations of
points P; in S* and positive weights );. In this section, we provide an outline of
how one may construct the ASD SU(2) connections, if we are given an instanton
bundle over CP? corresponding to a curve ¥ in CP? consisting of k + 1 real skew
lines. General references for this section are [A-W], [D-K], [Wa-We].

If £ — CP? is a rank 2 instanton bundle corresponding to a curve ¥ consisting
of k 4+ 1 skew lines Y; in CP?, then £(1) has a section s vanishing only along
the curve Y = Yy U...UY; C CP? Hence, s is nowhere vanishing along the
complement Y’/ = CP? — Y, and so generates a trivial line bundle on Y’. Noting
that Zy |Y' = Ogps Y, the section s induces an exact sequence [O-S-S, p. 93], [G-H,
p. 726]:

0 — Ocps |V —= EM|Y — Ogps (2)|]Y" — 0

and so £(1)]Y' is an extension of L3 = Ocps(2)|Y' by L1 = Ocps|Y'. Such exten-

sions are classified by

Ext'(Y'; L2, L£1) ~ H' (Hom(Ly, £1))
~HYY' L ® L)
~ HY(Y', Ocps (—2)),

as discussed in [Wa-We, p. 412], [D-K, p. 388], [G-H, p. 725]. Thus, such an exten-
sion naturally corresponds to a cocycle T' € H' (Y, Ocps (—2)), and this cocycle may
be readily computed from the transition functions of £(1)|Y’ — see, for example,
[A-W, p. 122], [Wa-We, p. 399], [D-K, p. 389], [Gu]. Indeed, the 2 x 2 transition
matrices may be put in a standard upper triangular form and the cocycle I' may
then be identified with the upper-right entry. If

k
I'=>) (I,  wherel; € H'(CP®-Y;, Ops (—2)),
=0
we note that I' determines a singular potential ¢ [Wa-We, p. 388-409]:
=) ——— H.
¢(x) ; P T €

Here, a; = n(Y;) € HU {0}, and the reality condition on £ is equivalent to the
condition that the weights (; are real and that the lines Y; are real lines — cor-
responding to points a; € HU {oo}. The requirement that £ has no real jumping
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lines is equivalent to the condition ¢(z) > 0 for x € HU {oo}, and so (; > 0 [Wa-
We, p. 412]. Finally, the potential ¢ determines a singular, local, anti-self-dual,
SU(2)-connection 1-form:

k ¢ k G
w(z) = ; mlm {(z — a;)dz}, where p(z) = ; mv

[Wa-We, p. 388-409]. This is the local connection 1-form described in [J-N-R],
corresponding to a choice of positive weights \;, with ¢; = A\? above, and points
P; ¢ S*, with P; = [a;, 1] above.

Conversely, given distinct points P; € S* and positive weights A;, with {; = A%,
we may construct an instanton bundle £ via an appropriate choice of ADHM ma-
trices. By explicitly constructing the section s € H°(CP?,&(1)) and employing the
correspondence between rank 2 holomorphic bundles over CP? and curves in CP?
as discussed in [Har2, 3], [O-S-S], and [Wa-We]|, we recover the original data con-
sisting of distinct points P; and positive weights ;. This gives the correspondence
between the two methods of constructing instanton bundles, and moreover, demon-
strates that our ad hoc choice of ADHM matrices does indeed yield all anti-self-dual
SU(2)-connections over S* with k = 2.



CHAPTER 1V
PARAMETRIZATION OF SELF-DUAL CONNECTIONS

We first describe the ADHM construction of all self-dual connection 1-forms on an
SU(2)-bundle P — S* with —c(P)[S*] = k > 0. We then discuss the parametriza-
tion of all self-dual connection 1-forms with £ = 2. In the following, the moduli
space M} (S* SU(2)) of self-dual SU(2)-connections over S* simply by M. Gen-
eral references for chapter are [A], [C-G-F-T|, [C-W-S], [D1], [D-K], [Wa-We].

§4.1. Parametrization of Connection One-forms

We review the ADHM construction of the classifying maps f : S* — HP* which
provide all self-dual SU(2)-connections on P — S* by pulling back the canonical
SU(2)-connection on S*+3 — HP*. General references for section are [A], [Bo-Ma],
[R2], [Sa).

We consider self-dual rather than anti-self-dual connections and so all quater-
nionic vector spaces are now assumed to be right vector spaces, and quaternionic-
linear maps act by left matrix multiplication. We now let HP" denote the right
quaternionic projective space:

HP" = {(go,-..,qn) € H ! \ {0}: (q0,---,qn) ~ (qoa,...,qna),a € H*}.

As before, G,,,(H" ) denotes the Grassmann manifold of m-dimensional quaternionic
subspaces of H*. The symplectic group Sp(n) is defined by:

Sp(n) ={Q € GL(n,H) : (Qp)'(Qq) = p'q},

where pfqg = > . D:qi denotes the symplectic scalar product on H".
Let A(z,y) = Cx + Dy, where C and D are (k + 1) X k quaternionic ADHM
matrices chosen so that A(z,y) satisfies the following conditions:
(i) Rankg A(z,y) = k, for all (z,y) € H? \ (0,0);
(i) AT(z,y)A(z,y) is real for all (z,y) € H2.
Hence, we obtain a map A : HP! — G (H!), and A(z,y) now acts on HFF!
by left matrix multiplication. Define u : HP' — HP* by requiring that:

u(z,y) T A(z,y) = 0,
uT(x, y)u(:L‘, y) =1,

for all (z,y) € H? \ (0,0). The map u is a quaternionic rational map, in the
sense that it may appear to have singularities at a finite number of points of HP!.
However, these are always removable — we will see this explicitly for the special
cases considered in the next section — and so v may be assumed to be smooth [A,
p. 26]. Let E = u*E' — HP' denote the pull-back of the universal quaternionic
line bundle B’ — HP*, and let P = u*S**3 — HP' denote the pull-back of the
universal principal Sp(1)-bundle S**+2 — HP*,
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We first compute the transition functions of the bundle 7 : S*¥+3 — HP*. Let
{0!} denote the standard open cover of HP*, so that O! = {[qo,...,qx] : ¢; # 0},
i =0,...,k, where ¢ = (qo,...,qr) are coordinates on H¥*!. Define a system of
local sections o : O — S*+3 by setting

oi(q) = 4 4 on O},
lal lai]
The corresponding transition functions 7}, : O;NO’; — Sp(1) are defined by 0’(q) =

0i(¢)T};(q), so that

Ti;(q) = g 9 on 0; N 0.
lg:l 451

Alternatively, we may define local trivializations 7; : 7=1(0%) — O! x Sp(1), with

7i(p) = (7(p), i(p)), where m(p) = [p] and

Pi

pil

@ ﬂ_l(Og) — Sp(1), (po,...,pr) —

The transition functions are then given by T7.(q) = vi(q)pj(q)~", just as before.
Let {O;} be the induced open cover of HP! obtained by setting O; = u=1(O})

fort =0,...,k, and let 0; = u*o! : O; — P be the corresponding local sections:
U U
0; = — — on O;.
o] Jui

The induced transition functions T;; = u*Ti’j :0;NO0; = Sp(1) of P are:

U; Uy

T, = on O; N O;.

[l [uj]
Recall that the total space P is
P ={([z,yl.p) € HP' x $*"*** s u(a,y) = n(p)},

and if 7y : HP! x S**+3 5 §*+3 denotes the projection onto the second factor,

then the induced map u’ on total spaces is given by u’ = my|p : P — S*+3,
If v € Q1(S**3 g) denotes the canonical Sp(1)-connection of S*+3 — HPF,
let w denote the pull-back connection on P — S*. Then:

v(¢) = d'dg, ¢ € HT,
w=(u')"y €QY(Pg)
Wi = 0w = deai € Ql(Oi,g).
We have the corresponding local curvature 2-forms:
F; = dw; + w; A w;
= daj Ado; + ajdai A ajdai c Q*0;,9).

Remark 4.1.1. We recall that ADHM matrices A and A’ give isomorphic Sp(1)-
bundles P, P’ with connections w, w’ if and only if A’ = QAR, where @ € Sp(k+1),
R € GL(k,R) [A, p. 62].



Remark 4.1.2. The conformal transformations of S* Confy(S*) = SO(5,1) ~
SL(2,H)/{+£1}, lift to isomorphisms of the total space P. If the conformal map ¢
acts on HP! by ¢ : [z,y] = [ax + by, cx + dy], then ¢*A(z,y) = (Ca+ Dc)x +(Ch+
Dd)y, so that C' — Ca+ Dc and D — Cb+ Dd. Hence, given any fixed self-dual
connection with ADHM matrices C', D, we may generate a family of self-dual con-
nections parametrized by SO(5,1). Indeed, the moduli space M; is diffeomorphic
to SO(5,1)/SO(5) and may be generated by pulling back the canonical connection
via conformal maps [A-H-S], [D-M-M], [Hab], [Har2|, [G-P1], [F-U].

Coordinate patches for the sphere HP! (or H U {oo}) are given by O, =
{[z0,z1] : 1 # 0} covering the south pole [0, 1] (or 0), and O,, = {[zo, 1] : © # 0}
covering the north pole [1,0] (or o), with the standard local coordinate maps:

vs 1 Oy — H, [;z:o,:cl]l—>;z::;z:0.1:1_1,

?7/)11:011_>H7 [.To,LEl]Hy:;ljle_l.
We let O,; = O, N Oy, O,; = O, N O; denote the refined covering of HP! with
corresponding coordinate maps ¥5; = ¥5|Osi, Vni = ¥y |Oni, respectively.

Example 4.1.3. We describe the more explicit standard form of the ADHM matrix
equations, and corresponding local connection 1-forms [A], [C-W-S], [C-G-F-T], [Sa].
By making use of gauge equivalence, the matrices C' and D can be chosen to have

the following form:
0 A
C_<—I>’ and D-(B),

where B is a k X k quaternionic matrix and A is a k X 1 quaternionic vector. Then
in local coordinates, the map A : O5 — G(H**!) becomes

A(@:(B_AM), v €M

In terms of B and A, the conditions on A are now:
(i) B is symmetric and BT B + AT is real;
. A

(ii) Rankpy (B B 1:) =k, for all z € H.

