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1. Introduction

Let X be a closed, oriented, C*° four-manifold and let Mx, p(go) be the moduli
space of gg-anti-self-dual connections on a principal G bundle P over X,. The subspace
1\4}‘(07]3(90), obtained by excluding the reducible connections is then a finite-dimensional,
usually non-compact, C'* manifold. The moduli space i\l}mp(go) is naturally endowed
with a metric g of Weil-Petersson type, called the L? metric, and our purpose in this article
is to study the geometry of the moduli space ends.

(a) Main results. It has been conjectured by D. Groisser and T. Parker in [G-P87], [G-
P89] and by S. K. Donaldson in [D90a] that the moduli space of anti-self-dual connections,
endowed with the L? metric, has finite volume and diameter. The goal of this article is to
prove this conjecture under the hypotheses described below.

Theorem 1.1. Let X, be a closed, connected, oriented, simply-connected, C'> four-
manifold with generic metric g9 and let P be a principal G bundle over Xy such that
either (1) G = SU(2) or SO(3) and b (Xy) = 0, or (2) G = SO(3) and wo(P) # 0, where
wy(P) is the second Stiefel-Whitney class of P. Then the moduli space M%_ p(go) of
irreducible gg-anti-self-dual connections on P has finite volume and diameter with respect
to the L? metric g defined by gq.

We plan to discuss the case of G = SU(2) and " (X,) > 0 in a subsequent article.
Note that when G = SO(3) and wz(P) # 0, the trivial (product) connection © does not
appear in the Uhlenbeck compactification M x p(gy). By ‘diameter’ we mean the sum
of the diameters of the connected components of MY  p(go); the hypotheses imply that
M%, p(go) has finitely many path components. In [D8é] Donaldson conjectured that the

L?-metric completion of the moduli space coincides with the Uhlenbeck compactification
[D86], [D-K]. We announce here the following result whose proof is included in [F94].

Theorem 1.2. Under the hypotheses of Theorem 1.1, the completion ofj\lj‘(mp(go) with
respect to the L? metric g is homeomorphic to the Uhlenbeck compactification M;mp(go).

The requirement that Xy be simply-connected implies that the moduli space of flat
connections consists of a single point representing the product connection over Xy. This
assumption simplifies the description of the ends of the moduli spaces 1\4}‘(07P(g0), but is
not important in the derivation of bounds for the components of g. We assume G = SU(2)
or SO(3) in order to appeal to the generic metric theorems of Freed and Uhlenbeck which
ensure that the moduli space is a C'> manifold: otherwise, the bounds for g obtained in
Chapter 5 hold for any compact Lie group. For the sake of clarity, we assume G = SU(2)
for the remainder of the article and denote Mx, p(go) by Mx, k(g0), where co(P) =k >0
is the second Chern class.
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(b) History. The properties of the L? metric have been investigated by many authors
in recent years, but most extensively by Groisser and Parker. In particular, they have
conducted detailed studies of its behaviour at the boundary of certain & = 1 moduli
spaces. Explicit formulas for the components of g have been found by Doi, Matsumoto,
and Matumoto [D-M-M], Groisser and Parker [G-P87], and Habermann [Hab] when k =1

and Xy is the four-sphere S* with its standard round metric ¢;. Groisser conducted a

similar study when X, is the complex projective space (C—]P’Q, equipped with the Fubini-
Study metric gps [G90]. Their formulas imply that these ¥ = 1 moduli spaces have
finite g-volume and g-diameter. More generally, Groisser and Parker have established
Theorem 1.1 in the special case k = 1 [G-P89]. They also obtained C° bounds for g in
neighbourhoods of the reducible connections, the ‘conical ends’, for any £ > 1. In [G92],
Groisser refined some of the k = 1 results obtained in [G-P89]. It is worth recalling that
the L? metric is not invariant with respect to conformal changes in the metric gy on Xj.

The approach of [G-P89] does not appear to readily generalise to the case k > 1,
since their method relies on Donaldson’s collar map which gives a diffeomorphism from
the ‘bubbling end” of M% ,(go) to the collar Xg x (0, Ag). For this reason we adopt a quite
different method which uses the gluing techniques of Taubes and Donaldson to construct a
system of local coordinate charts covering the ‘ends’ of the moduli space. We then estimate
the components of g with respect to these coordinates. In the case of the Weil-Petersson
metric on Teichmiiller space, estimates of this type have been obtained by Masur [Mas].
In [F92], the author proved Theorem 1.1, when X, = S* and k = 2, using the ADHM
correspondence [D-K]. After the present work was submitted, a preprint was received from
Peng giving L? estimates for the derivatives with respect to moduli parameters of the
family of anti-self-dual connections A on the connected sum Xy #,S?* constructed in §7.2.2
of [D-K], with H = 0 [Pe]. His L? estimates are defined with respect to a family of
metrics gy which are conformally equivalent to gy and pinch the neck of the connected
sum as A — 0, away from the neck coinciding with ¢y on Xy and converging in C? to the
standard round metric on the unit sphere S%.

(c) Outline and strategy. It remains to summarise the methods used in the proofs
of our main results. Let us first recall the definition of the L? metric. The tangent space
TaMx, 1(go) is identified with the cohomology group HY = ker d:go/im d7%. Given

tangent vectors [a], [b], the L? metric g is defined by

(1.1) gray([al, [b]) = (maa, mab)r2(x4,90)5

where m4 = 1 — da(d%%°d4)~'d%? is the L? orthogonal projection from L*Q'(Xy,ad P)
to the subspace ker d}?°. Clearly, g([a], [b]) is bounded above by ||a||12]|b]| 12, and so a
reasonable strategy is to seek upper bounds for g over the moduli space ends. This will

suffice for our present application.
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(i) Moduly space ends and the bubble tree compactification.  Our first task is to de-
scribe useful models for the ends of the moduli space of anti-self-dual connections. Let
(Ao, x1,...,Tm,) be a point in the stratum M;L(mk(go) N (Mxy ko (g0) X skF=ko(Xy)) of the
Uhlenbeck compactification (see §4.1) which lies away from the diagonals of the symmetric
product, so that my = k — kg and each point x; has multiplicity 1. Then every point
[A] € Mx, k(go) which is close enough to (Ag,z1,...,%m,) in the Uhlenbeck topology
can be shown to lie in a neighbourhood constructible by gluing or ‘gluing neighbourhood’
[D86], [D-K]. Thus, suppose [A4] is a sequence in Mx, x(go) which converges weakly to
(Ao, Z1,...,Tm,y). As described in §4.2, the sequence of connections [A,] produces se-
quences of local mass centres z;, converging to the points x; and sequences of local scales
Aia converging to zero. Using the scales A;,, one now dilates the metric gy around the
points x;, and produces a sequence of conformally equivalent, C'>® metrics g, on a con-
nected sum X = Xo#%S*% As the scales \;, tend to zero, the corresponding neck is
pinched and the connected-sum metrics ¢, converge in C'°® on compact subsets away from
the neck regions to the metric go on Xy and the standard round metric g1 (of radius 1) on
each copy of S*. This ‘conformal blow-up’ procedure gives a sequence of g,-anti-self-dual
connections [A,] which converges strongly (in the sense of [D-K]) to a limit (Ao, 1, ..., Im,)
over the join X, V2% S*, where the I; are the standard one-instantons over X; = S* with
centre at the north pole n and scale 1. Here, strong convergence means C'> convergence
on compact sets away from the necks and such that c2(A4g) + D02 ca(L;) = k: there are
no singular points and there is no curvature loss over the necks. One obtains an open
neighbourhood in M;L(o,ko (go) of the boundary point (Ag,z1,...,2Zm,) by gluing up the
limit (Ao, Il, Ce 7Im0)-

On the other hand, if the set Zy = (21,...,%m,) lies in the diagonal of the symmet-
ric product s¥7F(Xj), the limiting behaviour of the sequence [4,] may be rather more
complicated. Suppose [A,] is the corresponding sequence of go-anti-self-dual connections
over X = Xo#.-%S* produced by conformal blow-ups. The sequence A, converges in C*
on compact subsets of Xy \ Zy to a go-ASD connection A, over Xy, but in general only
converges weakly to an Uhlenbeck limit (A;, Z;) over the four-spheres X; = S* where
Zi = (i1,...,Tim,;) 1s contained in X; \ {s} and s is the south pole. If the connection
A;, v > 0, 1s not flat, then the conformal blow-ups may be chosen so that it is centred in
the sense of [T88]: its mass centre lies at the north pole and it has scale (essentially its
‘standard deviation’) equal to 1 (see §4.2).

Unless all the singular sets Z; are empty, one can no longer produce an open subset
of the moduli space Mx, x(go) simply by gluing up the connections (A4;)"%: because of
the nature of the convergence process, some of the required moduli parameters have been
lost in the limit.

Instead, the conformal blow-up process above must be iterated. The idea of iterating
conformal blow-ups has been suggested by Sacks and Uhlenbeck in the context of harmonic
maps of S? [S-U]. Taubes described an iterative scheme of this type which is used to anal-
yse the limiting behaviour of sequences of connections with uniformly bounded Yang-Mills
functional and functional gradient tending to zero [T88]. Parker and Wolfson described a
bubble tree compactification for pseudoholomorphic maps of Riemann surfaces into sym-
plectic manifolds and noted that their method should apply to the case of Yang-Mills
connections over four-manifolds [P-W].
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For the problem at hand, by repeatedly applying conformal blow-ups, we obtain a
sequence of g,-anti-self-dual connections A, over a large connected sum X = #;¢9X7.
Here, J is a set of multi-indices I obtained when the conformal blow-up process is iterated.
Thus, J records the tree structure and if I = 0, then X7 is the four-manifold X,, while
if I # 0, then X is a copy of S*. The construction of the ‘conformal blow-up maps’ f;a
ensures that the blow-up process must be repeated at most k times in order to produce
a sequence of connections [A,] which converge strongly to a limit (A7)reg over a join
V7es X1, where Ay is a gp-anti-self-dual connection over X and each Ay, for I # 0, is a
g1-anti-self-dual connection over X; = S*. The sequence of metrics g, converges in C'*
on compact subsets away from the neck regions to the metric g on Xy and the standard
round metric g; on each sphere X;. This convergence scheme produces the ‘bubble tree
compactification’ M;mko (go) and is described in §4.3.

In particular, bubble tree degeneration and gluing are inverse to one another in a
natural way. One can now glue up the bubble tree limits (A7)reg to form g-anti-self-dual
connections A over a connected sum X = #;c9X; using the techniques of [D-K] and
construct open subsets of the moduli space My (g) by small deformations of the limit
data. The gluing procedure gives a collection of conformal maps f; (from a small ball in a
lower level summand X;_ to the complement in the sphere X of a small ball around the
south pole) defined in exactly the same way as the conformal blow-up maps fr, above.
Here, g is a C'* metric on X which is conformally equivalent to the old metric ¢¢ (via the
maps f7) and depends on the choice of gluing sites, frames in the principle SO(4) frame
bundle F X, scales, and the metric gy on Xj: its construction and properties are discussed
in §3.5. Similar metrics over connected sums are described in [D86] and [T92]. Pulling
back via the blow-up maps then gives gg-anti-self-dual connections A over X, and hence,
produces open subsets of the moduli space Mx, (go)-

Generalising the arguments in [D86] and [D-K] and employing the compactness results
of §4.3, one then shows that H}O’k(go) has a finite cover consisting of gluing neighbour-

hoods V. Of course, any precompact open subset of Mx, k(go) is covered by finitely
many Kuranishi charts and these comprise the ‘gluing charts’ in this case. Moreover, the
L?-metric geometry near the reducible connections, the conical ends, has already been
analysed by Groisser and Parker [G-P89], so we may confine our attention to the more
troublesome bubbling ends.

(i1) Upper bounds for the components of the L? metric. We now outline a method of
computing estimates for the L? metric g over the ends of the moduli space. In §§3.3 and
3.4 we apply the techniques of [D86] and [D-K] to first construct approximate gluing maps
3 :TYr — BX i, t — [A'(t)]. Here, X is the connected sum #7e3 X7 with C'° metric
g conformally equivalent to go on Xy, and T°/T is a certain parameter space. If the g-
self-dual curvature F'T9(A’") is sufficiently small one can then solve the g-anti-self-duality
equation Ft9(A’' + a) = 0, or equivalently

(1.2) dj;,’ga—l—(a/\a)"i"g = —F""’g(A'),

for a € Q'(X,ad P). This gives a C'* family of g-anti-self-dual connections 4 = A’ + «a
and thus a gluing map J : 7°/T — M% ¢(g), t — [A(#)]. The solutions a to Eq. (1.2)
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are expressed in the form a = P¢, where £ € QT9(X,ad P) and P is a right inverse to

the operator dz,’g (constructed as in [D-K] by patching together right inverses Py for the

y91

operators djl

over the summands X;. Therefore, Eq. (1.2) takes the shape
(13) £+ (PEAPEI = —FHI(A),

Following [D-K]|, we assemble the framework required for solving Eq. (1.3) in §5.1.