We choose the section o4 : Oy — P to be

)= s ()

where py(z) = 1+ |U()|?, and setting U(z) = {\(B — :Z}I)_l}T. Hence,

) — ot (2o (a _Im {UT(CL‘)dU(SIZ)}
) = alta)dn(a) = P

where o, and hence w,, may have singularities. In particular, every self-dual con-
nection w on a principal SU(2)-bundle P — S* with —cy(P)[S*] = k arises from the
parameters A, B satisfying (i) and (ii), the local connection 1-form ws being given
by the above formula. The connections defined by (A, B) and (A, B’) are gauge
equivalent if and only if A = AT, B’ = T7'BT with a € Sp(1) and T € O(k,R)
[A, p. 26].

€ Ql(Os,g),
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Example 4.1.5. If £ = 1, the corresponding local connection 1-form is

)\2
|z = bP(A* + [z — b]?)

Ws =

Im {(m)dw} ,

where A > 0 and b € H, so that ws is specified by 5 real parameters. Setting A =1
and b = 0, we obtain the canonical Sp(1)-connection on the universal quaternionic
line bundle L — HP!, with local connection and curvature forms:

1 1
wg = ——Im {Zdx and wp, = ———Im {dy},
RP ) T
F, = 7d1’ /\dz and F, = 7dy A dg .
(1+|z[2) (1+1[y?)

The Chern-Weil formula gives —ca(L)[S*] = 1. By reversing the orientation on HP ',
we obtain a quaternionic line bundle L — HP' with —co(L)[S*] = —1.

Remark 4.1.6. For the case k = 2, the pair (A, B) provides 20 real parameters, but
the corresponding formulas for the local connection 1-forms are much less convenient
for computational purposes.

Example 4.1.7. Let by,...,b; be distinct centres in H C S* and let A\;,..., \; in
(0,00) be positive scales. By choosing B = diag(by,...,bx) and A = (A1,..., Ax),
with A; € (0,00), we obtain the relatively simple t’Hooft multi-instanton solution

[A], [C-W-S], [J-N-R]:

\2 — S A
=Y e () e =14y

Unfortunately, this only gives a 5k-parameter family of self-dual SU(2)-connections
and hence does not give a parametrization of My, for k£ > 1 since the moduli space

M, has dimension 8k — 3 [A-H-S].

Example 4.1.8. The set of t’Hooft multi-instantons described above is not closed
under the action of the conformal group, and we may generate new self-dual connec-
tions by applying conformal transformations to S* = HU{oo}. A (5k+4)-parameter
family of self-dual connections on S* for any k£ > 1 was discovered in this way by
Jackiw, Nohl and Rebbi [J-N-R]. Let {ag,...,ax} be distinct points in H C S*, and
let {Xo, ..., Ax} be positive weights in (0, 00). The corresponding Jackiw-Nohl-Rebb:
(JNR) local connection 1-form is given by:

A2 S LN
ws = Z ﬁlm {(z —a;)dz}, where p(z) = Z m
] =0

The expression for wg is clearly homogeneous in the \;’s and so one parameter is
removable by a common rescaling or by setting one of the A;’s equal to 1. For
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k > 3, one obtains a (5k + 4)-dimensional family of self-dual connections with
—c2(P)[S*] = k, so these solutions do not give all self-dual connections when k& > 3
[J-N-R]. Hartshorne has proven that the JNR family of solutions give all self-dual
SU(2)-connections when k = 1 or 2 [Har2].

The space M; is 5-dimensional, and so four of the JNR parameters must be
removable by gauge equivalence. The space My is a 13-dimensional manifold [A-
H-S], and so one of the JNR parameters must be removable by gauge equivalence.
The residual gauge symmetry has been interpreted in [J-N-R] as a motion of the
points ag, aj, az around the circle in HU {oo} determined by those points [J-N-R].
In the next section, we will discuss the case k¥ = 2 in more detail.

§4.2. Parametrization of Connection One-forms with k£ = 2

We recall how the JNR family of self-dual SU(2)-connections may be obtained
from the ADHM construction by making a suitable choice of matrices. We will
then be able to obtain the non-singular local connection 1-forms using the ADHM
construction as a guide. For k& = —cy = 2, the JNR family gives all self-dual
SU(2)-connections over S*. General references for this section are [A-W], [C-G-F-
T]v [J_N_R]v [0]7 [Sa]a [SC], [Wa_we]'

We want to choose ADHM matrices corresponding to the JNR family of self-
dual connections on an SU(2)-bundle P — S* with —c3(P) = k. This family is
parametrized by the following data: k + 1 distinct points {P,..., Pt} in S* and
k + 1 positive weights {Ag,..., Ax} in (0, 00).

Let HP' = {(z,y) € H? \ (0,0) : (z,y) ~ (az,ay),a € H*} denote the left
projective space, while HP' denotes the right projective space. (We have a map
HP' — HP', [a,b] — [b~',a""]. If we replace HP' by CP', then this map reduces
to the identity map on CP'.) The ADHM matrices C' and D which give rise to
the JNR SU(2)-connections are easily identifed [C-G-F-T, p. 41], [O, p. 413]. We
choose C' and D to be of the following form:

bo bo -+ bo —ap —aop - —ap
—b 0 -0 a 0 .0

C = . . . ) D= . . . )
0 0 - —b 0 0 e ag

where the (a;, b;) are distinct points in H? \ (0,0). Hence, we have the corresponding
matrix A(x,y) = Cx 4+ Dy:

boxr — agy bor —apy -+ boxr — agy
—bix+ary O - 0

Alz,y)=| . ) :
0 0 s —brx 4+ ary

Then, the corresponding points in S* are given by P; = [a;,b;] € HP', and the
weights are given by A\; = (Ja;|? + [b;|>) /2. We see that At(z,y)A(z,y) is real and
Rank gA(z,y) = k for all (z,y) € H? \ (0,0), provided the points P; are all distinct.
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It is more convenient to define a matrix A(z,y) corresponding to parameters
ki and (g, 3i), 1 =0,...,k, as follows:

’io_l(ﬁol’—aoy) lio_l(ﬁol’ —wgy) - /io_l(ﬁo:l: — agy)
0 0 o =y (B — ary)

Then, if we are given P, = [a;, b;] € HP' and ); € (0, 00), we may choose:

Ki = Ai,

(o 1) =~ e 57

Vlail? 4 [bif? ’

The matrix A(z,y) will now be determined up to left multiplication by an element
of Sp(k + 1): if (ai, b;) — (giai,¢ibi), with ¢; € H*, then A — QA, where Q =
diag(qo/|qol,---,qx/|lqx|) € Sp(k + 1). Hence, the data Ag,...,Ax € (0,00) and

Py, ..., P, € Sy determines A up to isomorphism via the above assignment.

Example 4.2.1. We recover the JNR local connection 1-form given previously, by
choosing (a;,8;) = (1,a;) and k; = A, for ¢ = 0,...,k, where the a; are distinct
points in H and the \; are positive weights.

Remark 4.2.2. We recall that if ¢ in SL(2, H)/{£1} is a conformal transformation
of HP! represented by ¢ : [x,y] — [azx + by, cx + dy], then p*A(z,y) = C'z + D'y,
where C' = Ca+ D¢, D' = Cb+ Dd. In particular, we see that (a;,b;) — (a}, b)) =
(a;c — bja,—a;d 4 b;b), and so the set of matrices for the JNR solutions is closed
under the induced action of SL(2, H).

The classifying map u : HP' — HP* is defined by the following conditions:

u(:z;,y)TA(:(;,y) =0,
w(z,y) u(z,y) =1, for all (z,y) € H* \ (0,0).

Hence,
ko(for — aoy) ™"
1 k1(Bre — ary) ™! k 2
u(z,y) = : ;o ply) = >
p(x,y) : mz::() |Bmx — amyl?
rk(Bre — agy) ™
Denoting u = [ug,...,u;] € HP*, we have
Ki( Biz — aiy
ui(‘rvy) = ( ) 9
Ve(z,y)|Biz — aiy|
~1/2

(B . e veag|2
_ /fz(ﬂzx azy) /4312“|‘ Z/{zﬂ |ﬁz:lj Oczy|
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for 2 =0,...,k. Clearly, u has singularities at the points { Py, ..., Pt}, but we can
now see that these are removable [G-H, p. 490]. Define an open cover of HP! by
choosing O; = HP'\ {P,,..., Pi,..., Py} for i = 0,..., k, where the caret denotes
an omission. Then, each patch O; covers the point P; and each u; has singularities
at Pjfor j =0,...,k.

We extend u on the patches O;, for i = 0,. .., k, by defining: @|0; = ug,, where
¢; 1s defined by

Z‘:’]T_l Ol PZ Sp(1 : z, ul(:E,y) _ ﬁlm — QLY 7
g (0:\{P}) — Sp(1) (z,y) — iz, )] Biz — oy

and 7 : H? \ (0,0) — HP' is the natural projection. Then, the extension @ is well-
defined on overlapping patches, since [u] = [ug,;] = [ug;] on O; N O;. Hence, we
obtain a smooth extension 7 : HP' — HPF*. If there is no ambiguity, we will often
denote the extension @ simply by wu.

Let O! = {[q0,...,qr] € HP* : ¢; # 0}, for i = 0,...,k, denote the collection of
standard coordinate patches for HIP¥. More explicitly, we have for j # 4

—1/2
10, = FilBiz — ajy)(Biz —aiy) [, o Bz — ayl?
uj|0i = 3. 12 ’ii—l_zﬁm/ 2 )
|ﬂ]$_a1y| < ﬁmx_amm
m#1
which is smooth at P; — and so smooth on O; — with singularities at the points
P;, for j # 1. Next, we have:
—1/2
; |Bix — ajy|?
;10; = k; | K2+ K2 and
l| ? ? ? n%:l m|ﬁm$_amy|2 )
—1/2

]0; = ki Biz — a;y)(Bjx — ajy) E Z 2 |Bjz — ajyl|?
10 =
’ |Bix — a;y? ! = ™ Bt — amy|?

for y # ¢. Then 4; is smooth at P; and zero at all points P,,, for m # . Hence,
a0} = {[z,y] € HP' : u;(z,y) # 0} = O;, where we recall that O; C HP' was
defined by O; = HP'\ {P,,..., P;,..., P }.

Next, we give the transition functions, T;; = u*Ti’j, and local sections, o; =
u*c!, of the pullback bundle P = u*S**+3. We have

Tij(l',y) ui(xay) ﬂj(x7y)

ui(z, y)| Juj(z,y)]
_ Bimaw) (B —asy) 5o 0;.
|3i — ciy| 185 — ajyl
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The local sections o; : O; — P are

ﬂi(‘rvy)

oil@,y) = ulz,y)gi(e,y) = ulz,y); on 0,

ui(wvy”

and o; = 0;T;; on overlaps. The local connection 1-forms are then given by
wi =0jw= deai € Ql(Oi,g).

We again note that the effect of replacing (a;, 8;) by (giai, ¢if3i), for ¢« = 0,...k,
where ¢; are constant elements of Sp(1), is simply to replace the transition functions
T;; by qiTijqj_l and this corresponds to an Sp(1)-bundle isomorphism. Hence, the
the bundle P and connection w corresponding to the points (a;,3;) in S7, are
equivalent to the bundle with connection corresponding to the points (g;ai, ¢ 3 ).

With respect to the cover {Qg;, On;} of HP!, we have 2k + 2 smooth local
connection 1-forms:

Wei = U:iw = O'Lda'si € Ql(Osivg)v
Wny = U:;iw = Jjﬂdﬂm‘ € Ql(onivg)a

where o5; = 0;|04; and 0,; = 0;|Oy;.

Lemma 4.2.3. The local 1-form wy; is given by:

weilx :le x— o) B;dx
()= e — e i —i)fide)

k
K2

. il — dzx T — ),
t 2 e ey —ap i~ it (B = a)Byde} (B = a)

i

where
k 2

/{:4
pi(e) = Y
l ; |Bjx — a;]?
i#i

and p(x) = p(x,1). The local 1-form wy,; is given by:

wni(y) = 77— Im {(Bi — ay)aid
(y) ,0|5i g A - aiaidy}

2

. — a,y)Im _ a.u)asd i — ay),
i Z plBj — ajylt Iﬂz - a yl2( ) {(8; = ay)a;dy} (8 v)
]‘+‘l

where



and p(y) = p(1,y).

Proof. Calculation. O
Let O' = HP'\ {Py,...,Pr} and let O, = 0, N O, O! = 0,, N O, and define
local sections o5 : O — P, 0, : O], — P by:

B

Us(iC,y):U(Jf,y)|T| on O;,
O'n(l',y) ZU(SL’,y)% on O;l

Let ws = ofw € QY(0),g) and w, = ofw € Q0! ,g) denote the corresponding
local connection 1-forms.

Lemma 4.2.4. The local connection 1-forms ws, w, are given by:

k 2
ws = S R, ) Bix — ;) Bidx
Z plBiz — aql* tl i
where p(x (z,1 Z |/3ﬂ?—al|27
k 2
wp =) ————Im (B —ay)aidyy,
;plﬂi—aiyl‘* { Jody)
where p(y) = p(1,y
Z |/31 - azy|2
Proof. Calculation. a
The connection 1-forms ws, w, have simple real poles at the points { Py, ..., Px}.

In order to estimate the lengths of tangent vectors in T My, we need smooth local
connection 1-forms corresponding to a cover of S*.

Lemma 4.2.5. The local curvature 2-form Fy = dws + ws Aws € QY0 g) corre-
sponding to the parameters k;, («;, 1) is given by:

2 2
F, = Zp|$—a|6$—a|2( az)dw/\df(q;_al)
1#]
2 2
—I-Zp 2z — q; |4|$_a |4( — o )dx NdT(z — aj),

i#]

and similarly for F,, € Q*(0!,, g).

Remark 4.2.6. There is no direct relationship between the k 4+ 1 weights A\; and
k + 1 points P; arising in the JNR family of self-dual connections and the scales
and centres of curvature-density concentration arising in the Donaldson-Uhlenbeck
description of neighbourhoods of the boundary of moduli space [D-K, p. 156]
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Definition 4.2.7. We let T} denote the space of unordered pairs (Ni, Pi), © =
0,...,k, where \; € (0,00), P; € S*, and (Mg, ..., Ak) ~ (Ao, ..., Ag), for v > 0.
The spaces T} parametrize the family of JNR connections. We recall the

Theorem 4.2.8. (Hartshorne) The spaces T\, parametrize the moduli spaces My
of self-dual SU(2)-connections on S* for k = 1,2.

Proof. [Har2, 3], [A-W], [Wa-We]. O

Remark 4.2.9. In particular, when k¥ = 2, the induced ADHM map from T} to
M is surjective.

If we normalize the weights A; so that A2+ A2+ A2 = 1 and \; € (0, 1), then one
approaches the boundary of T, by letting P; — P; or A\; = 0. For comparison, we
recall the description of the Uhlenbeck-Donaldson topological compactification of
My [D-K, p. 156]. An ideal self-dual connection on an SU(2)-bundle P — S* with
—c2(P) =k is a pair ([w], z1,...,21), where [w] is a point in My_; and (2q,..., ;)
is an unordered I-tuple of points of S*. The curvature density of ([w], z1,...,2;) is
the measure

l
[Ful* +87° ) 6.

=1

By defining weak convergence of gauge equivalence classes [w,] to an ideal self-
dual connection ([w],z1,...,2;) in terms of convergence of the curvature densities
as measures, one may topologize the set of ideal self-dual connections ZMy. The
moduli space M}, is embedded as an open subset of of ZM}, and its closure My, is
then compact. The space ZMj, has the following stratification:

IMp = MpUM;p_1 x STUM_y x s2(SHYU...UM; x s571H(SH U M, x sF(S1),

where s'(S*), and M consists of a single point corresponding to the product con-
nection on the trivial bundle S* x Sp(1) — S*.
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CHAPTER V
ASYMPTOTIC BEHAVIOUR OF THE L? METRIC

Using the parametrization of M3 by the parameter space T, due to Hartshorne and
Jackiw, Nohl, and Rebbi, we compute the corresponding tangent vectors dw/0t,.
We then derive estimates for the components of the L? metric g, the principal ques-
tion being their asymptotic behaviour as one approaches the boundary of moduli
space. With these estimates at hand, it is then easy to see that the space My has
finite volume with respect to its L? metric g, and in particular, that the distance
to the boundary is finite.

To obtain the required estimates, we first need to choose appropriate local
coordinate maps, for the base manifold %, and for the parameter space Tb.

§5.1. Local Coordinate Patches on Moduli Space

The parameter space Ty is the space of unordered pairs (Ao, Py), ..., (A, Pt), with
P; € S* distinct points and weights A; € (0, 00), modulo rescaling. The parameter
space T} denotes the space of ADHM matrices modulo Sp(k+1)x GL(k,R) and the
ADHM map provides a diffeomorphism 7}, — M. For k = 2, we have submersions
TQ — 15 and TQ — ./MQ.

Given points P, with homogeneous coordinates [a;, b;] € HP', we select corre-
sponding representatives (a;, 3;) in S7. Cover HP' with the overlapping hemispheres

O.(Ry) ={[a,b] € HP' : b #0, |b~a| < R},
0,.(R,) ={[a,b] € HP' : #0, |a_lb| < R,},

where 1 < Ry, R,, < 00 and O (o), O, (00) are simply denoted by O, O,,. Usually
we take Ry = R, = 2. The equator of HP' is the sphere S? given by {[a,b] € HP' :
a# 0, |a='b| = 1} and similarly for HP'. We have the standard local coordinate
maps

0,3 [a,b] — b'a € B0, R,),
0, 3 [a,b] — a b € B(O, R,,),

where B(c, R) denotes the Euclidean ball {x € H : |z — ¢| < R}. We define sections
of the Sp(1)-bundle 8" — HP' by

Z (CL, b) 7
0,3[ab— -2 570,
bl /P + oP
a b
0.5 — 8 gnp

lal \/lal? + [o]?
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Combining these coordinate maps and local sections, we have maps

B(0, Ry) 3 a — _@lD _ (a,8) € S0,

V1+|al?

LD __ (4, esT0,

v/ 1+ |b]

We let {c!' : i =0,1,2, 4 = 0,...,3} denote local coordinates for the points P;
in S*, the corresponding tangent vectors in 7'M being denoted by dw/dc!, where
c? = a! on the southern hemisphere and ¢!’ = b on the northern hemisphere.

The positive weights Ao, A1, A2 lie in the positive cone in RP? and so we may
assume for convenience that (Ag, A1, A2) lies in the unit sphere S2. We then obtain
local coordinates on the space Ty; the map T, — T has already been described,
and the ADHM map provides a diffeomorphism 75 — M.

B(0,R,) > br—

§5.2. Local Coordinate Patches on the Four-Sphere

We consider the definition of the L? inner product on Q'(S* ad P) over an appro-
priate system of coordinate patches. We have assumed that the Riemannian metric
g of the four-sphere S* is globally conformally equivalent to the standard round
metric go. Let dy( , ) denote the distance function on the four-sphere correspond-
ing to the metric g, and let d( , ) be the distance function for the round metric gq.
By compactness, we may fix a constant K, > 1 such that

K;7'd(Q,Q') <dy(Q,Q) < Kyd(Q,Q")  forall Q,Q" € S™.

Our metric component estimates are most conveniently expressed in terms of the
weight parameters \; and the distances between distinct points P;, P;. Since the
distance functions dg, d are equivalent and our estimate calculations are now entirely
local, we may for convenience assume at the outset that the four-sphere has its
standard round metric gy with radius 1.

The k£ 4+ 1 distinct points P; may be covered by disjoint small balls

B(P,,ci) = {Q € HP': d(Q,P)) < &}, where c; — %m;n{l,d(Pi,Pj)}.
] 1

The coordinate maps g, 1, pull back the sphere metric ¢ to define a metric on
the Euclidean balls B(0, R, ), B(0, R,,) in H which is equivalent to the standard flat
metric. Hence, if z = ¢(Q), with ¢ = 4 or t,, then the distance function d
satisfies

K 'z —2<dQ,Q) < K|z — 2|,

where K 1s a constant.

Let {Osi, Oy;} be the open cover of HP! described earlier, with O,; = O, N Oy,
Oni = 0, N O;, and corresponding local coordinate maps v5; = ¥s|Ogi, Vni =
¥ |Oni. The patches Oy, O, are obtained from the four-sphere by deleting the



north and south poles respectively, and the patches O; are obtained by deleting all
points P; with j # i. We choose a partition of unity {x;} on HP' subordinate to
the cover {O;} so that
(i) suppx; C B(Pi, K~%¢;) and y; =1 on B(P;, TK2¢) fori=0,...,k;
(i) supp xx4+1 C HP'\ Uf:o B(P; %K‘zgi) and xr+1 =1 on
HP'\ i, B(Pi, K ~%¢);
(i) Yif) xi = 1.