Now the L? metric g depends on the choice of metric ¢, not just the conformal
class [go]. So, using the conformal maps fr, we pull back the family of g-anti-self-dual
connections A(t) = A'(t) + a(t) over X to an equivalent C'*° family of go-anti-self-dual
connections A(t) = A'(t) + a(t) over Xy. Hence, we obtain gluing maps J : /T —
M%, 1(g90), t — [A(t)] analogous to those constructed by Taubes. The properties of the
gluing maps J and J are discussed in §5.2.

The problem then is to estimate the differentials DJ and this task is comprised of
two parts. The first part is to bound the derivatives A’/0t: this local calculation is the
subject of §§3.7 to 3.9 and the main results are summarised in §3.10. The more difficult
part is to bound the derivatives of the correction terms, da/0t: this involves bounding the
derivatives of global operators such as P and is described in §§5.3 to 5.5. The problem of
expressing bounds for derivatives of a(t) in terms of bounds for derivatives of a(t) is the
subject of §3.5. Some care is required here, since the conformal maps f; vary with the
scale and centre parameters, as does the metric g in Eq. (1.3). The required estimates for
the derivatives da/dt are then computed in §§5.3 to 5.5 in terms of bounds for dP/0t and
0€/0t; the estimates for 9 /0t are obtained implicitly from Eq. (1.3). For the special case
of a neighbourhood of a point (Ag, A1) (with H3 = 0), L* estimates for the derivatives
0A /0t were later obtained independently by Peng using similar methods [Pe].

It is the estimates for derivatives with respect to the scales A\; which require the most
care. For example, difficulties arise when bounding the derivatives 8%1’/8/\1 because of the
dependence on Ar of the conformal maps f; and the cut-off functions required to patch
the connections A; together over the connected sum. These derivatives are ill-behaved
as A\; — 0 and the necks of the connected sum X are pinched. Problems also occur
when one attempts to bound da/d\r, since a = P¢ and the construction of P involves
cut-off functions with badly behaved derivatives with respect to Ay as Ay — 0. The final
estimates for the differentials DJ and the corresponding bounds for the L? metric g are
sumarised in §5.6. The constants appearing in the bounds for g depend only on the gluing
neighbourhood. Theorem 1.1 then follows immediately from these estimates.
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2. Preliminaries

In this Chapter we establish our notation and define the L? metric. Unless stated
otherwise, we adhere to the standard conventions of [D-K]. For further details concern-
ing gauge theory, we refer to [D-K] or [F-U] and the references therein, while for details
concerning the L? metric, we refer to [G-P87], [G-P89].

Let X be a closed, connected, oriented, C'*° four-manifold with Riemannian metric ¢
and let P be a principal G bundle over X with Lie algebra g. As noted in the Introduction,
we will generally confine our attention in this article to the case G = SU(2) for the sake of
clarity. We let Q(P, g) denote the space of C* g-valued I-forms, let ad P = P xaq g be
the adjoint bundle, and let Q/(X,ad P) be the space of C* ad P-valued I-forms on X. Let
Ap be the affine subspace in Q'(P, g) of C* connection 1-forms on P. For a connection A
on P, we let V 4 be the corresponding covariant derivative, let d 4 be the exterior covariant
derivative, and let F4 € Q?(X,ad P) denote the curvature.

Let Gp be the group of C'*° bundle automorphisms or gauge transformations. Recall
that the isotropy group I'y C Gp of a connection A on P is isomorphic to the centraliser
of the holonomy group of A in G and the centre Z of the bundle structure group G 1is
isomorphic to the centre of Gp. Thus I'y D Z and we let A} be the dense open subset of
connections A € Ap with I'y = Z, so that A}, is the space of irreducible connections on
P when G = SU(2) or SO(3).

The bundles A/T*X @ ad P have fibre metrics ( , ) induced by the Riemannian metric
g on X and the inner product on the Lie algebra g given by —1 times the Cartan-Killing
form: if &1,& € g, then (£1,&) = —tr(&1€2). In particular, we may define Sobolev spaces
LPQ!( X, ad P) in the usual way and consider the action of the L? | gauge transformations
G on the space of L? connections Ap (for n > 2) with quotient Bp = Ap/Gp, omitting
the explicit Sobolev notation when no confusion can arise.

The tangent space T4 A% is equal to Q'(X, ad P) while the tangent space to the G-orbit
through 4 € A% is imda C Q'(X,ad P). This induces an L%-orthogonal decomposition
TaA% = kerd* @ imdy, where kerd*, C Q'(X,ad P). There is an associated horizontal
projection operator w4 : T4 Ap — ker d%, with my =1 —dAG%dz, where G?L; 1s the Green'’s
operator for the Laplacian A% = d*d4. To identify the tangent space Ti 4B}, introduce
C* paths A(t) in A} and u(t) in Gp, u(0) = 1. If A"(t) = uy(A;), then

(2.1) A" _ Ad(u_l)% + d 4w <u_1 du) :

dt dt dt

Thus dA/dt(0) defines an element of Q'(X,ad P)/imd4 and therefore the tangent space
Ti 4B} is given by Q'(X,ad P)/imd4 ~ ker d.

Let Mp(g) be the moduli space of g-anti-self-dual connections on the G bundle P over
X, that is {[A] € Bp : FT9(A) = 0}, and let M}(g) be the dense open subset Mp(g)NB%.
If A(t) is a C* path in Ap satisfying FT9(A(¢)) = 0, then dA/d#(0) defines an element of
ker d* /im dj;’g. The g-anti-self-dual condition FT9(A) = 0 is equivalent to dj;’g odg =0
and so we have the elliptic deformation complex

+.9
(2.2) Q%(X,ad )~ QU(X,ad P) 255 QF9(X, ad P)
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with associated cohomology groups HY*, where HY is the Lie algebra of T'4, the group
HY = ker d:g/im da is just the tangent space Tj4Mp(g), and H} = cokerd:g. By
Hodge theory there are natural isomorphisms HY ~ ker A%, HY, ~ ker d* N ker djg, and
H? ~ ker Ajg, where the Laplacian Ajg is equal to djg(dz’g)*.

If [4] is an irreducible point of Mp(g), then H) = 0, and an irreducible point [A]
is regular if H3 = 0. The moduli space Mp(g) is regular if all its irreducible points are
regular points, and in that case, M} (g) is a C'> manifold of dimension

(2.3) dim Mp(g) = 8k(P) — 3(1 — by (X) + b1 (X)),

with tangent space Tp 4 Mp(g) = H)y at the point [A].

According to the Freed-Uhlenbeck theorems, the anti-self-dual moduli spaces M} (g)
are smooth manifolds when ¢ is generic. More precisely, if (X)) > 0, P is any SU(2) or
SO(3) bundle P over X, and the metric g on X is generic, then (1) M} (g) contains no
points [A] with H% # 0; (2) If 5(X) > 0 and I > 0 then Mp(g) contains no points [A]
with HY # 0 for any bundle P with 0 < k(P) <; (3) If (X ) = 0 and P is non-trivial,
then the cohomology groups H% are zero for all the reducible g-anti-self-dual connections
A on P, and a neighbourhood of point [A] € Mp(g) with HY # 0 is homeomorphic to a
cone over CP**~2 and diffeomorphic away from the cone point [A].

It remains to define the L? metric. The quotient space B} inherits a (weak) Rie-
mannian L? metric g by requiring that the projection map for the principal Gp/Z bundle
Ap — Bp be a Riemannian submersion: if [a], [b] are tangent vectors in T} 4)Bp, then

(2.4) g[A]([a]a[b])E/X<7TACL77TAZ7> dvy,

and this restricts to give a C'> Riemannian metric g on the moduli space M}(g).

3. Differentials of the approximate gluing maps

Our purpose in this Chapter is to construct the approximate gluing maps g’ : J/T" —
B ) and ' J/T — BX, 1, and to estimate the differentials DJ’, and especially DJ'. The
construction of §’ uses the method employed by Donaldson in [D86], [D-K]. The induced
maps §J' are essentially the approximate gluing maps described by Taubes in [T82], [T84a],
[T88]. In the former case, we obtain an almost g-anti-self-dual connection A’ over a
connected sum X = Xo#/¢5S* with metric ¢ conformally equivalent to go on Xg, while in
the latter case we obtain an almost gg-anti-self-dual connection A’ over Xo with i1ts fixed
metric go. In Chapter 5, we obtain a system of coordinate charts J : T/T = Mx, +(g0)

covering the moduli space by perturbing the maps g using the techniques of [D-K] for
solving the anti-self-dual equation.
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3.1. Preliminary estimates for connections and curvature. We describe some
pointwise estimates for local connection one-forms and curvature two-forms. We first
consider estimates for connection one-forms in radial gauge on a C'*° manifold X with C'*°
metric g. Suppose P — X is a principal G bundle, A is a C'"*° connection on P, and B 1is
an open geodesic ball centred at xy € X with radius p/2, where p is the injectivity radius
of (X, g). Define a C* local section o : B — P by parallel transport of a point in the fibre
P|;, along radial geodesics through x¢. If 4 is a radial geodesic in B with ~(0) = z, and
Y(t) = &, then o*A(zg) = 0 and t¢,0*A(y(t)) =0, ¢t > 0. If ¢~' : B — R* is a geodesic
normal coordinate system centred at xp and we define a geodesic v by ~(t) = ¢(tz),
x € B, t €[0,1], then y#(t) = tz#, 4 = x, and ix0*A = z#(0*A),. We recall the following
estimates for local connection one-forms in radial gauge.

Lemma 3.1. [U82, p. 14| Let A be a C* connection on a principal G bundle P — X,
where X is a C* manifold with C'* metric g, B is a geodesic ball of radius p/2 centred at
zg € X, 0: B — P is a local section such that c*A is in radial gauge centred at x¢, and

¢~!: B — R" is a geodesic normal coordinate system centred at xo. If K = ||[Fal| 1 (B,g),
then |¢*c* Al (z) < Klz|, |z| < 0/2.

Let HP! be the right quaternionic projective space, with the standard identifications
H ~ R* and HP! ~ S*. Coordinate patches for S* may then be defined by U, = {[z,y] :
y # 0} = S*\{s} and Us = {[z,y] : @ # 0} = S*\ {n} covering the north pole n = [0, 1] and
south pole s = [1, 0], respectively. Welet ¢ 1 : U, — R* [z,y] — 2y~ and ;' : Uy — R,
[z,y] = yx~! denote the standard local coordinate charts. If g; is the standard round
metric of radius 1 on S*, then

4
(3-1) (6691 uv(x) = hi(2)byy = TrEEEo °F R*,

for & = n, s; the standard flat metric on R* is denoted by §.

Let A be a C'*® connection on a principal G bundle P — S*, where S* has its standard
metric g;. We define a system of local sections o, : Uy — P, a = n, s, by parallel transport
of points in the fibres P|, along radial geodesics through the north or south poles. The
estimates below follow easily since A is smooth over S* with metric ¢;:

Lemma 3.2. Let A be a C® connection on a principal G bundle P — S*, where S* has
metric g1 and K = ||[Fal| o (s1,g,). Then, for o, 8 € {n, s},

i . - 1 reR? ifa=p
AN ) S e for (2SR HaZh

Lemma 3.3. Given the hypotheses of Lemma 3.2, if the local connection one-forms o}, A
are in radial gauge, then |¢% o’ A, (z) < K|z|, for x € R* and a = n, s.
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3.2. Connections over the four-sphere and conformal diffeomorphisms. Recall
that the group of conformal diffeomorphisms of S* acts on the space Ap of C'> connections
on a G bundle P over S%. The group D x T of dilations and translations of R* may be
identified with a subgroup of the conformal group of S*. Hence, in this section we discuss
some aspects of the induced action of RT x R* on the space Ap. For related material we
refer to [D83], [F-U], [G-P87], [G-P89], and [T88].

Let P be a G bundle with C* connection A € Q'(P,g) over a C°° manifold X and
suppose @y 1s a C'* one-parameter group of diffeomorphisms of X generating a vector field
£ € C®(TX). Let £e C>°(TP) be the horizontal vector field covering £ and let ¢ be the
one-parameter group of diffeomorphisms of P generated by €. Then @ commutes with
right G multiplication and covers ¢. Fixing Q € Q'(P,g), we obtain a C'* one-parameter
family of C'*° one-forms @52 on P with

dpiQ B
dt li=0 &

(3.2)

where LEQ € QY(P,g) denotes the Lie derivative of  with respect to ¢: in particular, oA
is a C'*° one-parameter family of C'*° connection one-forms on P.

Lemma 3.4. Let P be a G bundle with connection A € Q'(P,g) over a manifold X.
Given a vector field £ € C™(TX), let £ € C°°(TP) be its horizontal lift. If F4 € Q*(P,g)
is the curvature of A, then LéA = LEFA.

Proof. Since ¢ is horizontal, then A( ~)~: 0 and so for any vector field n € TP, we have
(LeA)(n) = (1gdA + digA)(n) = dA(n,§). But Fa(n,§) = dA(n,€) + 5[A(n), A()] and so
the result follows. O

We also need to consider Lie derivatives of ad P-valued one-forms. Recall that if
m : P — X is the bundle projection, there is an injective map 7* : Q'(X,ad P) —
QY(P,g). The oneforms Q in the image of 7* are characterised by the properties (a)
R*Q = Ad(u™1)Q, for all v € G, and (b) Q(n) = 0 if n € TP is vertical. Hence, the
action of @; on Q'(P,g) induces an action on Q'(X,ad P) = T(T*X ® ad P). Thus, if
w € Q'(X,ad P), we obtain a C'™ one-parameter family of C* ad P-valued one-forms ¢jw
on X with

dojw B

(3.3) dt =g — €

W,

where Léw € Q'(X,ad P) denotes the Lie derivative of w with respect to £.

For the purposes of calculation, it is useful to phrase the preceding discussion in terms
of local one-forms on X. It is convenient to choose a system of local sections o, : U, — P
which are parallel with respect to the connection A and vector field £, in the sense that
A(oqx€) = 0. For example, one can try to construct o, by first choosing a section o4 |v,,
where V,, is a submanifold of U, transverse to the vector field £, and then extend by
parallel translation along integral curves of ¢ to construct a section o, over a tubular
neighbourhood U, of V,. Local sections of this type are described in [U82a, pp. 14-15]
and [F-U, pp. 146-147].
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Given a system of (A, £)-parallel local sections o, we have £ = o4& and Yt = 05Dt
over U,. Hence, for w € Q'(X,ad P) we see that o%¢fw = ¢fow and JZLéw =Leolwon
U,, and similarly for A € Q'(P, g). Indeed, one can see that the transition functions {uqz}
are constant along the vector field £. For if o3 = 04uag, then 0. = 00 Uag+0a - Uapé,
which gives A(og.€) = Ad (u;é)A(aa*f) + A(oq - uaps), and thus duyg(§) = 0, since
A(0ar€) = A(0p+&) = 0 and A(0q - uap«€) = uas«€. Here, 04 - uqp«€ is the vector field on
P|y,, obtained by differentiating the maps G — P given by u — o4(x)u. When computing
Lie derivatives of local connection one-forms or ad P-valued one-forms with respect to a
vector field £, we shall always require that the local sections o, be (A, £)-parallel.

It is often useful to express Léw in terms of covariant derivatives. Suppose X has a
C*° metric g. We have Lew = tgdw + digw, or in local coordinates, (Lew), = ¥ 0w, [0z +
w, 0¥ /0xt. We find that

(3.4) Lew = Vw4 w(V9E),
using normal geodesic coordinates {z#} and (A, ¢)-parallel local sections {o,}. In the
sequel, we omit the “tildes” to indicate lifts of vector fields or diffeomorphisms on the
base to the total space of a principal bundle — this being understood from the context.
Remark that if ® : X — X is a diffeomorphism and w € Q'(X,ad P), then we have
Le®P*w =0 Lo, ¢w.

Let A be a C* connection on a G bundle P over S* and let w € Q'(S* ad P). For
any t € (—o0,00), let & be the dilation of R* given by z + e’z and for any p € R*,
let 7, be the translation of R* defined by 7, : = — 2 — p. If § and 7, again denote
the conformal diffeomorphisms of S* induced by the chart x = ¢!, then the group C =
SO(4) x D x T of rotations, dilations, and translations of R* is identified with the subgroup
in Conf(S*, ¢1) of diffeomorphisms which fix the south pole s € S*. Setting ¢ = &; or 7,
these diffeomorphisms are generated by the vector fields

) 9
n_- _ — _ -
gon nd —P=-PiEo

(3.5) r=ux
We always choose p € R* with |p| < 1. We next describe the construction of (A4, £)-parallel
local sections o, for £ = r or p.

Considering the group of dilations D, let ¢,,, 05 be the local sections formed by choos-
ing points in the fibres P|,, P|s and then parallel translating along radial directions from
the poles. The transition function u will be constant along the radial directions, du(r) = 0,
and the local connection one-forms ¢} A are in radial gauge. On the other hand, considering
the group of translations T, suppose first that p = 9/0z* and let 0, |gs, 04|ss be the local
sections formed by parallel translation from the north and south poles of the three-sphere
S?* C S* defined by the image of the z'z*z*-plane under the map ¢, : R* — S*\ {s}.
We obtain local sections ¢,,0, by parallel translation along the z%-axis. The transition
function u will now be constant along the z*-axis, du(p) = 0, and the local connection
one-forms oA are in a transverse gauge. By a linear change of coordinates, the same
argument applies to arbitrary translations.
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For the dilations, we have
défw
dt
using Lew = tgdw + degw, or in local coordinates, (Lew), = £Y0w,/0z" + w, 08" [Ox".
Similarly, for the translations we have

=Lrw = tpdw + w,

t=0

(3.6)

*
drf,w

(3.7) -

e —Lpw = —ipdw,

where p = p*9/0z".
For any A € (0,00), let ¢y be the diffeomorphism of S* defined by the chart x = ¢!
and the dilation cy of R* given by z — /). Then c¢) = §; with t = —log A, and so from

Eq. (3.6) we have %cjw = —%c’j\ﬁ;rw. Similarly, for the translations 7,, ¢ € R*, we see
that Eq. (3.7) gives %T;‘w = —7,Lpw, where 9/0p = p"0/0q" on the left-hand side and
using Ty4¢p = @¢p © T4 on the right. Combining these actions, we find that
(3.8) X R cexLrw and 8_qu W= -7 AALpw,

Similarly, considering the action of the dilations c¢) and translations 7, on connection
one-forms, we have

3N —XT;‘chPFA and %T;ciA =
These derivative formulas play a significant role in the sequel.

It is convenient at this point to recall Taubes’ definition of a centred connection over
the four-sphere [T88, p. 343]. Let A be an ¢1-ASD connection on a G bundle P with
c2(P) = k over S* with its standard metric g;. Pulling back via the chart z = ¢! :
S*\ {s} — R* we obtain a §-ASD connection A on a G bundle P over R* with its
standard metric 6. Let © denote the flat connection on the product bundle. Suppose
A # O: then the mass centre ¢ and scale A are defined by

(3.9) “extpFa.

* %k _ _
ch)\A— /\Tq

(3.10) q = Centre [A] = 871'12k /R4 |F4|? d*z,
A2 = Scale’[4] = 87r12k /R4 |z — q|*|Fal* d*z.

If A =0, we set Centre[A] = 0 and Scale[A] = 0. The connection A is called centred if
Centre [A] = 0 and Scale[A] = 1. Eq. (3.10) leads to the following T'chebychev ineqality:

(3.11) / |Fa|*d*z < 87*kR™2, R>1.
|z—gq|>RX

Hence, the ball B(q, R)\) contains A-energy greater than or equal to 87%k(1 — R™?%).

Setting fx 4 = cx 0 74, we see that Centre [(f):;)*A] =0 and Scale[(f):;)*A] = 1. Let
M, denote the moduli space of g1-ASD connections on the bundle P over S* and let M}
denote the moduli space of centred gi-ASD connections. Note that M consists of a single
point representing the standard one-instanton over S*. More generally, the relationship
between M} and M} is explained below:
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Proposition 3.5. For any k > 0, the space M} is a smooth submanifold of M. More-
over, My, is diffeomorphic to M} x R* x (0,00).

Proof. One argues as in [T88, pp. 343-344] and [T84b, pp. 365-367]. Given [A] € M} with
Centre [A] = ¢ and Scale[A] = A, set fy, = ¢x 0 7y. The map [A] — ([(f;;)*A],q, A) then
gives the required diffeomorphism. a

3.3. Gluing construction of approximately anti-self-dual connections. We
describe the approximate gluing constructions of Donaldson [D86], [D-K], and Taubes
[T82], [T84a], [T88], adapted to the case of “bubble trees”. For clarity, we first discuss
the construction of approximately anti-self-dual connections over single connected sums.
Let Xy be our closed, smooth four-manifold with metric gy and injectivity radius og, and
let X; = S* with its standard round metric ¢; of radius 1. Let z; be a point in X, and
let x1,, 71 denote the north and south poles of Xy. Let P; — X; be principal G bundles
with ¢2(P;) = ki, ¢t = 0,1. Let F Xy be the principle SO(4) bundle of oriented, orthnormal
frames over X.

A choice of frame vy € FXy|,, defines a geodesic normal coordinate system qbl_l =
exp,! : Bi(0o) — R* Denote ¢p1q4 = do, @ = s,n, where ¢ : Uy = $*\ {a} — R*
are the standard coordinate charts on the four-sphere. Let Byi(r) = B(x1,r) be the open
geodesic ball in X with centre z; and radius r, and let Bys(r) = ¢15({z € R*: |z] < r}),
an open ball in X; with centre z15. Let Qq(r,R) = Q(x1,r,R) be the open annulus
Bi(R) \ Bi(r) centred at z; € X, with inner radius r and outer radius R; similarly, let
Qs(r, R) = Q(z15,7, R) be the open annulus Bi4(R) \ Bis(r) in X;.

Let N > 4 be a large parameter, to be fixed later, and let A\; > 0 be a small scale
parameter such that /\1/2]\7 <« 1. We define open sets X} = X \El(N_l)\}/z), X[ =
Xo \Fl(%/\i/z), and X" = X, \§1(2N/\1/2) — the complements in X of small balls
around the point zy. Likewise, define open sets X{, X{, and X" in the sphere X;. Let
Q, denote the annulus Ql(N_l/\i/2,N/\i/2) in Xy and let Q5 = QlS(N_lx\}/Z,N/\}ﬂ)
be the corresponding annulus in X;. Let ¢; be the dilation map on R* defined by z
z/Ay. Define balls By = Bl(N/\}/z) and B} = 31(2)\}/2) centred at z; in Xy and a

diffeomorphism
3.12 fi=¢inocio¢;' B — X!
1 1 1

Hence, f; identifies the small balls B} and B{ in X, with the open sets X{ and X{ in Xy,
and restricts to a diffeomorphism f; : Q1 — Q4.

We let X be the connected sum Xo# 5 X;. In §3.5 we define a smooth metric ¢ on
X which closely approximates the metrics g; on each summand X! and such that the map
fi: B} — X1 is conformal. Thus, (X, ¢) is conformally equivalent to (Xg, go).

Let A; be g;-anti-self-dual connections on the bundles P; — X;, + = 0,1. The con-
nections Ag, Ay, together with a choice of points in the fibres Pyl,,, Pil|z,,, define local
sections o1 : B1(09) = Py and o015 : X1 \ {z1,} — P1 by parallel transport along radial
geodesics through z1, ;5. Hence, we obtain local trivialisations Py|p, ~ B; X G and

P1|B1S ~ Bls x (.
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Let by > 4N/\i/2 be a small parameter, b; < imin{l, 00}: we will eventually set

by = 4N/\}/2. Choose cutoff functions 1; on X; such that 0 < ¢; < 1, with b9 = 1 on
Xo \ Bi(b1), ¥o = 0 on By(by/2), and similarly for ¢y on X;. We let A = g Ay be the
C'*° connection on the bundle 7y : Py — X defined by

Ao OIlP0|X\B (b)
3.13 Al = * " oAEIT
(3.13) 0 {Wo(%/)oUlAO) on Pi|p,(,)-

Of course, we have the analogous definition for the C'* connection A} over Xy and we
obtain almost anti-self-dual connections which are flat on the balls By, Bj,.

To construct the cutoff functions ;, choose a C'> bump function ¢ on R! such that
((t) =1for t > 1 and ((t) = 0 for t < 1/2. Define a C* cutoff function ¢, on R* by
() = ((|z|/b), for any b > 0. Set 1oy = (¢ ' )* 1y, and extend by 1 on Xg\ B(z1,b;) and
by zero on B(zq,b1/2) to give 1o € C=(X,); likewise, set 1 = (67, )*thp, and extend to
give 11 € C*°(Xy). Each v; extends by zero to give a C* cutoff function on the connected
sum X.

Choose a G-isomorphism py € Gl,, where Gl;;, = Homa(Py|zy, Pile,,) =~ G is the
space of “gluing parameters”. Using the connections A; over the small %bl—balls, spread
out the fibre isomorphism p; to give a bundle isomorphism pq : Pylg, — Pi|q,, covering
the diffeomorphism f; : Q¢ — Q3. Thus, o1p1 = ffo15s on ;. We define the smooth
connected-sum bundle P — X with second Chern class ¢2(P) = k = ko + k1 by setting
P|x; = Py|x; and P|x: = Pi|x;. Note that the bundle P is defined by transition functions
independent of the scale \;. We define a smooth connection A" = Aj#A] on P — X by
setting A’ = A! on each summand X/.

If T4, are the isotropy groups of the connections 4; and I' = 'y, x I'4,, then we
recall that the gluing construction gives a bijection between the gauge equivalence classes
[A"(p1)] in Bx & and Gl,, /T [D-K, p. 286].

Using the diffeomorphism f; : B} — X, we pull back the bundle P over X to a
bundle P over Xy, given by P|X6 = Py|x; and P|Bi = fiPi|p;. We have an induced
system of local sections of ]3|B6 given near x1 by 61, = fio1n : By = P, 015 = f{o1s :
B\ {z:1} —» P, and 64 = o7 : Ql(N_l/\i/Z,_Oo) — P. The corresponding transition
functions w1 = ffuq : By \ {z0} = G and py : Q1 — G are determined by 615 = 61U on
Bi\{z¢} and o1p1 = f{51s on Q.