Suppose the points @, P; lie in the southern hemisphere O and ¥,(Q) = z,
Ys(P;) = a;. If Q € supp xi, then z € B(a;, 6;), where §; = %minj¢i{1, la; —aj|} and
¢ =0,...,k. Similarly, if Q) € supp X', then |z — a;| > %K“léj forall y =0,...,k.
The analogous statements hold if we assume that the points @}, P; lie in the northern
hemisphere O,. Finally, we let ys, xn» be a partition of unity subordinate to the
cover {Os, 0.}, so that supp xs C Os, supp xn C Op, and xs + xn = 1. We then
set Xsi = XsXi, Xni = XnXi, to give the required partition of unity for HP®.

Given tangent vectors [an], [a2] € Ti) My, their inner product with respect to
the Riemannian metric g on My is computed by

8w ([a1], [a2])
= /54 (hwat, hyaz)y/gdz

k+1 k+1

= Z/ Xsi<hwa1,hwa2>\/§dx—l—2/ Xni{hwa1, hooo)/gdz.
i=0 7/ Osi i=0 7 Oni

The tangent space i, M is spanned by the representatives dw/9A; and Bw/ac; for
1,7 =0,1,2, and g = 0,...,3. These representatives are not necessarily horizontal
and it appears to be difficult to explicitly compute the horizontal projections when
k is greater than 1. Nonetheless, we can still obtain upper bounds for the metric
components, and that will be our strategy in the sequel.

§5.3. Tangent Vectors to Moduli Space

We obtain formulas for the local 1-forms in Q'(S*, ad P) representing tangent vectors
to the moduli space M5. In the following lemmas, we record our formulas for
the local 1-forms representing the tangent vectors corresponding to the parameters

ki > 0 and (ay, 3;) € H? \ (0,0).
Lemma 5.3.1. The I-form Ow,/0k; is smooth on H:

Ows, 26ipi I
= I i — ;) Bid
OK; p?|Bix — a;|* m {(ﬁ v =) x}
k

kK2 -
- Z ; E Im {(ﬁ]aj - aj)ﬁjdx}’

P2 Bix — ai*|Bjz — a;

7=0
J#1
k K2
=0 7 7
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Proof. Calculation. a
Lemma 5.3.2. The I-form 0w, /0k; is smooth on H:

Own, 2K:pi R
= - I B; — ajy)a;d
Ot pZIﬂ e {8 = ciyady)
2k ;K3 -
+ . Bj — ajy)ajdyy,
Z T e e (B ey}
]‘+‘l
k k2
with p;(y) = —J  — and p = p(1,y).
W= e (L)
J#1
Proof. Calculation. a

Lemma 5.3.3. The I-forms 0w, /da! and dw,/da! are smooth on H\ {8 '},
with real poles at © = ﬁi_lai:

Ows 4k} (Bix — )

® dal — plfix — Ozil6 m (B — aq)fida )
-t (e )
) Z ; |§Z 8 Sfﬂﬂ: o (e}
o e
+ ﬁlm {(2pf'z — @ie, )dx}
+ ; QPK;;RE{Q?[H i _)aﬁ {(Bz — aj)Bsda}
Proof. Calculation. 0

Lemma 5.3.4. The 1-forms Ow, /da! and dw, /da! are smooth on H\ {8 '},
with real poles at y = ai_lﬂi:

] Owp, 4K2Re{(ﬂl aiy)euyt
(1) — I
8@1” ,0“31 - azy|6
. S
plﬂz — aiyl*
N Z 2k? /ine{(ﬁi —aiy)e,y}

p*|Bi — iyl B; — ajyl*

m {(Bi — aiy)aidy}

Im { (Bien — 2af§)dy}

Im {(B; — a;y)Bidy} .

=0
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. Ow,  4r3(Bi — aiy)*
1 = z 2T
(i) B! p|Bi — aiyl

/<J2

 plBi — auylt
k
-3 e,

“ p?|Bi — awy|*[B; — ajyl*

m {(Bi — aiy)aidy}

Im {e,a;dy}

Im {(8; — ajy)a;dy}.

Proof. Calculation. O

Lemma 5.3.5. The I-form Ow,;/0a! has real poles at points x = ﬁj_laj, J # 1,
but is smooth elsewhere:

Owsi _ 2p(Bix — a;)"

ol = e —au

Im {(ﬁlzz: — ﬁld:ﬂ} Im {euﬁldw}

P
—I—Z{ 22 jPi ﬂz i)# (51x_ ) {(/3] ﬁ]dx} ﬁl _ l)

p*|Bix — a1|4|511' - a]|4

J#l
K2
J
" B =l Bz — e {82 = a)fyda} (i =)
K2
J
- P|5i:1:—ai|2|ﬁjx—aj|4(ﬁm_ ai)lm {(ﬂf ﬂJdl’} eu}
Proof. Calculation. O

Lemma 5.3.6. The 1-form Ow,;/0B! has real poles at points v = ﬁj_laj, J # 1,
but is smooth elsewhere:

Qwsi __2piRe{(Biz — ai)en} v — a\Bide
s p?|Biz — a4 m {5 iy

p—m e;z;ld;z; . — ;e dr
P|,3?:—a|21 {enafide + (B Jende}

k Re T — e,
n Z{_QﬁjPlR {(ﬂz l) 7 }

p*|Biz — ail*|Bjw — ajlt

(Bir — a;)Im {(ﬂ] 5]d1’} Bix — al)

J=0

J#i
2
J e dz o
- plBix — a;|?|Bix —aj|4( p)Im {(ﬂ] a;)B; } Bir —a; )
2
J

;T — a;)Im r—a;)3;drte,T r.
+p|5i$—ail2|ﬂjl‘—a]‘|‘l(ﬁ i 4(5; )i }”}

Proof. Calculation. a
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Lemma 5.3.7. The 1-form Ow,i/0a! has real poles at points y = a]-_lﬁj, J # 1,
but is smooth elsewhere:

Own; _ Re{(ﬁl —ay)euy} —
Oaf p?|Bix — ai|* T {(Bi — ay)aidy}

P {(Bi — aiy)endy — euyaidy)

+i { 2k2piRe{(Bi — aiy)eny}

16— a1 — agylt 1~ )m A = asm)edy} (B = o)

=0
JF#i
K2 .
+ — - eny)Im {(B; — ajy)ajdy} (B; — aiy
p|ﬂi—aiy|2|}3i_ajy|4( ny) {( J iy)a; }( )
K2
+ - Bi —a;y)Im (8, — ajy)o,;dy W}.
P|f3i—aiy|2|f3j—ajy|4( i (5 — apy)asdy} &,
Proof. Calculation. O

Lemma 5.3.8. The 1-form Ow,;/083! has real poles at points y = aj_lﬁj, J # 1,
but is smooth elsewhere:

OQwni _ 2p3(Bi — aiy)¥
ot p?|Bi — aiy|4

P |ﬁz — &y y| |ﬁ] - a]y|4 w ! I l

Im {(ﬂl — aiy)aidy} ,0|ﬁl—0—ay|21m {e a; dy}

Jj=0
J#t
K2 - -
1 ) ; j
K2 -
T BB, P )l {8 — agy)agdy} Eu}.
] : j j

Proof. Calculation. O

Recall that the points P, € HP' may be assigned representatives (a;, 8;) in
ST C H?. If ¢; = a; or b; in H denote the inhomogeneous local coordinates for the
point P;, then

a;i, 1 .
a;i — (aq, Bi) = 7\/% in §7|0,,
bi — (i, B;) = _dobi) in S710,,.

VIt
b

Then, derivatives of the connection 1-forms with respect to the coordinates ¢! = a¥
are given by:

B o~ Qw Ba¥  Ow OB
dall = da¥ dal' " OpY dal”

7




Note that with respect to our choice of coordinate patches, for (a;, 3;) € O the
factors

day a’at n Ouv
dal'  (lai> + 132 (Jai2 + 1)1/2
8/3;’ . af&)u

dal ~ (lail? + 1972

are bounded, and similarly for derivatives of a?, 37 with respect to ¢! = b¥, where
(aiv ﬁl) € On

In order to estimate the L? norms of the tangent vectors in TM,, we need
to examine the behaviour of the corresponding 1-forms as the moduli parameters
approach the boundary of T. It is useful to consider two distinct cases:
Case 1: Three points approaching each other. The points Py, Py, P, all lie in
either the southern extended hemisphere O4(2) or the northern extended hemisphere
On(2). If the points lie in O4(2), then our definition of the partition of unity on
HP! is completed by choosing:

supp xs C Os(8),
supp Xn C On(3/8).

In the equivalent configuration, where the three points points lie in 0,(2), we simply
interchange the support radii.

Case 2: Two points approaching each other. The points P;, P; lie below the equator
of HP', and one point P, lies in 0,(2)\ Os(2). We choose:

supp xs C 08(7/4)7
supp Xn C On(4/5),

and for the equivalent configuration, where one point lies in O4(2) \ O,(2) and two
points lie above the equator, the support radii are interchanged.

These choices for the partition of unity xs, x» allow us to obtain estimates for
the norms of the tangent vectors for all possible configurations of points Py, Py, Ps.

§5.4. Estimates of Tangent Vector Norms. I

We derive estimates for the L? norms of the tangent vectors dw/9d\; in terms of the
weight parameters A; and coordinates of the points P;.

For notational convenience, we assume ¢ = 0. We observe that it is enough
to consider Case 1 — where three points are approaching each other — since the
estimates obtained in Case 2 will certainly be sharper that those obtained in Case
1. We further assume, again for notational convenience, that the three points P; all
lie in the southern hemisphere O4(2) C HP'. Hence, the points P, have coordinates
[a;, 1], with |a;| < 2 for all i. Moreover, if + = zqz] " is a local coordinate on the
patch O, = {[zo,21] : |zoz7'| < 8} and y = 2125 " is a local coordinate on the
patch O, = {[zo,z1] : |z12; | < 3/8} in HP', then |z| < 8 and |y| < 3/8.
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The connection 1-forms are expressed in terms of parameters x; and («;, 5;).
For weights \; and points P; = [a;, 1], we would usually choose

Ki = A,

(ai7 1)
(s ) = 2
V14 ]ail
However, it is more convenient to instead express the 1-forms in terms of the fol-
lowing choices for k; and («;, 3;):

ki = Aiy/1+ [ail?

(ai, 3i) = (ai, 1) for 2 =0,1,2.

for: =0,1,2.