On the pull-back bundle P — X, we define the corresponding smooth pull-back
connection A’ by setting A’ = A/ on P|X6 and A’ = frA" on P|Bi' We obtain local
connection 1-forms for A’ over X, given by 67, A’ = ffo¥, A on the ball B}, 6% A" = o A}
on the annulus Ql(N_lx\i/z, 00), and o7, A" = fyof, A} on the punctured ball By \ {z;}.

On the annulus 2, we have &TSA’ = ai‘fi’ = 0, and since
(3.14) o1, A" = py 6T AYpr + py 'y on

we see that dp; = 0 on Q7 and so p; is constant on €. The transition function iy
on B \ {zo} is independent of Ay, since uy on Xy \ {z1,, 215} is constant along geodesics
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connecting the north and south poles. Thus, the bundle P is defined by transition functions
which are constant with respect to A;.

We now generalise the preceding discussion to give a construction of approximately
anti-self-dual connections over multiple connected sums. The description we give here is
closely related to Taubes’ iterated gluing construction [T88, §4]. The construction parallels
the description of the ends of the bubble tree compactification Mx, r(go) described in
Chapter 4.

It is convenient at this point to introduce some terminology. Let I = (iy,...,1,)
denote a multi-index of positive integers. The length of I is r; we regard 0 as a multi-index
of length zero. Given I = (i1,...,4,), we let I_ = (¢1,...,2,—1); we will often denote a
multi-index of the form (¢1,...,4,41) by I} or if we wish to be more specific, by Iy, where
j = ir+1 > 0 or s,n (indicating north or south poles of S*), with a slight abuse of notation.
Let J be an oriented tree with a finite set of vertices {I}, including a base vertex 0, and
a set of edges {([,I+)}. If I = (41,...,%,) and I = (j1,...,J¢), then we say I < J if
r<tandJ =(t1,...,0,Jr+1,--.,7¢). The valence of each vertex I is the number of edges
emanating from that vertex. The height of the tree J is the number of levels — the length
of the longest multi-index minus one. With respect to a given vertex I, the edge (I_,I) is
called incoming and the edge (I,I4) is called outgoing.

The construction of a C°°, approximately g-anti-self-dual connection A’ of second
Chern class k > 1, associated with a tree J, requires the following data:

Data 3.6. Gluing data for approzimately anti-self-dual connections.

(1) Toeach vertex I, we associate a gr-anti-self-dual connection A7 on a G bundle Py — X
with ¢o(Pr) = ky > 0. If I = 0, then X is the base four-manifold with metric go,
while if I > 0, then X; = S* with its standard round metric g; = ¢; of radius 1.

(2) To each edge (I_,I), we associate the data (b, Ar, pr, 2y, vr) given by the

(i) Connection cutoff parameter by;
(ii) Scale parameter Ap;
(iii) Bundle gluing parameter p;r € Gl,,, where Gl,, = Hom(Ps_ |4, Prls,.,);
(iv) Centre or gluing site x5 € X1_;
(v) Frame vy € FXgl|,, if I_ =0.
(3) Constants by, dy, Ag, N.

For convenience, if I, = Is, we denote bys = by, A\;s = A7, Nis = N, and prs = pr.
We let z7,,, 15 denote the north and south poles of the spheres X; = S*. If I_ > 0, then
rr = ¢’I_n(QI) € X7, where gy € R*. Define

(3.15) b=maxb; and )= max\;.
1e€d 1€l

The gluing data should satisfy the following constraints:
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Condition 3.7. Gluwing data constraints.
(1) Scales: 4N/\}/2 < by < Tminf{l,00,do}, 4 < Ny <N, and 0 < A7 < Ao;
(2) Separation of centres: Suppose xr,xp € Xy_.
(1) If I_ =0, then dist go(aij,l’]/) > 4(1)[ + b]/),
(11) If I_ >0, then |qI — q1/| > 4(1)[ + b]/);
(3) Topology: » ;cqkr =k and k; > 0 for some I > 0.

Remark 3.8. Definition 3.6, together with the constraints of Condition 3.7 should be
compared with the definition of “bubble tree ideal” connections in §4.3. The requirements
on the scales and separation of centres are in place simply to ensure that the different
gluing regions do not interfere with one another.

The gluing procedure now generalises to give a C'*° family of approximately g-anti-self-
dual connections A’ = #1354’ on a bundle P over a multiple connected sum X = #7¢5X7.
First, consider the definition of coordinate charts, open balls, and annuliin X,. If I_ =0,
let qu_l = expv_l1 : B(xr,00) — R* be a geodesic normal coordinate chart defined by a
point vy in the oriented frame bundle fibre FX,|,,. Let Br(r) = B(xr,r) be the open
geodesic ball in Xy with centre x; and radius r.

Turning to the four-spheres Xy, for any I > 0, let ¢74 = ¢o, @ = s,n be the standard
inverse coordinate charts on X;. Define open neighbourhoods in X by

(3.16) Bry(r) = B(zrs, 1) = ¢1s ({2 €R*: z] <r}) and
BI+(T) B(;L']_I_,T) = @In <{$ eR*: |5L’—q[+| <T}).

Let Q(r,R) = Q(zs,r, R) be the open annulus B;(R) \ B(r) centred at z; € X;_, with
inner radius r and outer radius R.

Define small balls B} = B(J}],N)\}/Z) and annuli Q; = Q(Q:I,N/\}M,N/\}ﬂ) in Xy_,
I > 0. The open subset X} is the complement in X_ of the balls B;(N ! )\}/2), the open
subset X7 is the complement in X;_ of the balls FI(%)\}/Z), and the open subset X7’ is

the complement in X;_ of the balls FI(QN/\}/z) We define identification maps f; by
(317) fI:¢InOCIO¢]_1:BII — X}v

where ¢y is the dilation z — x/A; on R*. The maps ¢; above are local coordinate charts
on X;_given by

-t if I_ =0
(318) ¢I—1 — {expvl 1

TI O gbj__ln if I >0,

where 77 is the translation  — = — ¢; on R*. The charts qu_l = expv_l1 may be replaced
by é;l = Tp; O expv_Il7 Ipr| < oo, if we wish to compute derivatives with respect to the
centres x7 in Xy. For notational consistency, we let fy denote the identity map on Xj.
Using the diffeomorphisms fr : Q7 — 7, we obtain a connected sum X = #¢9X7.
We again defer to §3.5 for the precise definition of a metric g on X closely approximating
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the metrics g; on the summands X} and such that the maps f; : B} — X} are conformal.
With this choice of metric, the connected sum (X, ¢) is conformally equivalent to (Xo, ¢o).

We have a local section o of P;_ defined by a choice of point in the fibre Pr_|,, and
Aj_-parallel translation from z; similarly, we have local sections o7,, 075 of Pr defined
by a choice of points in the fibres Py|.,,, Pr|.,, and Aj-parallel translation from zr,, zs.
These sections provide local trivialisations Pr_|g, (o) =~ Br(oo) x G and Prlx\{z;,} ~
X7\ {2} x G. Define C* cutoff functions ¢y on each summand X; by setting

(3.19) vr = (67, ) ¢, [ 1677 r, on X1,

Iy

where the factor (¢]_81)*77/)bl is omitted when I = 0. Note that )y = 0 on the balls Brs(b;/2)
and By, (br, /2) in X7 and smoothly extends by 1 on the complement of the balls Br,(br)
and By, (br, ) in X7. Lastly, extend each ¢ by zero to give a C*> cutoff function on the
connected sum X. Setting A} = Ar_, A} = ¢rAs, we obtain C* almost anti-self-dual

connections A , A’} which are flat on the balls By(b;/2), Brs(br/2).

The gluing parameter p; provides an isomorphism of the fibres : Pr_|,, ~ Prls,,.
Using the connections Ay, Ay, this identification is extended to give a bundle isomorphism
pr: Pr_|a, — Prla,, covering fr. Using these identification maps we obtain a connected-
sum G bundle P — X with ¢2(P) = k and whose transition functions are constant with
respect to the scales A;. The cutoff connections A} on P; patch together to give a C'*°
connection A’ on P. As before, the connection A’ on the connected-sum bundle P over X
pull back via the maps f; to give a connection A’ on a bundle P over Xj.

Lastly, we record some estimates for the connections A" when restricted to a summand
X7. For this and later purposes, we define the following Sobolev norms: Let V97 denote
the Levi-Civita connection on T X defined by the metric g7, so that if f € C>°(X7), then

(320) HfHLfL(XI,gI) = Z ”(Vgl)ifHLP(XI,gI)v

1=0
for any 1 < p < co and integer n > 0. Similarly, if o € QY(X;,ad Py), then
(321) ||a"L£(X1,A1,g1) - Z ||(VAI7gI)iaHLP(XI,gI)'

1=0

It is important to note that these norms will depend only on a set of fized connections,
{Ar}1eg, and a set of fized metrics {gr}res.

Recalling that A} = A, define one-forms a; € Q'(X;,ad Pr) by setting A; =
A"+ ay. Thus

B (1-— @ZJI)JEFAI on BI+(bI+),
“r= {0 on X\ Uy, Br,(br,).

With the aid of bounds for the derivatives of the cutoff functions v ; for C' = C(g;) and
J=1_orlI,

(3.22) |dpslg, <CVT' on Qu(by/2,b5) and ||desllLacx, e, < C,

standard arguments then give the following estimates:
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Lemma 3.9. Let 1 < p < co. Then there exists a constant C = C(Ay, gy, p) such that

- —4/p+1
(a) Narll o9y < OB and [lagl|pr (g < €577

4
(B) IF(AD = (x1,90) < € and [FF9 (Ao (xp 00y < CF”.

3.4. Approximate gluing maps. Adopting a more global perspective, the construction
of §3.3 yields a family of “approximate gluing maps”, §’' : 7/T' — B% , and ' T/T —
B}o,kv which we describe in this section. We first recall that the standard Kuranishi models
give the required parametrisations for neighbourhoods of points [A;] in Mx, ¢, (gr). Let
Ar be a gr-anti-self-dual connection over Xy, with isotropy group I'4, and Hfh = 0. For a
small enough open neighbourhood T4, of 0 € H}Lh, we have smooth I'4,-equivariant maps

(3.23) or TAI — kerdi{f] C Ql(Xj,adP])

solving the gr-anti-self-dual equation FT97(A; + ay(tr)) = 0, t; € Ta,. Setting A;(t;) =
A1+ a(tr), we obtain a homeomorphism

(324) 19] . TAI/FAI — UA]) tr — [AI(tI)L

onto an open neighbourhood Uy, of [A7] € Mx, r,. If Ar is the product connection, 0,
then T'y, = SU(2) and so th # 0, while H}AI = 0. If A; is a non-trivial reducible
connection, then I'4, = S! and HS!I # 0: we have a homeomorphism 07 : Ts, /T 4, = U,
and a diffeomorphism 97 : (T4, \ {0})/T 4, — Ua, \ [A7]. Finally, if A; is irreducible, then
', =(£1) and Hgl = 0: in this case we have a diffeomorphism 97 : T4, /T4, = Uga,.

We now dispose of the construction of neighbourhoods of reducible connections in
Mx, k(g0). Recall that the reducible connections in Mx, r(go) are in one-to-one corre-
spondence with pairs {#c}, where ¢ € H*(X,,Z) satisfies ¢ = k. In particular, there are
only finitely many and so to describe a neighbourhood of any such reducible connection
[A] € Mx, k(g0), we may employ the Kuranishi model 94 : T4 /T'4 — Ua.

We now describe the approximate gluing maps g’ and ?J’, beginning with the parameter
spaces J/T". First, with the centres {z;} and scales {A;} held fixed, the parameter spaces
T4, and Gl;, combine to give a C'*° manifold

(3.25) T =Ty, x [[(Ta, x Glay),
I€d

parametrising a “small” family of approximately anti-self-dual connections. Then

(3.26) T=Ty4 x [[T4,
1€

acts freely on T and T/T" is a C'* manifold. If we allow the centres, now denoted yy, to
move over disjoint balls B(xy,r9) C X;_ and allow the scales A; to vary in the interval
(0, Xg), the parameter space of Eq. (3.25) is augmented to give a C'*° manifold

(3.27) T =Ta, x [[(Ta, x Gla, x B(zr,7m0) x (0, X)),
Ied



18 PAUL M. N. FEEHAN

parametrising a “large” family of approximately g-anti-self-dual connections. Again, I' acts
freely on I and J/I" is a C*° manifold. We fix local trivialisations of the frame bundle F X
over the balls B(z,r¢) and these provide smooth families of geodesic normal coordinate
charts on X.

We note that the almost anti-self-dual connections A’ produced by §3.3 are indeed
irreducible:

Lemma 3.10. Let A’ be a connection on the G bundle P over X defined by Data 3.6
and Condition 3.7. Then A’ is irreducible, that is HY, = 0, for small enough by and large
enough Njy.

The Lemma follows from Aronszajn’s unique continuation principle for solutions to
A 4m = 0 via standard methods, so the proof is omitted. Hence, the approximate gluing
construction of §3.3 gives a C'>° map

(3.28) g :7/T — BX 1, t— [A'(2)],

where B% , has the structure of an L2 Hilbert manifold, n > 3. Moreover, J’ is a C'™
submersion onto its image; see §5.2. We refer to ' as an approzimate gluing map over X
and its image W' C BY% . as an approzimate gluing neighbourhood.