Both choices of parameters give the same ADHM matrices and so the same family
of self-dual connections. We recall that the weights \; are always normalized so
that /\g + /\% + A2 = 1. We shall occasionally use nij = |a; — aj| to denote the
Euclidean distance beteen the coordinates a; and a;. We use C' to denote a generic
positive constant, which is frequently updated, but always independent of moduli
parameters.

We record the formulas for the required local 1-forms when k& = 2 in the
following lemmas:

Lemma 5.4.1. The local tangent vector 1-form Ows/d)\¢ on Oy C HP! is given by:

Ows  Ows Okg 28w8
R YR ) W o Org’

Owg, 2 -
e = T et (7~ aa)dr} -

p?le —agl*

where ) ) )
pla) = 8 i -
|z — ag|? |z — aq|? |z — ay|?
(z) il i cH~0
) = T ~
pO |$_a1|2 |$_a2|27 el

Proof. Apply the previous formulas with &k = 2, weights x; = A\;4/1 + |a;|?, and
(aivﬁi):(lvai) forizO,l,Q. O
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Lemma 5.4.2. The local tangent vector 1-form Ow,/O)\¢ on O, C HP! is given

by:
= = 1 2
a)\o al{o aAO \/maﬁ())
awn 2/{0[00 -
Ok p2|1 — agyl* m {(T = apy)aody }
n 2k k2 I {(17) . }
m —ay)a
P21 — apy|?|l — ayy|* 1)aayy
2Kq KA -
I 1-— d
A aqy L= gyt AT~ @am)eadu}
where , 2 2
ply) = o 1 k2
1 —aoyl*  [1—ay[* [1—azyl?
K2 K2
po(y) = ! 2 yeH~0,

Proof. Again, apply the previous formulas with k& = 2, weights k; = A\;4/1 + |al
and (i, 8i) = (1,a;) for ¢ = 0,1, 2.

The conespondmg norms are:

2 2

? Ow Ow
ol =5l + 5wl
where o ) aw
'8/\;\/X_8 :/ — \/_d"(;
Own, 2

'mo\/x_n :/onx

and | - | denotes the fibre metric on Q'(HP', ad P), and ¢ is the metric on HP'.
For convenience, we record some elementary integration formulas and inequal-
ities that we will require for our estimate calculations.

Lemma 5.4.3. Let a,b,c,m,n, R,t,6 be real numbers, with 0 <t <1,0< 6 <1,
and R > 1.

. n r 1 a+ n3b

(1) /m a—l—r%dr 261 g(a—l—mzb)

. T 1 9 9 a+ n?b

(ii) /m a—l—r%dr:ﬁ{(n —m)b—a10g<m>};
(iii) 11tlog<t+R(1_t)>§2+210g<§>, 0<t<1;

(iv) 1itlo <t+];(( ))>§2R—|—210g<?>, 0<t<l;
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1 2 2ar + b o
— dr = ———arct _ fb? — dac < 0;
(v) /ar2 oy r R arc an( T 62> i ac

r 1 b 1
i —_——dr = —1 24y - .
(vi) /ar2—|—br—|—c " 2a og(ar + r—l—c) 2a/ar2—|—br—|—c
Proof. Calculation. O

Lemma 5.4.4. Let a,b € H, R > 0, and let |a — b| denote the Euclidean distance
between a and b. Then:

1 R
dr < 1+1 14+ —
/|r|<R|x—a|2|x—b|2 ””C—C{ “’g< +|a—b|>}’

where dx denotes the standard Euclidean measure on H = R*, and C is a constant
independent of a, b, and R.

Proof. The Euclidean ball B(0, R) is clearly contained in the union of the following
two annuli centred at a and b:

B(O,R) C{z:n/2< |z —a| < R/}U{:L' :n/2 < |z —bl < R'},

where R’ = R+ |a| 4 |b| and n = |a — b|. Then, our integal may be estimated by:

1
dz
/|r|<R |z — al?|z — b|?

< 1 dz + ! d
= Jlz—al<R' |z — a|?|z — b|2 ! lz=b|<R' |z — a|?|z — b|? -
|z—b|>n/2 |z—a|>n/2

We choose two spherical polar coordinate systems, one centred at = = a, with
r = |z — a|, and the other centred at = = b, with s = |z — b|. Then dz = r3drdf or
dr = s*dsdf, where df denotes the standard Riemannian measure on the 3-sphere
S? of unit radius. In the first integal, we have both |z —b| > n/2 and |z —b] > |r —7n|,
so that:
o = 8" > (n*/4+ (r —n)?) /2.

Similarly, in the second integral we have |z — a|* > (p?/4+ (s —n)?) /2. Using
these inequalities we obtain: ‘

/ 1 d <2/R d cl+2/H > d
p r X T S
lz|<r |2 —al?|z — b[? o n*/4+(r—n)? o n*/4+(s—n)?

R r
:4/ 5 > dr
o Om2/4—2nr+r

Integrating, we get:

? / o
/ 21 5 dxr < 2log (1 + 4R2 — 81t ) + 8arctan <M>
lz|<r |7 — al*|lz —b] 5n 5n "

— 8arctan(—2)

< 8r +4log <1—|—E),
n

and this gives the required estimate. O




Lemma 5.4.5. The norms of the three terms in Ow,/0\g have the following upper

bounds:

g 2l <efrone (1))

. W ol < (e L),
(i) %ﬁjvqg2g0{1+k%<1+ﬁgézﬂ>}.
Consequently,

Ow,
H%”—S

2
<cfrviop () +iog (14 )+t (14 ) |
/\0 |a0 —a1| |CZO —a2|

Proof. We consider each of the three norms in turn, noting that integration over
supp xs C Oy in HP! corresponds to integration over the Eulidean ball {z € H :
|z| < 8} C H. For the first term in Ows/d\g, we have

2 2
K
z|<s PHT — ao|

Now using the inequalities po(z) < p(x) and

5@21)

x
|$_%P_p(L
we see that -
K 1
|z|<8 P |z — ao] |z|<8 plz — ao
We choose spherical polar coordinates on H = R* with r = |z — ag|, so that dz =

r3drdf. Since |z| < 8, |a;| < 2, we have |z — a;| < 10, for i = 0,1, 2, and so we get
the following lower bounds for p(x):

pla) = 8 g
|z — agp|? |z — ay|? |z — az]?’
"33 2 2
> C<7|;z;—a0|2 —|—/<;1—|—/<;2>.

Then, as ; = A\jy/1 + |a;|? > \; for all ¢, we have

A2 A
p(z) ZC<T—§+A§+/\§>.
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Returning to our integral estimate, the ball {z : |z| < 8} is contained in {z :
|z — ag| < 10}, and so

1 1
[ e
|z]|<8 plz — ao |z—ao|<10 plr — ao|

10 7“3
< d
_C/o (r 2N AT+ A

10
i
=C ‘ d
A N2+ a)
cC <Ag +100(\2 + /\§)>
= - O .
A+ ¥

Since A2 + A2 + A2 =1, wemay set t = A2, 1 —¢ =X\ + A2, with 0 < ¢ < 1, and
applying one of our log inequalities, we obtain

1 A2 4+ 100(A2 + AZ) 1
1 0 1T ) < 0d14log [ —
A%ms%< ¥ )— s\

and combining the above inequalities gives estimate (i).
Considering the second term, we have

awg)
aAO V XS

2..4
<cf o
zj<s Ptz — a0tz — a1

1
§C’/ 5 > da
|z—ao|<8 ,0|$—Cl0| |£L’—CL1|

where we use the inequalities

2
7’|2 < p(x) for: =0, 1.

|z — a;
As before, k; > A\; and |z — a;] < 10 for 7 = 0,1,2. Then, we have

p(x) > C (kg + 7 + K3)
> C(Af + AT+ A3)
=C,

since A2 + A7 + A2 = 1, and so p(z) is bounded below by some positive constant.
Hence, we see that

1 1
/ 5 5 dx < C’/ 5 > da
le—ao|<s PIT — aol*|z — a1 lz—ao|<10 |7 — ao|*|z — a1

<cfiviog(1+ L),
a0 — a1
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by a previous integration lemma. This gives estimate (ii).
Considering the third term, we have:

2.4
<cf m
|z|]<8 P |z — ag|*|z — as]

and so estimate (iii) follows by symmetry. O

awg?))
a)\o V XS

Lemma 5.4.6. The norms of the three terms in Ow, /0\y are bounded by a con-
stant C, independent of moduli parameters:

RS 2

<C, fory=1,23.

Consequently,
2

e s

X VX"

Proof. We note that integration over supp xn C O, in HP! corresponds to integra-
tion over the Eulidean ball {y € H : |y| < 3/8} C H. Then, considering the first
term in Ow, /0\y, we have

Now [ao| <2, po(y) < p(y), and

8@,(11)
aAO V XTL

2
2 .2 2
yl<s/s PH1 — aoyl

Hence, we see

2 .21 |2 1
/ % dy < C’/ —_dy.
ly|<3/8 P 11 — aoy] ly|<3/8 p|1 — apyl

Next, we observe that

1= ayl > 1 Jaig] > 1/4,
11— ay| <1+ |ay| < 7/4 for: =0,1,2,

since |a;| < 2 and |y| < 3/8. So |1 — agy|* is bounded below by a positive constant,

and moreover

2 2 2
Ko K1 Ko

= +
P = TP T T=ayl? T T=asyP

ZC(KJ%—I—K%—I—K%)
> C(Af+ AT+ A3)
—C,
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as k; > A\, for i = 0,1,2, and A2 + A\? + \3 = 1. We now obtain

1
/ 74(@ < C/ dy
ly|<3/8 p|1—aoy| ly|<3/8

=C,

and combining these inequalities gives the required estimate.
Considering the second term, we see

2
kakT|ay]?
< C’/ 071 - dy
lyl<3/s P — aoyl*|1 — aryl®

aw,(f)

IA

1
0/ _d
yl<3/s PIT — aoy|?|1 — ary|?

C’/ dy
ly|<3/8
C

VAN

by similar arguments. The estimate for the third term is obtained by symmetry.
Proposition 5.4.7. For: = 0,1,2 we have the following upper bounds:

Ow
o\;

2
<C 1—|—10g< ) Zlog(l—l— L |>
o — o

Proof. One makes the obvious changes in the estimates obtained when ¢ = 0 to get
estimates for ¢ = 1 and 2. We then combine these inequalities to give the required
upper bound. O

§5.5. Estimates of Tangent Vector Norms. II

In this section we estimate the norms of the tangent vectors w/dct. For notational
convenience we assume that ¢ = 0. As in the previous section, it suffices to consider
Case 1, and we may again assume, for notational convenience, that the three points
P; lie in the southern hemisphere O, C HP'. Hence, the points P; have coordinates
[ai, 1], with |a;| < 2 for ¢ = 0,1, 2.

We just need to estimate the L? norms of the local 1-forms

Owg; Owg Own,
dal’ (904“ 75’@?’

1
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on the coordinate patches Os;, O; \ {P;}, and O,, since these patches obviously
cover HP!. Consequently, we have

2
B Ows;
O, 8af

+/ O
O, da

As in the previous section, the connection 1-forms are parametrized by k; and
(ai, 3i), where we choose

2

Ow,
Xs(l - Xz)\/,adw

da¥

lo=

da¥

2
Xin\/,adl’ + /

0.

2
Xn\/gdy-

K = XN/ 1+ |CLZ‘|27
(Oéi,ﬂi) = (ai7 1)7

and )\g + /\% + )\g = 1. We recall that with this choice of parametrization, we have:

Oow B Ow Ok; N Ow
da! — Or; Oal " Qal

7 ? ai:ai”@i:l

We obtained the estimates for the L? norms of dw/dk; in the previous section, and
so it suffices to consider the L? norms of dw/dat. We record our formulas for the
local 1-forms representing the required tangent vectors in the following series of
lemmas.

Lemma 5.5.1. The local tangent vector 1-form 8(.030/8@5 on Qg is given by

2 _ n
Owso _.2£@£f___292_lnl{(m — ap)dz} — — L% Tm {e,d7}

aag aij=a;,B;=1 B 102|:E - a0|4 ’0|$ - a0|2

263 po(x — ag)*
Pz — aoltle —ar |t

2
Ky

(¢ — a0)m {(z = ar)dz} (7 = a0)

e dm {(z —ay)dz} (z —ap)

ple—aglPlr —ar !

2
Ky

(z —ap)Im {(z —ay)dz}e,

ple—aglPle —ar|!

2k3po(x — ag)* - -
— an )l —a)d —
* P2|:t:—a0|4|l'—a2|4($ ap)Im {(z — a)dz} (v —ao)

2
Ko

exdm {(z —az)dz} (z — ap)

 ple —aoPle — ayt

2
Ko

(z —ap)Im {(z —az)dx}e,.

 ple—agPlr —ap]!

Proof. Apply the previous formulas with &k = 2, weights x; = A\;4/1 + |a;|?, and
(aivﬁi):(lvai) forizO,l,Q. O
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Lemma 5.5.2. The local tangent vector 1-form Ows/dal on Os\ {Py} is given by

%g’ et Lﬁf_—_ﬁglm {(z = ao)dz}
- ﬁlm {eudx}
- QZzéff — jjl Im {(z = ag)dz}
_ 22’433’?%(1’ —ap)" Im {(7 = a7)dz}

- 2ranalr @)y ¢ =ag)da}

Proof. Again, apply the previous formulas with k& = 2, weights k; = A\;4/1 + |al
and (a;, i) = (1,a;) for ¢ = 0,1, 2.

Lemma 5.5.3. The local tangent vector 1-form dw, /Oa} on O, is given by

Owy, 4k2Re{(1 — agy)e -
— =20 {( OyG) ”y}Im {(1T = aoy)dy}
aao ai:ai“@izl IO|1 - a0y|
5 {(e, - 2047)dy)
- Im {(e, — 2a
p|l — agyl* g 0%

2kgRe{(1 — agy)e,y} -
I 1-— d
p*1 — aoyl? m (1= aoy)dy)

2r3k3Re{(1 —aoy)euy}l
p* |1 — agy[*|1 — ary|*

Qﬁgli%Re{(l — aoy)euy}I
P2|1 - a0y|4|1 - a2y|4

m {(T—ary)dy}

m {(1 — agy)dy} .

Proof. Apply the previous formulas with &k = 2, weights x; = A\;4/1 + |a;|?, and

(i, Bi) = (1,a;), for i = 0,1,2. -
Lemma 5.5.4. The norms of the eight terms in awso/aag have the following upper
bounds:

2

aw(j) 1
(i) / 83 XsXO\/ﬁdivSC{l—l-log< )}, forj =1,2.
o, | Oay Ao

2

aw(J)
(ii) / aojg XsXoy/9dx < C, forj=3,...,8.
O 0
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Consequently,

2
&uso

m
Oay

1
XsXoy/9dz < C {1 + log (/\—> } .
0

J,

Proof. Since we are integrating over the support of y,xo in HP!, we can assume
|z — ag| < éo and |z| < 8, for x € H. Commencing with the first term in dwsq/dal,
we have

J,

2

4
xexavide <€ S S—

|r—a0|<50 104|$ - a0|4

cof e
|r—a0|<50 p|aj_a0|

Po
- C/ dz.
|z—ao|<do (/\(% + |$ - a0|2p0)|l’ — Cl0|2

1
&ugo)

m
Oay

Since §y = 3 min{1,no1,m02}, We have [z — a;j| > no;/2 for j # 0 and |z — ag| < éo,
where 19; = |ag — aj|. Then

A2 A2 <)\2 A2
z) = + <45+ —2> :
S A P P N €
and so o Y
Po 4(/\1/7701 + )‘2/7702)

< .
A+l —aol?p0 = A§ + 4]z — aol?(A]/ngy + A3 /ndy)

We employ spherical polar coordinates on H, so that dz = r®drdf and r = |z — ay|.

Hence,

12
awio)
Oal)

0 27,2 27,2

° T(/\1/7701 + )‘2/7702)
XsXoy/gdr < C/ dr
Vo 0 )‘g+r2()‘%/77§1 ‘|’)‘%/77§2)

— o (MBI 261081
0

Since 8y < no1/2,102/2, we have

J,

012
8@20)
dal)

A2+ (M4 22)/4
Xonx/§d$§C’log< 0 (/1\2 3)/ >
0
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since A2 + A2 + A% = 1. For the second term, we have

J,

2
5@23)
dal)

2
XsXo0y/gdx < Cﬂ/ﬂ P g

|r—a0|<50 p2|$ - a0|4

cof e
|r—a0|<50 p|'r - a0|

with the same bound as the first term, and this establishes (i). Examining the third
term in Owsp/daly, we see

J,

2

K106
XsXoy/9dz < C dz

|r—a0|<50 p4|x - a0|2|x - a1|6

1
< C/ 5 > dx.
|r—a0|<50 |$_a0| |x_a1|

Since |z — ay| > no1/2 and 6y < no1/2, we obtain

J,

For the fourth term, we have

awgg)

m
Oay

2

50
Xexovde <€ [ e ar
o Mot

3
awio)
dal)

<C.

2

aw(é) K
S

XXW@MSC/ ‘ dz
/os 8@6‘ ’ |z—ao| <80 p?lr —agl?|z — a1 ®

1
< C’/ 5 > dz,
|r—a0|<50 |$_a0| |aj_a1|

which is bounded above by the same constant C', and similarly for term five. The
upper bounds for terms six, seven, and eight follow immediately by symmetry. O

Lemma 5.5.5. The norms of the five terms in Ow,/0a} have the following upper

bound:

N2
0wy’ 1 1
(i) /O au;u Xs(1 = xo)v/gdr < C{1+10g <1+ + )},
s 0

fao —ai] " Jag — as|

for 3 =1,2,3.

A ’ 1
.o —8 o , < - .
(ii) /os 5’&5 Xs(1 = xo0)y/gdz < C’{l + log (1 + g — a1|> },

aw(5) ’ 1
voo S o , < ]
(iii) /os Bal Xs(1— x0)y/gdz < C {1 + log (1 + 7|GO — a2|>}



Consequently,
=l o (e ) s ()
— | xs(1— dr <<l4log|l+ — ) +log |1+ ——— .
/OS aag X ( XO)\/g g |Cl0 - a1| g |Cl0 — Cl2|

Proof. We note that |z| < 8 and |z — ag| > %K“‘éo since we are only integrating
over the support of xs(1 — xo). Commencing with the first term in dws/dafj, and
employing spherical polar coordinates on H with r = |z —ag|, dz = r®drd6, we have

J,

2

Yol = vo)y/gde < 0/ e

|I—(10|2%I(_450

1
‘| 1,
%I(—450§|1’—a0|<10 |:E - a0|

10
1
/ —dr
%I(_AI(SO r

4
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dz
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and recalling that 6y = %min{l, No1, 7oz}, we obtain the upper bound in (i). Con-
sidering the second term, we have

J,

leading to the same upper bound as obtained for the first term. For the third term,

J,

2

Vol = xo)y/Gde < 0/ s

|.1’—(10|Z%I(_450

4
Ko

awg)
dal

dx

pPle—ags

we have

2
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5
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m
Oay

Xs(1 — x0)y/gdz < C’/ o] <8 dx

|l’—(10|2%[(_450

1
<o .
%I(_4(50S|l’—(lo|<10 |:E - a0|

which again leads to the same upper bound. For the fourth term, we have

Pl = aal?

2

ot et
Xs(1 — x0)y/gdz < C’/ dx
/Os dal ° |r_a0||17>|§i(_460 ptle — aol®lz — aq]®
23

1
gC/ 5 2d:z:
|z|<8 |z — a|?|z — a1

1
SC{lJrlOg<|ao —a1|>}7

applying a previous integration lemma to obtain the last inequality, and this gives
estimate (ii). Estimate (iii) follows by symmetry. O
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Lemma 5.5.6. The norms of the five terms in dw, /da}y are bounded by a constant:

)

RS 2

I
Oayy

|
O, 80‘5

Proof. Since we are integrating over the support of x,, we have |y| < 3/8, and as
la;| < 2, then |1 —a;y| > 1/4 for i = 0,1,2. Considering the first term in dw,, /dal),
we have

Xny/gdex < C forj=1,...,5.

Consequently,
2

Xny/9dy < C.

2
il rolyl?
Ny
/on Doy Ve lyl<3/s P21 — aoyl®

1
SC'/ 0 dy
4
lyl<3/s |1 — aoyl

<C.
For the second term, we see that

2

dw'?) kale, — 2aly|?
| Xnv/gdz < C/ L — 0= dy
/on Doy Vo yl<s/s P?I1 — aoyl®

1
< C/ 7 4y,
4
lyl<3/s |1 — a0yl

which 1s again bounded by a constant C'. Similarly, for the third term, we have

2

oty ko lyl?
0 e[
/on dargy Ve lyl<3/s PHL — aoy|'?