The dimension of the parameter space J/T is given by

(3.29) dimT/T = dim H), — dim H}, + Y (dim H}, — dim H) +8),
>0

since each factor Gl,, x B(xr,ro) x (0, A¢) has dimension 8, dimHgI = dimT'4,, and
HE@; = 0 for all I > 0 by hypothesis. Families of centred gr-anti-self-dual connections
Ar e 1\49(17,61 (gr) are parametrised by small balls TB}; and thus, we obtain a C'*° parameter
space

(3.30) T =Ty, x [ (TS, x Gla; x B(z1,710) x (0, X)),
1€3d

with C*° quotient T°/T of dimension equal to dim Mx x(g). The map §': T°/T — B% , is
a C'™ embedding; see §5.2. 7

Lastly, using the conformal diffeomorphisms f;, the bundle P over X pulls back to a
bundle P over X,. The gluing construction now produces an approximately go-anti-self-
dual connection A’ in B, - The map d" of Eq. (3.28) pulls back to a C* map

(3.31) §:TIT — By,  t— [A()].

Again, J' is a C° submersion onto its image and and is a C'> embedding when the
parameter space T /T is replaced by the smaller parameter space JT°/T; see §5.2. As before,

the image V' of 9 in B, x is called an approximate gluing neighbourhood.
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3.5. Metrics on connected sums. In this section we define a conformal structure
[¢] on the connected sum X = #;e5X;. This is accomplished by replacing the standard
round metric g7 on each spherical summand X} by a quasi-conformally equivalent metric
g1 so that the identification maps fr : B} — X} are conformal. We then construct a C'*°
metric ¢ on X in the conformal class [¢] = [go] and compare the resulting LP? norms for
the different possible metrics on each summand X;. Our construction is modelled after
the constructions of Donaldson and Taubes for metrics on connected sums — see [D86, p.
322], [D-K, p. 293], [D-S], and [T92]. The metric g depends on the choice of fixed base
metric gg, fixed neck width parameter N, scales A;, centres xy, and frames v;. We also
obtain bounds for the derivatives of ¢ with respect to A; and z.

With respect to a geodesic normal coordinate system = = ¢,
covariant components of go satisfy

! on B, (00) C Xo, the

A flgo)uu

(332 (81, 00)u(0) = b and Z22L () o,
* a ¢j1g v
|(¢i190)uu - 6NV|(‘T) S C|JZ|2 and ‘% (‘T) S C|$|7 |$| < 90/27

for some ¢ = ¢(go) [K-N]. The analogous relations hold for the contravariant components
of go. We now define a conformal structure [¢] on X:

Definition 3.11. The conformal structure [g] on X is defined by the C'*° metric gy on
X{ and a choice of C* metric §;r on each summand X}, I > 0, given by

. _ [ hi(2)(8790) un (A1) if I_ =0
(OTngr)uw(2) = { h?(l’)thg(AI«T + ) (5Gr_ ) (Arz) if I- >0,

where |z| < N/\I_I/z. For convenience, we let gr = g1 denote the standard metric on X7
and let gy = go denote the metric on Xj.
Definition 3.11 provides the following expression for g;:

(3.33) (65nd0)uv(@) = K2(2)(6F, 90)un(y(x)), 2| < NAT'?,
where
(3.34) y(;r;) = i_11 0 f;l 0-+-0 fI_1 0 qun(;v)

=X (A, A Qrz +qr) 4 g2 ) -+ +) + Giviy)-

The map fr : B} — X} is now conformal with respect to the metrics §;_ on B} C X}
and §r on X7t

e AR AD 50 () 1. =0
(G170 (x) = { AL (/Ao 4 4 ) (6351 o) L > 0,

where |z] < N/\}ﬂ. Thus, f7gr 1s conformally equivalent to the metric g7 on Q; and so
we obtain a conformal structure [g] on X = #7¢9X7.
We must verify that §; is a good approximation to the standard round metric g; on

X7 for A;; small.
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Lemma 3.12. For any I > 0, the metric §; converges to gy in C'* on compact subsets
of X7\ {z1s} as \i; = 0. Moreover, we have the following bounds:
(a) For any integer | > 0, there is a constant ¢ = ¢(go,[) such that

0"(Stndn)uw  3($1n91)uv
axon . 8.170” 8$a1 . 8:1;6”

< eNZX RAz),  Ja| < N2

The analogous bounds hold for the contravariant components (¢},gr)"", provided
h3(z) is replaced by hi ().
b) Let *;, denote the Hodge star operator for ¢;. Then there is a constant ¢ = c(qg
g1 g p ) g
such that

%5, ¢ = %9 Cllpoe(x,00) < N2 AL nee (xp,0), € € QXX ad Pr).

Proof. (a) This follows easily from Eq. (3.32) and Definition 3.11. (b) This follows imme-
diately from (a) and the definition of the Hodge star operator. a

We will also require bounds for the derivatives of §; with respect to the scales Ay and
centres x7. The following estimates will suffice for our application.

Lemma 3.13. If0 < I < J, there is a constant ¢ = ¢(go,J) such that the following
bounds hold.
(a) For any |z| < NA; 1/2

) ifI < Jandl|I|=1
cA? hi(z) if I < J and|J|>2

CER P
= cN2h2(;z: ifI=Jand|J| =1

‘a(¢§ngj)l“’ )
(z) < eNX AP R2(2) if I =7 and |J| > 2.

OAr

o)
>/
N
T 3
Pl
=

(b) If0/0pr = p$0/0q§, then for any |z| < N/\EI/Z,

‘ a( Tfngj)l“’

(2) < {CNA}/%%(I) ifI=Jand|J| =1
Opr

c/\?lh]%(;z:) it I <.Jand|J| > 2.

The analogous bounds in (a) and (b) hold for the contravariant components of §j, if
h3(z) is replaced by hi ().
(¢) For any ¢ € Q*(X",ad Py), then

Ha*gj < CNA;1/2"C"LOO(X&7g‘]) 1fI:Jand|J|22
2V | P (X" .97) cN? HCHLoo(X'J,gJ) otherwise,
a*g‘] /2
¢ S NN oo (xt g0y -
H 01l (x5, o

Proof. (a) The inequalities follow from Eq. (3.32) and Definition 3.11.



—

GEOMETRY OF MODULI SPACE ENDS 2

(b) The proof is similar. When |I| = 1, we recall that the normal geodesic chart ¢;, =
€XPy,, is replaced by ¢;, = €XPy,, OTq;, in order to compute the required derivative at

¢i, = 0 (corresponding to z;; = ¢;,(0)). The estimates follow immediately from (a) and
(b). O

We next define an honest C'> metric ¢ on X. Consider a neck 27 = f;l(st) labelled
by the multi-index I. We replace the metric §;_ on the annulus ;7 and replace the metric
gr on the annulus Q7 by conformally equivalent metrics m;_gr_ and mygr so that

(3.35) my_gr_ = fr(mrgr) on Q.

Hence, the metrics m;_gy_ and mjgr agree on the neck and patch together to give a C'™
metric, say ¢g, on a neighbourhood of the neck in the connected sum X; #X;. On the

annulus Q7 = é;({x € R*: N_l)\}/2 < |z] < N/\}/Z}) we have

s (A2 [2]2) (6550 ) (@) i1 =0
36) ifionwte = { ol TP e e S

By comparing f;gr and ¢gr_ on €7, a little experimentation reveals that the C'*° conformal
factors my_ and my can be chosen so that

(3.37) k1 <m; <kN' on Q](N_lx\}/z,N/\}/Q),
k'<m; <k on QI(%/\}N,N/\}/Z),
m;_ =1 on 91(2)\}/2,4]\7/\}/2),
and likewise for my on s, for some constant k = £(gp). For each summand X7, we

smoothly extend the my to X} by setting m; = 1 away from the neck regions. This gives
a C'™ metric g on X = #7¢c9X by setting

(3.38) g=mrg; on Xy, foralllel.
The construction ensures that each my obeys
(3.39) kK '<my<kN' onX}), k'<my<wk onX/, andmry=1 on X7}

Thus, the metrics §; and g are equivalent on X7 with constants independent of N, and
equivalent over X with constants now depending on N.

The Hodge star operator *, : Q?(X,ad P) — Q?(X,ad P) only depends on the con-
formal class [¢] of ¢ and so over each summand X} of X we have #; = *p,,5, = *5,. From
Lemma 3.13, we obtain:

Lemma 3.14. There is a constant ¢ = ¢(go) such that for any ( € Q*(X,ad P), then
O* g —1/2

(a) 1555 €l xg) < eNAT ¢ e x,0-
O* g 1/2

() 155 Cle~x. < NNl (x0)

We will often need to compare LP norms defined by the different metrics gy, gy, and ¢
over X; C X. The required “comparison estimates” are below follow in a straightforward
way from Lemma 3.12 and Eq. (3.39), and similar inequalities may be found in [D-K, p.
294].
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Lemma 3.15. For any I > 0, the following holds.
(a) If 2 < p < 0o and 4 < ¢ < oo, there is a constant ¢ = ¢(go,k,p,q), 1 < ¢ < oo, such
that for any w € Q'(X},ad Py) and ¢ € Q*(X},ad Py), then

|wllzacxy,g) < ellwllzacxs,gn  and |[Cllzrxr,g) < ellCllLr(xt,g0)s

lollzacxy g < e Hlwllaxyy  and IClexy g < e HICHLrxy -

(b) If1 <p<oo,n>1,andby is sufficiently small, there is a constant ¢ = ¢(go, k,n, N, p),
1 < ¢ < oo, such that for any o € Q"(X},ad Pr), then

cHallzrixygn < lellrixt iz, lallerxyg < cllallirxygn-

Lastly, having defined the conformal structure [¢g] of X, we apply the estimates for
dir in Eq. (3.22), the estimates for A} and F(A})™97 in Lemma 3.9, and the estimates
for *; — *4, in Lemma 3.12 to obtain a bound for the LP-norm of the g-self-dual curvature

F""g(A’) = %(1 + #4)F(A’) of the connection A’ on the connected sum bundle P over X.
Similar estimates have been given by Taubes and Donaldson.

Proposition 3.16. For 1 < p < oo and sufficently small by, there exists a constant

C = C(go,p,T) such that for any t € T one has ||FT9(A")| 1r(x,q) < C#/p.

3.6. Estimates over connected sums and conformal vector fields. The goal of
this section is to obtain L? estimates for the derivatives with respect to the scales A\; and
centres z7 of ad P-valued one-forms & over the base manifold X, obtained by pulling back
ad P-valued one-forms w over the connected sum X.

Following Taubes [T84hb], [T88], let us begin by defining some useful Sobolev norms on
Q'(S* ad P) and examine their behaviour under conformal diffeomorphisms. Suppose A4 is
a C'° connection on a G bundle P over S%. Let ¢; be the standard round metric on S* and
let § be the flat metric on S*\ {s} obtained via the conformal identification ¢! : $*\ {s} —
R%. Let V49 denote the covariant derivative on Q'(S* ad P) defined by the connection
A and metric g1, while V4% denotes the covariant derivative on Q'(S*\ {s},ad P) defined
by A and §. Define an L? norm on Q'(S* ad P) by

(3.40) ol 280, 4,90) = l0llL2(st,g0) + VA7 0l L2 (51,61
Similarly, if w has compact support in S*\ {s}, define

[wla = IVA0] p2s 5
(341) H(“JHLf(S4,A,6) = H(“JHL2(S4,5) + HVA’JWHL2(§475)'
The properties of |- [4 and || - ||12(g4,4,5) are described by the following result of [T84b].

Recall that C = D x T x SO(4) is identified, using ¢, : R* — S*\ {5}, with the subgroup
of conformal diffeomorphisms of (S*, ¢g1) which fix the south pole.
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Lemma 3.17. [T84b, Proposition 2.4] Given an L? connection A on a G bundle P over

S*%, then the following holds.

(a) |- |a extends to a continuous norm on LiQ'(S* ad P).

(b) The norm |- |4 is C-invariant: for any f € C, |f*w|pa = |w|a.

(c) There exists a constant 1 < z < oo, which is independent of P, A, f, and w €
Q'(S* ad P), such that

Z_IHWHLf(S4,A,g1) <lwla < zllwllpzese,a,90)

Z_1|\WHL§(S4,A,g1) < |\WHL§(S4,A,5) < ZH(“JHL%(§4,A,g1)-

Lemma 3.18. [T88, Lemma 3.1] Let A be a C* connection on a G bundle P over S*
with its standard metric g; and let f : S* — S* be a conformal difftomorphism. Then
there exists a constant 1 < z < oo, which is independent of P, A, f, andw € Q'(S* ad P),
with the following significance:

Z_IHWHLf(S‘l,A,gl) < ffwllnzs, a9 < 2llwllnz s, a,90)-

Recall that cy denotes both the dilation # — z/\ of R* and the conformal diffeo-
morphism of (S*, ¢;) induced by ¢,. A straightforward application of Holder’s inequality
yields the following “transfer estimates” for the maps cy.