1
cof
lyl<3/s |1 — a0yl

Considering the fourth term, we have

2

Ay rok1lyl?
— | Xnvgdr < C’/ _
/on Doy Ve lyl<3/s PH1— aoyl|1 — a1yl

1
< C/ dy,
lyl<3ss 11— a1y[?[1 — agyl?

which is bounded by a constant C', and the same is true for the fifth term by
symmetry. 0
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Proposition 5.5.7. For: =0,1,2 and u = 0,...,3, we have the following upper

bounds:
\
0 e e (5) s S ity)
1 — o o ;
oot |l — P a; — aj|
J=0 )
Oow 1
11 — 1—|—10g< > 10g<1—|— )
) Haa” ; —a]|
J=0 )

Proof. One makes the obvious changes in the previous estimates for the norms of
the local 1-forms obtained when ¢ = 0 to get estimates for : = 1 and 2. We then
combine these inequalities to give the upper bound for the L? norm of dw/da! in
(1). We then use

Ow B Ow Ok; N Ow
da! — Or; dal' " Qal
Ow Ow

— /14 a2

N, el g
Ori Aia¥
Oai /T +Tail*
and combine the previous estimates for the norms of dw/3\;, to give the estimate

(ii). O

ai=a;,B;=1

-

§5.6. Diameter and Volume of the Moduli Space

We apply our estimates for the L? norms of the tangent vectors to moduli space to
obtain upper bounds for the metric components of the L? metric g. We then use
these bounds to show that the space (M, g) has finite diameter and volume.

Theorem 5.6.1. Let M, denote the moduli space of self-dual connections on
a principal SU(2)-bundle P over the sphere S*, where —co(P)[S*] = 2 and S*
has its standard round metric go. Let these connections be parametrized by the
space Ty of unordered pairs (i, Pi), 1 =0,1,2, where \g, A1, Ay are positive weight
parameters satisfying the scaling condition A3 + ¥ + \2 = 1, and Py, Py, P, are
distinct points in S* = HP' (right projective space). Let c! denote the standard
inhomogeneous coordinates of the points P, = HP' (left projective space), for
i = 0,1,2, p = 0,...,3, so that ¢; = a; if P, = [a;,1], lying in the southern
hemisphere, or ¢; = b; if P, = [1,b;], lying in the northern hemisphere. With respect



to this choice of parameters, we have the following estimates for the components of
the L? metric g:

Oow Ow 1 1
B <6A aA) C']’*bg<k>'*§:bg<l+ —cﬂ) ’

JFi
Oow Ow 1 1
P — — | < C{1+1 — 1 1
s =8 (o) < s () + Dooe (14 )
JFi
for t = 0,1,2 and p = 0,...,3, where C is a universal constant independent of

moduli parameters.

Proof. If we denote the moduli parameters by {t,}, then we have the following
estimates for the corresponding diagonal components of g:
2 < Ow
—||ot

Ow Ow Ow Ow
Saa =8 (%7%) = (hwaahwa) = 'h

and consequently these bounds follow immediately from previous estimates. a

Remark 5.6.2. (i) If S* has a metric g which is globally conformally equivalent to
the standard round metric go, then the above estimates continue to hold, although
the constant C' will certainly depend on g.

(ii) Estimates of the non-diagonal components of g may be obtained by the
Schwarz inequality.

Corollary 5.6.3. With respect to the L*? metric g, the moduli space M, has finite
diameter and volume.

Proof. 1t is clearly enough to show that the space has finite diameter. Fix a base
point v* = {(\5, PF), (AF, Pf), ()3, Pf)} in the parameter space Ty and let [w*] be
the corresponding basepoint in My. Let v : (0,1) — T, be a smooth curve in T}
which extends continously to the boundary. In terms of our choice of parameters, we
have v(t) = (Xi(t), P;(t)). Assume that our curve connects the basepoint, v(1) = v*,
with a point on the boundary, v(0) € OT,. Let w : (0,1) — My denote the
corresponding smooth curve in My, so that w(t) approaches the boundary of M,
as t — 0, and w(1) = w*, the basepoint connection. Let L(w) denote the length of
the curve w : (0,1) — My with respect to the L? metric g.

In order to show that M3 has finite diameter, it is enough to show that minimal-
length geodesics in (Mas,g), connecting the basepoint w* with any point on the
boundary M, have lengths uniformly bounded by some constant. Since

dw dw b ? < dw ||
(o) =% <)@

dw
dt

?
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the curve length L(w) may be estimated by

1 5 [ dw dw 1
- (55) o<
dw 2 Ow dX; 2 Ow dc
@ =2 o Zzacf Q-

=0 p=0

dw

dt.
dt

Note that

and consequently

[l

Since we may choose curves of non-minimal length connecting the basepoint w* and
points on the boundary of Mj, we can make the following assumptions concerning
the curve v(t) = {Ai(t), P;(t)}, and hence w(t):
(i) t<XN(t)<1l,for0<t<1land:=0,1,2;
(i) t <lei(t) —¢j(t)| <2, for0<t <1,¢#j,and ¢, 5 =0,1,2;
(iii) |d\;/dt| < N and |det' /dt| < N,for 0 <t <1,:=0,1,2, and p =0,...,3, and
the constant N is the same for all curves ~.
Hence, we obtain

dt.

sl e [ o

1=0 pu=0

2 1 1
Ow Ow
L(w)gc{z/o o dt—l—ZZ/o o dt}
1=0 1=0 p=0 !
2 1 gw |12 S Y ow |2
< _
_C{;/O o dt+;,;/0 5 dt},

for some constant C' independent of the curve 4. Using our bounds for the metric

components, we see that
1
lon | <o (3)}

o] <ctre ()

for: =0,1,2 and g = 0,...,3. Hence, the length of the curve w is bounded by

L(w) < C’/l (1 —logt) dt

:C{Qt—tlogt};
el

and this completes the proof. a

79



[A]

[A-B]

[A-D-H-M]

[A-H-S]

[Bey]

[Bo-Tu]

[Bo-Ma)

[B-H-M-M]

80

BIBLIOGRAPHY

Atiyah, M. F., Geometry of Yang-M:ills Fields, Lezioni Fermiane, Acad. Naz.
Lincei Scuola Normale Sup., Pisa 1979.

Atiyah, M. F. and R. Bott, The Yang-M:lls equations over Riemann surfaces,
Phil. Trans. Roy. Soc. London A 308, 523-615 (1982).

Atiyah, M. F., V. G. Drinfel’d, N. J. Hitchin, and Yu. I. Manin, Construction
of instantons, Phys. Lett. 65A, 185-187 (1978).

Atiyah, M. F., N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional
Riemannian geometry, Proc. Royal Soc. London A 362, 425-461 (1978).

Atiyah, M. F. and J. D. S. Jones, Topological aspects of Yang-Mills theory,
Commun. Math. Phys. 61, 97-118 (1978).

Atiyah, M. F. and R. S. Ward, Instantons and algebraic geometry, Commun.
Math. Phys. 55, 117-124 (1977).

Aupetit, H. and A. Douady, Fibrés stables de rang 2 sur CP® avec ¢; = 0,
¢z = 2, in: Les Equations de Yang-Mills, Eds. A. Douady and J.-L. Verdier,
Séminaire E.N.S. 1977-78, Astérisque 71-72 (1980), pp. 171-196.

Barth, W. and K. Hulek, Monads and modul of vector bundles, Manu. Math.
25, 323-347 (1978).

Berezin, F. A., Instantons and Grassman Manifolds, Funk. Analiz. 13, 75-76
(1978).

Beyer, W. H., Standard Mathematical Tables, 26th Ed., Chemical Rubber Co.
Press, 1981.

Bott, R. and L. Tu, Differential Forms in Algebraic Topology, Springer-Verlag:
New York, 1982.

Boyer, C. P. and B. M. Mann, Homology operations on Instantons, J. Differ-
ential Geometry 28, 423-465 (1988).

Boyer, C. P., J. C. Hurtubise, B. M. Mann, and R. J. Milgram, The topology
of instanton moduli spaces I: the Atiyah-Jones conjecture, to appear in Ann.

Math.



[Br-tD]

[Bu]

[C-W-S]

[C-F-G-T]

[C-G-O-T]

[D-M-M]

[D-P]

[D1]

[D2]

Brocker, T. and T. tomDieck, Representations of Compact Lie Groups,
Springer-Verlag: New York, 1985.

Buchdahl, N. P.; Instantons on CP? J. Differential Geometry 24, 19-52 (1986).

Christ, N. H., E. J. Weinberg, and N. K. Stanton, General self-dual Yang-Mills
solutions, Phys. Rev. D. 18, 2013-2025 (1978).

Corrigan, E., D. B. Fairlie, P. Goddard, and S. Templeton, A Green function
for the general self-dual gauge field, Nuc. Phys. B 140, 31-44 (1978).

Corrigan, E., P. Goddard, H. Osborn, and S. Templeton, Zeta-function reg-
ularisation and multi-instanton determinants, Nuc. Phys. B 159, 469-496
(1979).

Doi, H., Y. Matsumoto, and T. Matumoto, An explicit formula of the metric
on the moduli space of BPST-instantons over S, in: A Féte of Topology, eds.
Y. Matsumoto et al., Academic Press: New York, 1988.

D’Hoker, E. and D. H. Phong, The Geometry of String Perturbation Theory,
Reviews of Modern Physics 60, American Physical Society: New York, 1988.

Donaldson, S. K., Instantons and geometric invariant theory, Commun. Math.

Phys. 93, 453-460 (1984).

Donaldson, S. K., Vector bundles on the flag manifold and the Ward corre-
spondence, in: Geometry Today, ed. E. Arbarello et al., Birkh&user: Boston,
1985.

Donaldson, S. K., Connections, cohomology and the intersection forms of four

manifolds, J. Differential Geometry 24, 275-341 (1986).

Donaldson, S. K., Compactification and completion of Yang-Mills moduls
spaces, in: Differential Geometry, Lecture Notes in Mathematics 1410, eds.
F. J. Carreras et al., Springer-Verlag: New York, 1989.

Donaldson, S. K., Instantons in Yang-M:ills theory, in: Proceedings of the IMA
Conference on Geometry and Particle Physics, Oxford 1988, ed. F. Tsou,
Oxford University Press: New York, 1990.

Donaldson, S. K., Polynomial invariants for smooth 4-manifolds, Topology 29,
257-315 (1990).

Donaldson, S. K. and P. B. Kronheimer, The Geometry of Four-Manzifolds,
Oxford University Press: New York, 1990.

81



[D-M1]

[D-M2]

[D-M3]

[D-M4]

[Fi]

[F-T1]

[F-T2]

[F-G]

[G-H]

[G-R]

[G-P1]

[G-P2]

Drinfel’d, V. G. and Yu. I. Manin, Self-dual Yang-M:lls Fields over a Sphere,
Funk. Analiz. 12, 78-79 (1978).

Drinfel’d, V. G. and Yu. I. Manin, A description of instantons, Commun.
Math. Phys. 63, 177-192 (1978).

Drinfel’d, V. G. and Yu. I. Manin, Instantons and bundles on CP3, Funk.
Analiz. 13, 59-74 (1979).

Drinfel’d, V. G. and Yu. I. Manin, Yang-M:lls, instantons, tensor products of
instantons, Soviet J. Nucl. Phys. 29, 845-849 (1979).

Fischer, A. E., The internal symmetry group of a connection on a principal
fibre bundle with applications to gauge field theories, Commun. Math. Phys.
113, 231-262 (1987).

Fischer, A. E. and A. J. Tromba, On a purely Riemannian proof of the structure
and dimension of the unramified moduly space of a compact Riemann surface,

Math. Ann. 267, 311-345 (1984).

Fischer, A. E. and A. J. Tromba, On the Weil-Petersson metric on Teichmuller
space, Trans. A.M.S. 284, 319-335 (1984).

Freed, D. S. and D. Groisser, The basic geometry of the manifold of Riemannian
metrics and of its quotient by the diffeomorphism group, Mich. Math. J. 36,
323-344 (1989).

Freed, D. S. and K. K. Uhlenbeck, Instantons and Four-Manifolds, 2nd ed.,
Springer-Verlag: New York, 1991.

Friedman, R. and J. W. Morgan, On the diffeomorphism types of certain alge-
braic surfaces I, II, J. Differential Geometry 27, 297-398 (1988).

Griffiths, P. and J. Harris, Principles of Algebraic Geometry, Wiley: New York,
1978.

Giambiagi, J. J. and K. D. Rothe, Regular N-instanton fields and singular
gauge transformations, Nuclear Physics B129, 111-124 (1977).

Groisser, D. and T. H. Parker, The Riemannian geometry of the Yang-Mills
moduli space, Commun. Math. Phys. 112, 663-689 (1987).

Groisser, D. and T. H. Parker, The geometry of the Yang-Mills moduls space
for definite manifolds, J. Differential Geometry 29, 499-544 (1989).

82



Groisser, D. and T. H. Parker, Semi-classical Yang-Mills theory I: Instantons,
Commun. Math. Phys. 135, 101-140 (1990).

Gunning, R. C., Lectures on Vector Bundles over Riemann Surfaces, Princeton
University Press: Princeton, 1967.

Habermann, L., On the geometry of the space of Sp(1)-instantons with Pontr-
jagin index 1 on the 4-sphere, Ann. Global Anal. Geom. 6, 3-29 (1988).

Hartshorne, R., Algebraic Geometry, Springer-Verlag: New York, 1977.

Hartshorne, R., Stable vector bundles and instantons, Commun. Math. Phys.
59, 1-15 (1978).

Hartshorne, R., Stable vector bundles of rank 2 on P3, Math. Ann. 238,
229-280 (1978)

Hattori, A., Topology of the moduli space of SU(2)-instantons with instanton
number 2, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 34, 741-761 (1987).

Hitchin, N. J., A. Karlhede, U. Lindstrom, and M. Rocek, Hyperkahler metrics
and supersymmetry, Commun. Math. Phys. 108, 535-589 (1987).

Hurtubise, J., Instantons and jumping lines, Commun. Math. Phys. 105,
107-122 (1986).

Husemoller, D., Fibre Bundles, 2nd ed., Springer-Verlag: New York, 1966.

Itoh, M., Geometry of anti-self-dual connections and Kuranishe Map, J. Math.
Soc. Japan 40, 9-33 (1988).

Jackiw, R., C. Nohl, and C. Rebbi, Conformal properties of pseudoparticle
configurations, Phys. Rev. D 15, 1642-1646 (1977).

Kobayashi, S., Differential Geometry of Complexr Vector Bundles, Princeton
University Press: Princeton, 1987.

Kobayashi, S. and K. Nomizu, Foundations of Differential Geometry, Volumes
I & II, Wiley: New York, 1963 and 1968.

Kodaira, K., Complex Manifolds and Deformation of Complex Structures,
Springer-Verlag: New York, 1986.

Lawson, H. B., The Theory of Gauge Fields in Four Dimensions, American
Mathematical Society: Providence, 1985.

83



[Le]

[Mac]

[MC-S]

[M-M]

[Mas]

[Mi-St]

[Mo]

[Mu-Fo]

[N-T1]

[N-T?2]

[N-T3]

[0-S-5]

[R1]

LeBrun, C., On complete quaternionic-Kahler manifolds, Duke Math. J. 63,
723-743 (1991).

Maciocia, A., Metrics on the moduli spaces of instantons over Fuclidean 4-
spaces, Commun. Math. Phys. 135, 467-482 (1991).

Mamone Capria, M. and S. M. Salamon, Yang-M:lls fields on quaternionic
spaces, Nonlinearity 1, 517-530 (1988).

Marathe, K. B. and G. Martucci, The geometry of gauge fields, J. Geometry
and Physics 6, 1-105 (1989).

Masur, H., The extension of the Weil-Petersson metric to the boundary of
Teichmiiller space, Duke Math. J. 43, 623-635 (1976).

Milnor, J. and J. Stasheff, Characteristic Classes, Princeton University Press:
Princeton, 1974.

Morgan, J. W., The Topology of Four-Manifolds, unpublished manuscript,
Columbia University: New York, 1989.

Mumford, D. and J. Fogarty, Geometric Invariant Theory, 2nd ed., Springer-
Verlag: New York, 1982.

Narasimhan, M. S. and G. Trautman, Compactification of M(0,2), in: Vector
Bundles on Algebraic Varieties, eds. M. F. Atiyah et al., Oxford University
Press, Bombay 1987, pp. 429-443.

Narasimhan, M. S. and G. Trautman, Compactification of Mp,(0,2) and Pon-
celet pairs of conics, Pacific J. Math. 145, 255-365 (1990).

Narasimhan, M. S. and G. Trautman, The Picard group of the compactification
of Mp,(0,2) J. Reine angew. Math. 422, 21-44 (1991).

Osborn, H., Semi-classical functional integrals for self-dual gauge fields, Ann.
Phys. 135, 373-415 (1981).

Okonek, C., M. Schneider, and H. Spindler, Vector Bundles on Complex Pro-
jective Spaces, Birkhatiser: Boston, 1980.

Rawnsley, J. H., On the Atiyah-Hitchin-Drinfeld-Manin vanishing theorem for
cohomology groups of instanton bundles, Math. Ann. 241, 43-56 (1979).

Rawnsley, J. H., Self-dual Yang-M:lls fields, in: Global Analysis, eds. J Mars-
den and M. Grmela, Lecture Notes in Mathematics 755, 295-312 (1979).

84



[Sal

[Sc]

[Se]

[S-S-U]

[Si1]

[T2]

(T3]

[T4]

(T3]

[Wa-We]

[Wen]

Salamon, S., Instantons on the 4-sphere, Rend. Sem. Mat. Univers. Politec.

Torino 40, 1-20 (1982).

Schwarz, A. S., Instantons and fermions in the field of instanton, Commun.

Math. Phys. 64, 223-268 (1979).

Seshadri, C. S., Theory of moduli, p. 263-304, in Algebraic Geometry, Arcata
1974, Proc. Symp. Pure Math. 29, ed. R. Hartshorne, A.M.S.: Providence,
1975.

Sibner, L. M., R. J. Sibner, and K. K. Uhlenbeck, Solutions to Yang-M:ills
equations that are not self-dual, Proc. Natl. Acad. Sci. USA 86, 8610-8613
(1989).

Singer, I. M., Some remarks on the Gribov ambiguity, Commun. Math. Phys.
60, 7-12 (1978).

Singer, I. M., The geometry of the orbit space for non-abelian gauge theories,
Physica Scripta 24, 817-820 (1981).

Singhof, W. and G. Trautman, On the topology of the moduli space M(0,2) of
stable bundles of rank 2 on P, Quart. J. Math. Oxford 41, 335-358, (1990).

Steenrod, N., The Topology of Fibre Bundles, Princeton University Press:
Princeton, 1951.

Taubes, C. H., Self-dual Yang-Mills connections on non-self-dual 4-manifolds,
J. Differential Geometry 17, 139-170 (1982).

Taubes, C. H., Self-dual connections on 4-manifolds with indefinite intersection
matriz, J. Differential Geometry 19, 517-560 (1984).

Taubes, C. H., Path-connected Yang-Mills moduli spaces, J. Differential Geom-
etry 19, 337-392 (1984).

Taubes, C. H., A framework for Morse theory for the Yang-Mills functional,
Invent. Math. 94, 327-402 (1988).

Taubes, C. H., The stable topology of self-dual moduli spaces, J. Differential
Geometry 29, 162-230 (1989).

Ward, R. S. and R. O. Wells, Twistor Geometry and Field Theory, Cambridge
University Press: Cambridge, 1990.

Wentworth, R., The asymptotics of the Arakalov-Green’s function and Falting’s
delta invariant, Commun. Math. Phys. 137, 427-459 (1991).

85



86

[Wi] Witten, E., Topological quantum field theory, Commun. Math. Phys. 117,
353-386 (1988).

[Wol] Wolpert, S. A., Asymptotics of the spectrum and the Selberg zeta function on
the space of Riemann surfaces, Commun. Math Phys. 112, 285-315 (1987).

[Wo2] Wolpert, S. A., Geodesic length functions and the Nielsen problem, J. Differen-
tial Geometry 25, 275-296 (1987).

[Wo3] Wolpert, S. A., Chern forms and the Riemann tensor for the moduli space of
curves, Invent. Math. 85, 119-145 (1986).

[Wod] Wolpert, S. A., On the Weil-Petersson geometry of the moduli space of curves,
Amer. J. Math. 107, 969-997 (1985).