Lemma 3.19. Let 2 < p < p; < 4, let A € (0,1], and let U be an open subset of
S*\ B(s, NA'/%). Let P be a G bundle over S*. Then there is a constant C' = C(N) such
that the following holds.

(a) Ifw € QY(U,ad P), then HcinLp(cgl(U),gl) < CAZ/p_z/plHLUHLP1(U791).

(b) IfC € ‘QZ(Ua adP)7 then HCKCHL%c;l(U),gl) S CHCHL2(U791)‘

We next consider the action of the conformal group on Q'(S* ad P). Let fy , denote
the lift to S*, via the chart ¢, of the conformal diffeomorphism cy o 7, on R*. Let P be a
G bundle over §* and suppose w € Q'(S* ad P). Then Eq. (3.8) gives

0fiu 1 Ofsge 1

(3.42) B\ :_Xf;7q£'rw and ap :_Xf;7q'£’Pw7

where 0/0p = p"0/0q". It will be convenient to express the above Lie derivatives in terms
of covariant derivatives. If A is a C* connection on P, then Eqgs. (3.6) and (3.7) imply

(3.43) Lew=w4+ V0 and Lyw= Vﬁ"sw.

This leads to the following estimates for the derivatives of f3 w with respect to A and ¢.
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Lemma 3.20. Let A be a C*™ connection on a G bundle P over S* let U C S*\
B(s,NA'/2) be an open subset, and let w € Q' (U,ad P). Let 8/dp = p"d/dq", |p| < 1.
Then there is a constant C' = C(q, N) such that the following bounds hold.

@ 1053,/ sy S O PRl

(b) Hafi,qw/apl‘L2(f;}1(U),g1) < C”WHL%(U,A,gl)-

Proof. (a) Observe that U = ¢,(B(0, NA™'/2)) and f;;(U) = ¢n(B(q, NA'/?)). From
Eqgs. (3.42) and (3.43), we have

afiqw

= AT Lew and £ Lew = fi) rofy VA0 w on fi L),

where r = y#3/Jy" and f;; . = 2"9/dz" with respect to the coordinates y = ¢! on U
and z = 7,0 ¢, on f;;(U) Since |f)\_; x|, <CAY2 on f)\_;(U), Lemma 3.19 implies

. % * Al
15 el or.00 < MR alns .o + OV IR Ml @) 00
Ab
< CN ]| (v,g0) + OV A0 12 (0,
= CMN2|wll L2 v, 4,65

the last step following by conformal invariance. Lemma 3.17 then gives (a).

(b) From Eqgs. (3.42) and (3.43), we have

8f§7qw

5 _ —/\_1f;7quw and f;’quw = f;;’*pij’qVAﬁw on f;;(U),

where p = p#0/dy" on U and f;’;*p = Ap"d/0z" on f):;(U) Since |f)\_7;*p|g1 < C)\ on
f):;(U), Lemma 3.19 implies

i ¥ wAS
IR apllizirst g0 S CAERY Tl 250 00
< CAIVAwll 2 w,6) < CM[@ll2(0,4.6)-

Lemma 3.17 then gives (b). O

We will frequently need to compute estimates for families of one-forms w over con-
nected sums X and to this end, it will be useful to define suitable Sobolev norms which
depend only on the fixed connections A; and, in particular, the fixed metrics ¢y on each
summand X rather than varying metric ¢ on X. Let P be the G bundle over the con-
nected sum X = #7c5Xs defined in §3.3. Then we may view any w € Q'(X,ad P) as a
collection of wy € Q'(X},ad Pr) which agree over the necks Q; = f;l(QIS) connecting
each pair X7 and X7:

ojwr_ = Ad (pj_l)ffafswj on 7y,

where fr: Qr — Qs 1s the identification map.
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From §3.5, we recall that there is a C'"*° metric ¢ on X which agrees, modulo the
conformal factors my, with the metrics go on the base X} and §r =~ ¢g1 on the four-spheres
X}. Moreover, the LY norms on Q' (X},ad Py), 4 < ¢ < oo, and L? norms on Q*( X}, ad Py),
2 < p < oo, compare uniformly when defined with the metrics g7, g7, or ¢ = mgr on X7.
The constants involved in these norm comparisons are independent of the scale parameters
Ay for forms supported on X} and independent of both the A; and N for forms supported
on X/. Thus, we may conveniently define L? norms on Q'(X,ad P), 4 < ¢ < oo, and L?
norms on (X, ad P), 2 < p < oo, using the metric ¢ on X.

In Chapter 5, we will need to bound the L} norms of solutions w € Q'(X,ad P) to
the g-anti-self-dual equation FT9(A’ +w) = 0 over X. Unfortunately, since the conformal
factors my have badly behaved derivatives over the neck regions, the norm comparisons
described above do not hold for L2 Sobolev norms if n > 1. Of course, problems of this
type are encountered in [D86], [D-K], and [T92]. So, given such an w € Q'(X,ad P), with
w = {wr}res as above, and 1 < p < oo, define

(3.44) lollercxy = D lwrllLrcxr,angn:
=

by analogy with Eq. (6.25) in [T92]. )
Recall that a one-form w € Q'(X,ad P) pulls back to a one-form & € Q'(X,,ad P)
defined by

(3.45) G=fy-fiw on fi' fN(X]) C Xo,

for each J € J. We will need estimates for the derivatives of @ with respect to the scales
A7 and centres 7. To begin, we need suitable expressions for these derivatives:

Lemma 3.21. Let w € Q' (X’,ad Py), let 0 < I < J, and let 8/0p; = pfd/dq. Then:
(a) azTIfg‘---fjw:fg‘--l-fng‘”l, for J < I;

b Wfé‘---f}‘w: A7 fo - fiLew, for J =1;

¢) sarfa - fiw =M g fiLeff, o fiw, for T > T

d) 2=fo frw=fo f22, for J <I;

TN e
et e e e

@ ) JW?
(e Wfé‘...f;‘w:—)\j_fé‘...f}gpwjfor!]:[;
(f %fﬁ"'ﬁw:_)‘I_lfé‘---ffﬁpf};”'ff}w,forJ>I.

Remark 3.22. When I = 0, then 0/9pr = p70/0p} and fr = ¢rpocro ¢7 " is replaced
by f; =¢mocrom,, o qu_l in order to compute the derivative at p; = 0.

These expressions lead to the following bounds for the derivatives with respect to the
scales A\r and centres z of the pull-backs fg --- fjw.
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Lemma 3.23. Letw € QY X,adPy), let U= f; ' o---0f; (X)) C Xo, let 0 < I< J,
and let /0pr = p4d/dqy with |pr| < 1. Then there is a constant C = C(go, N) such that
the following holds.

s <O || 2= for J < I;

(a) ||ax; /o wa)L2(U,go)_ OAL I L2(X7 g0) . 7

(b) %fé‘"'f}w) LUy = ON 1l axg a0, for 12 T
D fr f <O for J < I

() |z 16 fjw‘L?(U,go)_ williacxy g0 ’

(@) || fs - 50|y < Clellngons sgnys for T2 1

Proof. (a) By repeatedly applying Lemma 3.19, we find that

bl
L2 (XY.90)

H 22V}

* * w
H e frw fo"'fja—)q

L2(U790) L2(U7gO)

as required for (a). For J =T and U = f; ' o-+- 0 f;'(X}) C Xy, Lemmas 3.19 and 3.20
show that

. o Offw
RSy I Py
L2(U7go) I L2(U7gO)
offw —1/2
< CH 8/< <CXp / HWHLf(X;,AI,gI)-
Lzt (xp),er)

LetV:fI__l_lo---ofjl( "YC Xy, sothat U= f;'o---0f; (V) C Xy. Then for J > I,

we have

0
H fo o fw

OAr

* * a * *
£ f gy i Fe

L2(U790) L2(U7gO)

a * * *
C HanIfI_,_"'wa
4 L2(f7H(V)91_)
—1/2 rx *
< CA; / Hf1+ ) "waHLf(V,fI*_l_~~~fjAJ,g1)
g CHw”L%(X‘/],fiJ,g‘])
by repeatedly applying Lemma 3.18 in the last step. This gives (b); the proofs of (¢) and
(d) are similar. O

Finally, we obtain our estimate for the derivatives of @ with respect to the scales Ay

and centres z7.
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Proposition 3.24. There is a constant C' = (g, 7 ) such that for any w € Q'(X,ad P)
and t € T, the following bounds hold.

(8) 105/ONll 25 < 100N 12x.0) + X7l

(b) 100/ 0prllL2(x0,90) < CUI10w/prllL2(x.,9) + lwllez(x)):

Proof. From Lemma 3.23 we have

Oow

< ubedl
¢ o1

L2(Xo,90) J<I

—1/2
+ O3 wllnaxn a0
L2(X%,90) J>T

H 2%}

and so (a) follows from Lemma 3.15. Similarly, Lemma 3.23 gives

Ow
<C2 5, +C D wllzacxy,as g0
Hap[ L2(Xo,90) ap] L2(XY.94) JEZ:I 1(X5,A7,90)
and likewise, (b) follows from Lemma 3.15. 0

3.7. Derivatives with respect to scales and centres. We obtain L? estimates for
the derivatives of the connections A’ and A’ and of the g-self-dual curvature F*+9(A") with
respect to the scales A\; and centres xy.

Throughout this section we require that by = 4N/\3/2 for all J. Let us first record the
following bounds for the derivatives of the cutoff functions ¢y for J =1_ or I:

(3.46) |0ws/0N],, SCNTIAT' and  |0dis /0], < CN72A*? on XY,
045 /0p1],, <CNTAY? and  |8dys/0pi],, < CNT2ATT on X7,

where 0/0pr = py0/0q} and |pr| < 1. The constant C' depends only on ¢g;. We now begin
with the L? estimates for derivatives of the connections A’.

Proposition 3.25. Suppose 1 < p < oo and I > 0. Then for sufficiently small \y, there
is a constant C = C(go,p,T) such that for any t € 7,

(a) 104"/0M o (x gy < CN/P 72,

(b) 1904 /0p1 ]| 1n(x. g < O™

Proof. (a) Observe that 0A’/OAr is non-zero only on the supports of 9y;_/OA;r and
Ovr/0Ar, given by the annuli QI(%bI, br)in X; and st(%bj, br)in X7.

Step 1. Estimate of 0A'/O\; over X} . Recall that ¢»;_. = 1 on the complement of
the balls Br(br) in X7_, while 0 < ¢¥7_ < 1 on QI(%bI,bI) and v;_ = 0 on BI(%Z)]).
We have 07 A" = ¢;_07Ar_ on QI(%bI,bI) and thus Jfg—f; = 811)1 ojAr_ on X; . Since
|0 /0N < C’)\I_l by Eq. (3.46) and |07A;_|g, < C'/\}/2 on Q](gb[,b[) by Lemmas 3.1

and 3.3, we obtain the pointwise bound

2
x|,

_lea on (3, b)
- 0 on X}_ \Q](%b[,b[).
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Hence, we get the integral estimate

0A'

noting that ¢ = §7_ on Xy_ \ BI(%Z)]) and appealing to Lemma 3.12.
Step 2. Estimate of 0A'/OAr over X}. A similar argument shows that

(3.48) / 04
x|

OAr
and combining the integral bounds from Steps 1 and 2 gives (a). For (b) we use the

pointwise estimates |9 7/dpr| < C’)\I_I/Z, J = I_,I. The same argument as in (a) then

gives the required bound. d

r
dv, < Cx\P2,

g

p
dV, < O\,

g

Our next task is to obtain a L? estimates for the derivatives of the g-self-dual curvature

FH9(A").

Proposition 3.26. Suppose 1 < p < 4 and I > 0. Then for sufficiently small \y, there
exists a constant C' = C(go,p,T) such that for any t € T,

(a) IOFT9(4)/0A||1s(x,0) < CAF" 7",

(b) JOF (A Opi o x,gp < COF T2 427,

Proof. (a) We note that FT9(A') = F197(4p;A;) on X/, and so OFT9(A")/ONs is sup-
ported on Uy>7_X’. It is convenient to obtain estimates separately over the regions X7 ,
X, and X'}, J > 1.

Step 1. Estimate of OFT9(A")/O\; over X} . On the annulus QI(%bI,bI) we have
FH(A") = 2(1+*5, )F(¢r_Ar_) and

F(pr A ) =1 F(Ar )+ dpr_ NofAr_ + (7 —pr_)ofAr_ NojAr_.

Therefore, we see that

OFto(A) 1 OF (i Ar)
oy e T ) T
OF(pr_Ar_)  OYr_ dyr_ Wr_ .
Y = By F(A]_) + Y /\UIA[_ + (2'17/)]_ — 1) By UIA]_ /\UIA[_.

on X; . The metric §;_ is independent of A; and so applying the pointwise estimates of
Lemmas 3.1, 3.3, and Eq. (3.46), we find that
OF (AN _ [CATY on Q(5hr, 612
8/\1 0 o1l X[_ \Q[(Eb[,b]).

gr_

Consequently, we obtain

(3.49) /X } ‘78F+79(A/)

p
AV, < CA\77P,

g

OAr

where we observe that ¢ = g;_ on Q](%b], br).
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Step 2. Estimate of OF1t9(A")/0\; over X}. We have FT9(A") = %(1 + x5, ) F(YrAr)
and F(@/J]A]) = L/)[F(A]) + dyr A UFSA] + (77/)% — L/J])J?SA] A U;SA[ on X} Thus,

OFT9(AT) 10+, 1 OF (v Ar)
a)\j _53/\1 F(¢IAI)+§(1+*!]I) 5/\1 ’

aF(¢IAI) i a¢] ad¢] * a¢f * *
OAr )Y FAn + OAr AoisAr+ (20 = 1) OAr TrsAr Aol Al

on X}. Applying the pointwise estimates of Lemmas 3.3, 3.12, 3.13, and Eq. (3.46), we
find that

gb?nT (CL’) § C)\I_l on Q]S(%b],b])
T lo Clz|  on X1\ Brs(by).

Now ¢ = gy on X7\ BIS(%b]), and so applying the above estimates and Holder’s inequality
gives

(3.50) / /

I

r
AV, < CN\;7P,

g

OF+9(A")
By

completing Step 2.
Step 3. Estimate of OF19(A")/OA; over X';, J > I. We have

8F+79(;/)JAJ) _la*g_]F
A1 20\

(¢JAJ) on Xf]v
since Ft9(A") = %(1 + %5, )EF(vsA ). The pointwise estimates of Lemmas 3.9, 3.12, and
3.13 show that

OF+9(A")
B,

0 on B]S(%bj)

¢§n o (Ll?) S {C|CL‘| on XJ\BJS(%Z)J)'

Again, g = gy on Xj\ BJS(%Z)J), and so

(3.51) /X

Combining the integral estimates of Steps 1 to 3 then gives (a).
(b) The argument is the same, except that we now use the cutoff function estimates

|0 7 /Opr| < C'/\I_l/z, |ddsp 5 /Bpr| < CAT', J = I_,I, and metric estimates |0gs/dps| <

CNYN? 7> I 0

P
v, < C.

g

QF+9(A")
By

/
J

Lastly, we have L? estimates of the derivatives of A’ with respect to Ay and x7.
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Proposition 3.27. Suppose I > 0. Then for sufficiently small )y, there is a constant
C = C(g0,7T) such that for any t € 7,

() 940 [12(xo) < C-

(b) 104"/ 8prl|12(x0,90) < C-

Proof. (a) The connection one-forms over X, having non-zero derivatives with respect to
A are given by

Al — fofi vr_Ar. over fo_l O"'ij__l(X}_) c X,
fo- - frA; over XI\BIS(Nj_l/\}h)’

where A'I is the C'*° connection over Xy, I > 0, given by

A’I — {fﬂ"'f}%/JJAJ over the regions fI_+1 O"'ijl(Xf,) c X,

YrAr over the complement of these regions in X7.

It 1s convenient to consider the estimates over these different regions of X separately.
Step 1. Estimate of Ofy --- f 1 Ar_/OA;. We have A = fo 1 vr_Ar_, which is

supported on Uy = f; ' o+ 0 f; (X} ) C Xy, and so %A' = f5fi aaTI;/)I_AI_ on
U,. Lemma 3.19 implies that

. . Ovr_Ar_ Ovr_Ar_
for I =gy, =T -
1 L2(U17gO) 1 L2(X}_1gl_)
We have o7¢r_ A;r. =1r_o7Ar_, where the section oy is chosen so that o7 A7 is in radial

gauge, and so the pointwise estimates of Lemmas 3.1, 3.3, and Eq. (3.46) show that

Ovr_Ar_
ONr

<{0A;1/2 on Qr(Lbr, br)
o L0 on X;_ \ Br(br).

Noting that ¢ = gr_ on X;_ \ By(br), we obtain the integral bound

/ ‘ ovr_Ar_
v | on

and combining the preceding integral estimates gives || %A/HU(Uhgo) < C'/\}/Z, completing
Step 1.

2
dv, < CAp,

g
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Step 2.  Estimate of Off --- ffvrAr/0A;. We denote Al = fo - fivrAr, which is
supported on U, = fo_1 0. ofj_l(X}) C Xy, and so %A’ =fifi %f}‘@/}pﬁl[ on U,.
Repeated application of Lemma 3.19 then gives the integral bound

OffvrAr
OAr

OffvrAr

Fi o fi oy

o

L2(U27gO) L2(X}_7gl_)

Recall that Eq. (3.9) implies %f}‘@/};AI = A\ ' fruF(¢YrAr) on B}, The curvature

F(4rAr) is supported on X7\ BIS(%Z)I) and %fﬁ/}pﬁl[ is supported on BI(%Nj_l/\}/Z).
Then,
|z]

TEaED
and since ¢5ff e F(YrAr)(z) = /\I_lqunarF(g/)IAj)(x//\j), we obtain

0Tt F (1 Ar)]s, (2) < K

Al
AK T
(z) < (A + [2[*)?
or_ 0 if o] > 1NN

LOfrrA; if o] < 1NN

oy e By

where K = || F(¢pr A1) 1< (x,,g;) 18 bounded by a constant C' independent of A; by Lemma
3.9. But ¢ = g7_ on BI(%NI_I/\}M) C X7 , and moreover, the metrics §;_, gr_, and

Or_ are equivalent over the ball BI(%Nj_l/\}ﬂ), with constants depending at most on z;.
Thus, we obtain the integral estimate

/ Ofr Al
Ry,

and so, combining these bounds, we have H%A’HLQ(U%%) < CAp, completing Step 2.

Step 3. Estimate of Off - f;‘A}/@AI We have A/ = fi - frbsAy over V3 = fI_+1 0
o) f;l(Xf]) C B’I+ C Xy, with J > I. We denote A’ = fo - f}‘fl’l and observe that

~

%A :fé‘...f;ﬁ_%f}‘fl’]over(]g,zfo_l o fr ( 3) C Xo. Thus,

2
dV, < CA2,

g

ofr Ay
ONr

= A7 fiuF(AL) = = P (ff, - i Ay)
= A ST [ F(YsAS).
Note that OA’ '/OA1 is supported on f; ' (B ) C Bj.

Asr = y*0/Jy" with respect toy = qun on X7\ {zss}, we have f;.'r = 2#9/dx" with
respect to = ¢, ' on Bf. If |y| < Ry on B’I+, for some constant 0 < Ry < oo depending
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at most on 7, then |z| < RyAr on fI_I(B/IJr)' Thus, |f;,'rly;, < RoAsr on fj_l(B’IJr) and
so we have the pointwise bound

DA’ . _
‘ L §R0|f1"'fJF(A/J)|gz_ on ffl(B/I+)-

OAr

gr_

Therefore, with the aid of repeated applications of Lemma 3.19, we find that

fieesy 2 o4

<C
A1

L2(Us,g0) L2(f1_1(V3)7!11_)

S CIfT - FIFAD 2471 (v 1)
< CIF(AD 2 (xy,

7gJ)'

BA/

557 < C, completing Step 3.

and since HF(AIJ)HN(X'J,W) < C, this gives ( :
L2(Us, g0

Combining the results from Steps 1 to 3 then yields (a). For (b) we use the cutoff function
estimate [0y 5 /0pr| < C’)\I_l/z, J = I_,I. The vector field r is replaced by p = p}d/dy*,
with respect to the coordinates y = ¢I_73 Then, fI_*lp = Arp4d/0z" with respect to the
coordinates = = ¢;' and we have the vector field estimate |f;.'p| < RoAr on fj_l(B’IJr).

The required bound then follows by an argument similar to that of (a). O

3.8. Derivatives with respect to bundle gluing parameters. The purpose of this
section is to obtain estimates for the derivatives of the almost ASD connections A’ and A’
with respect to the bundle gluing parameters p;y € Gly, I > 0. These estimates may be
extracted from [D-K, §7.2] and we include them here for completeness.

Since we wish to differentiate a family of connections A'(pr) on a family of G-bundles
P(pr) with respect to the gluing parameters p; € Gly, we first pull this family back to an
equivalent family on a fized bundle, say P(pr), as described in [D-K, p. 296]. Let pr € Gl
be a given gluing parameter: then points py in a small neighbourhood of p; in Gly can be
written in the form p = prexp(v), where v € Vi = ad Pr|,,, ~ g. One regards the fibres
of P;_ and Pr as being identified by p; and so v may considered as a local section of both
Pr_ and Py, covariantly constant with respect to the connections A} , A’.

We digress in order to construct a set of cutoff functions {77} on X such that
Y resv1 = 1. These cutoffs will be needed here and again in §5.1 for patching together
certain integral operators over the X7 to give an integral operator over X. Choose a bump
function v € C*°(R') such that v(t) = 1if ¢t > 2 and y(t) = 0 if t < 1. Define a cut-off
function vy € C=(R*) by

(3.52) (@) =4(2|/A?), = eRY

Now define C'*° cutoff functions 47 on each summand X by setting

(3.53) 11 = (67 (1 =) [167,) 9, on X1,

Iy
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where the factor (¢7,')*(1 — va,) is omitted when I = 0. Note that y; = 0 on the balls
BIS(%/\}/Z) and BH_(%)\}_/'_Z) in X7. We extend ~7 to a C* cutoff function on X by zero

on these balls and by 1 on the complement of the larger balls B]S(Q)\}/Z) and BI+(2)\}_/|_2)
in X7; then extend by zero outside X7 C X to give v7 € C*>(X). By construction, we
have > ;577 = 1 on X, with a slight abuse of notation. Indeed, note that f; maps the
annulus QI(%)\I, 2)1) around the point z; in X7_ onto the annulus st(%/\j, 2)1) around
the south pole z7, in X7. Then, ffvr + v7_ = 1 on each annulus Q7. Lastly, note that
there is a constant C', depending at most on the metric gg, such that

_ —2/p—1/2
(3.54) dyilg < CXTY2 on Q1 Qre and  |ldyr|lpecx, g < OXPTHE
for any 1 < p < oo. Define gauge transformations u;_(v) on Aut PI_|X} and us(v) on
Aut Prlx; by setting

_ [exp(yrv) on §y
359 )= {770 e

[ exp(—yr_v) on Qr,
uI(v)_{l on X7\ Q.

Note that u; has a natural extension to a gauge transformation of Py over all of X; — equal
to exp(—v) on Bry(N;! /\}/2), the ball enclosed by the annulus Q75. Similarly for the gauge
transformation u;_. After identifying the bundles and base manifolds over 2 = Q; = Q.
we have uI_uI_1 = exp((y7_ + 71)v) = exp(v). Hence, relative to the flat connections
AL A the gauge transformations vy differ by a constant bundle automorphism over
and so their action on the connection A’(pr) is the same: ur_(A'(pr))la = ui(A'(pr))la-
Therefore, while the automorphisms u; do not patch together to give a global automor-
phism of P(py), their actions on the connection A'(pr) do. Indeed, we can define a con-
nection A’'(pr,v) on P(pr) by

50 W)= {EG) 0

If pr = prexp(v), the connections A'(pr,v) and A'(pr) are gauge equivalent [D-K, p.
296]. Thus, as desired, we have an equivalent family of connections A'(pr,v) on the fixed

connected sum bundle P = P(pr). Let L;y C Gl; be a coordinate neighbourhood and
suppose pr € Ly. Then

(3.57) gD By — Ly CGly, v— pr(v) = prexp(v)

is a coordinate chart centred at pr, where By is the unit ball in g, and there is a C'*®

embedding
(3.58) gD By — Ax p, v—s A'(pr,v).

It remains to consider the derivative of the family A’'(pr,v) with respect to v.
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Recall that if v = u(s) is a one-parameter family of gauge transformations, B is a
fixed connection, and B"(s) is the induced one-parameter family of gauge transformed
connections, then dB*/ds(0) = dg«(u~'%(0)), where u='4(0) € Q°(X,ad P). Although
the uy_,uy are not globally defined gauge transformations, this differentiation formula still
applies to the one-parameter families u;_(s) = us_(sv) and u;(s) = us(sv). Therefore, we
have

oA d dar(vrv) on X; NQ
(3.59) 7 (pr) = EA’(,EI,SU) = —da(yr_v) on X;NQ
o= 0 on X \ Q.

This leads to the following estimate for the derivative of the family A’(pr) with respect to
the gluing parameters pr; a related and more general estimate is given by Lemma 7.2.49
in [D-K].

Proposition 3.28. Let 2 < p < 4 and suppose that 4 < ¢ < oo is determined by
1/4+41/q=1/p. There is a constant ¢ = ¢(go,p,T) such that

(a) elolAy" ™" < 104"/0v]lagx,gy < M olNFP T,

(b) colX}? 7% < 04'/00] 1o x.) < oINPT

Proof. Note that v7_ + v = 1 on Q and so da/(yrv) = —da(yr_v) on Q. Moreover,
da(yrv) = dyr Av on Q, and so we have ||da(v1v)| La(x,9) = || - ||dv1||La(x,9)- From Eq.
(3.54) there is a constant ¢ > 0 independent of A; such that

o

_ 2/q—1/2
81} S c 1|rl}|)\1/(1 / )

La(X,g9)

2/q—1/2
c|v|/\1/q / <H

since ||[0A'/Ov]|pa(x,g) = |da(71v)||La(x,9)- Then (a) follows since 2/q —1/2 = 2/p — 1,
and likewise for (b). O

Using the conformal maps f;, we pull back the family A" = A’(pr,v) on the fixed
bundle P over X to a family A'(pr,v) on the fixed bundle P over Xj.

Proposition 3.29. If2 < p < 4, there is a constant C = C(go,p,T) such that for any
t €T, ||0A /80| 1r (0.9 < CAFP T2,

Proof. Since 0A’/0v = 0 outside the annulus Q7, C X}, Proposition 3.28 gives

2/p—1/2
§ C)\I/P / .
LP(X7,91)

0A'
Ov

But A’ = fefrAon U= fy'o -0 f7 (X)) C Xy, and so Lemma 3.19 gives

0A'

<
ov ¢

LP(U7gO)

foro f1

0A'
ov

Lr(X7.91)

Combining these estimates gives the desired bound. O
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3.9. Derivatives with respect to lower moduli. In this section we obtain L? estimates
for the derivatives of the connections A’, A’, and the self-dual curvature Ft9(A") with
respect to the “lower moduli parameters” ¢;. The bundle P; carrying the family of connec-
tions {AI(tI)}tIETAI can be assumed to be fixed with respect to the parameters t € Ty,
since the space T4, — an open ball in Hzlh centred at 0 — is contractible. However, the
local sections o74(tr) are defined by the connections Ar(tr) (together a choice of point in
P]|r1+) and will vary with ¢;. Thus, the bundle gluing maps for the connected sum bundle
P, defined by o1, (tr) = o1, spr, (tr) (suppressing the identification map fr : Qr, — Qr ),
will in general vary with ¢;. We may suppose that the remaining parameters are fixed and
thus we obtain a family of connections A’(¢7) on a family of bundles P(¢;). The difficulty,
of course, is that unless we have a family of connections defined on a fixed bundle, we can-
not define the derivative A’ /0t;. Problems such as these are discussed in [D87, p. 423].
For our purposes, we note the bundles are all isomorphic and as T4, 1s contractible, the
connections A’(t7) could be pulled back by bundle isomorphisms h; € Hom(P(0), P(tr))
to an equivalent family hA’(¢;) on the fized bundle P(0) and then we could define

QA" OR*A’

(3.60) 5, = ot

Since any two such families hr(t;) of bundle isomorphisms would differ by a family of
automorphisms of the fixed bundle P(0), then 0A’/0t; would give a well-defined tangent
vector to B;(o) at [A'(t;)] using (3.60). Naturally, the analogous remarks apply to the

~ A

family of connections A'(#7) on the bundles P(tr).

In our case, a family of isomorphisms h j(t7) : P;(0) — Pj(t7) may be described quite
explicitly, in a manner similar to that of §3.8, and these will give a gauge equivalent family
of connections hjA'(tr), iﬁfl’(t]) on fixed bundles P(0), P(O) respectively, although just
as in §3.8, the isomorphisms h ;(t7) will not patch together to give a global isomorphism
of P(0) with P(t;) or P(O) with P(t[). Nonetheless Eq. (3.60) still makes sense and this
allows us to estimate the length of the tangent vector 0A’/Jt; in terms of derivatives of
the local connection one-forms, as desired. Let h(tr) : Pr(0) — Pr(t;) be a family of
bundle isomorphisms represented locally by o7, (0) — o7, (¢)0r, (t7). Then h7A(tr) is an
equivalent family on the fixed bundle P;(0), with

o1, (0) hr(t) Ar(tr) = 61, (tr) or, (tr)* Ar(tr)0r, (1) + 61, (tr)""d6y, (t1).

Note that while the local connection one-forms o, (t7)*Ar(tr) are in radial gauge, this will
not in general be the case for the one-forms o, (0)*hr(tr)*Ar(tr). We next consider the
variation in the bundle gluing maps pr (t7) induced by the variation in oy (t7) with #;.
Over X7, we replace 6, (tr) above by 6, (t1)exp(yr,vr(tr)) and over Xy, , define hy(tr)
by right multiplication with exp(yrvs(tr)). Recalling the notation of §3.8, vy : T4, — g
is a smooth map with v(0) = 0 defined (for small enough T'4,) by the identity ps (t7) =
pr,.(0)exp(vr(tr)). Lastly, for J # I,Iy, we set hy(t;) = 1. Then, for the remainder of
this article, we require that the derwatives OA'/Otr be defined by (3.60).

This understood, we obtain the following estimates for the derivatives with respect to
the parameters #; of the connections A’ and A’ and for the g-self-dual curvature Ft9(A).
The proofs are straightforward, following the pattern in §3.7, and so are omitted.
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Proposition 3.30. Let 1 < p < oo. For sufficiently small by, there exists a constant
C = C(go,p,T) such that for any t € T,

(a) |0A"/0t; — AL/t 1| Lo(xy gry < CAF'?

(b) |[0A"/Otr||e(x,g) < C.

Proposition 3.31. Let 1 < p < oo. For sufficiently small by, there is a constant
C = C(go,p,T) such that for any t € T, |[0Ft9(A")/0t1]| 1r(x,9) < C\2/p=1/2,

Proposition 3.32. For sufficiently small by, there is a constant C' = C(g0,N,T) such
that for any t € T, ||0A"/Ot1||12(x5,90) < C-

Proof. LetU = f;' -+ f7 (X ) C Xj and note note that 7 A’ = a%fé‘ -+ frrAr, which

s %f&‘ e frYrAr=f5 - fI 3t; YrAr on U and zero elsewhere. Now
. LOVrAp OvrAr
Jo g1 ot s¢ ot
I 1lL2(U,g0) I ln2(Xy,91)
by Lemma 3.19 and so the result follows. O

3.10. Differentials of the approximate gluing maps. We close this Chapter by
summarising the results of the preceding sections and record our bounds for the differentials
of the approximate gluing maps g’ (which follow by combining Propositions 3.25, 3.30, and
3.28)) and g (which follow by combining Propositions 3.27, 3.32, and 3.29).

Theorem 3.33. Let §' : T — BX ; be the approximate gluing map t — [A'(t)]. Assume

br = 4N1/\}/2 tor all I. Then for sufficiently small Ay and any t € T, there is a constant
C = C(go,T) such that the following estimates hold.

(a) HDH'(a/at?)HH(X 9 =G,

(1) 1D8(0/3p? x5y < CA?

(¢) 1D3'(8/0x )2 (x,g) < C,

(d) 1DJ(0/dA1)||L>(x,9) < C-

Theorem 3.34. Let J : T — B, y be the approximate gluing map t [/l’(t)] Let

by = 4.7\71/\}/2 tor all I. Then for sufficiently small Ay and any t € T, there is a constant
C = C(go,T) such that the following estimates hold.

(a) HDEJ’(a/ata)Hp(XO,gO) <C,

(b) D30/ 12 (X000 < CAY'"

(c) 1D'(8/02 )| 12(x0,90) < C

(Q) 1DF'(3/OA1)|12(x0,90) < C.

4. Bubble Tree Compactification of the Anti-self-dual Moduli Space

In order to describe the ends of the moduli space Mx, k(go) one customarily appeals

to the Uhlenbeck compactification H§(07k(g0). This allows one to give quite explicit de-
scriptions of the parts of the ends away from the diagonals in the symmetric products
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Mx, k(g0) x s'(Xo) appearing in the compactification, as for example in [D86, §V] and
[D-K, §8.2]. These examples consider ideal boundary points of the form (Ag,z1,...,z),
where the z; are distinct points with multiplicity 1 and Ay is a go-ASD connection over
Xo. Open neighbourhoods of (Ag, z1,...,2;) in W;L(mk(go) are then constructed by gluing
standard one-instantons onto 4.

In order to construct open neighbourhoods of ideal boundary points corresponding to
the diagonals of M;mk(go) we must employ the iterated gluing construction of Chapters
3 and 5. This strategy is mentioned briefly in [D-K, §8.2]. The construction gives a
homeomorphism J: 70 /T — V, where V is an open neighbourhood of a boundary point
in M;L(mk(gO) — a ‘gluing neighbourhood’. In order to use this procedure to describe

the ends of H}mk(go), we need to show that H;L(mk(gg) is covered by finitely many such
gluing neighbourhoods. In particular, we need to show that any point in Mx, x(go) which
is sufficiently close to the ideal boundary (with respect to the Uhlenbeck topology) lies in
the image of a gluing map J. This is accomplished in two steps:

Step 1. We show that any sequence {A,} of go-ASD connections over X, converging
weakly to a limit (Ag, 21,...,2m,) determines a sequence of metrics {g,} and a sequence
{A,} of go-ASD connections over a connected sum X = #1e3X |, which converges strongly
to a limit (As)reg, in the sense of [D-K, §7.3]. Here, (X, gqo) is conformally equivalent to
(Xo,90), for all a, and is defined exactly as in §3.3 and §3.5.

Step 2. We apply an analogue of Theorem 7.3.2 [D-K] to show that the new sequence
{A,} is D,-convergent, ¢ > 4, in the sense of [D-K, §7.3]. The appropriate analogue of
Theorem 7.2.62 [D-K] then shows that the points [A,] € Mx r(ga) lie in the image of some
d for sufficiently large . Consequently, the points [A,] € Mx, r(go) lie in the image of
the corresponding map ?J, for some parameter space 7°/T. The choice of parameter space
TY/T is essentially determined by (Aj)reg, which we call the strong or bubble tree limit of
the sequence {A,}.

In this Chapter we discuss Step 1 and describe the bubble tree compactification of the
moduli space of anti-self-dual SU(2) connections — the extension to the general case of
compact, semi-simple Lie groups being straightforward. Step 2 is discussed in §§5.1 and 5.2
after the necessary analytical framework has been established. Throughout this Chapter,
we suppose only that X is a closed, oriented, simply-connected C'*° four-manifold, go 1s a

C* metric, and G = SU(2).

4.1. Uhlenbeck compactification. We recall the definition of the Uhlenbeck compact-
ification [D-K| and describe some of the related convergence results we will need for our
description of the bubble tree compactification.

Definition 4.1. An Uhlenbeck ideal go-ASD connection on a G bundle P over X, with
c2(P) =k > 0is a pair (Ag, Zy), where A is a go-ASD connection on a G bundle Py over
Xo with ¢2(Py) = ko > 0 and Zy = {z;};2% is a (possibly empty) set of points in X, with
multiplicities k; > 1, for ¢ = 1,...,my, such that Y % k; = k. The curvature density of
(Ap, Zy) is defined to be the Borel measure

(4.1) u(Ao, Z) = |F(A0)[2, + 878,
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where 67, = 312 kiby,, so that the total mass of (Ao, Zy) is 87%k. Setting [ = ky +-- -+
k., and repeating points according to their multiplicity, one obtains an element (z1,. .., 2;)
of the symmetric product s(Xj).

Definition 4.2. Let {A,}52,, be a sequence of go-ASD connections on a G bundle P

over Xy with ¢3(P) =k > 0 and let (Ag, Zy) be an ideal go-ASD connection on P. Then

the sequence {A,} converges weakly to (Ao, Zy) if:

(a) The sequence {pq}22, converges to u(Ag, Zy) in the weak-* topology on measures;

(b) There is a sequence of C'*° bundle maps 7o : Po|x,\z, — Plx,\z, such that 774,
converges in C'™ on compact subsets of Xy \ Zy to the connection Ag. Equivalently,
require that for any integer n > 1, there is a sequence of L?H_l bundle maps 7, such
that v* A, converges in L? on Xy \ Zy to Ayp.

n,loc

Via the natural extension of Definition 4.2 to sequences of ideal connections, the set

of all Uhlenbeck ideal go-ASD connections of fixed second Chern class k, IMx, x(g0) =
H;czo(iWXo,k—l(go) x s/(Xy)), is endowed with a metrisable topology. Let H;L(mk(go) be
the closure of Mx, (go) in IMx, k(g0). According to [D-K, Theorem 4.4.4], any infinite
sequence in My, (go) has a weakly convergent subsequence with limit point in M}O7k(go),
and in particular, the latter space is compact [D-K, Theorem 4.4.3].

For our description of the bubble tree compactification, we will need the following mi-
nor extension of the convergence result in Theorem 4.4.4 [D-K] and its cousin, Proposition
9.4.2 [D-K], which allows for a sequence of metrics {g4} converging to go in C'*°. The proof
employs standard arguments well described in [D-K, §4.4] and is left to the reader.

Proposition 4.3. Let {U,}52, be an exhaustion of the punctured manifold X, \ {p} by
an increasing sequence {Uy }52, of precompact open sets, so that Uy € Uy € --- C Xo\{p}
and USZ, Uy = Xo\{p}. Let {g9a}32, be a sequence of metrics on the subsets U, converging
in C" (r > 3) on compact subsets of Xy \{p} to a C" metric go on Xy. Let P be a G bundle
over Xo \ {p} and let {A,}52, be a sequence of go-ASD connections on the restrictions
P|y, . If there is a constant M < oo such that

/ |F(Aa)l2, dVy, <M for all a,
U,

mo

then there is a set of points Zy = {z;}»° C Xy and a go-ASD connection Ay on a G
bundle Py over X, such that a subsequence {A,}22 , converges weakly to (Ag, Zp). O

The mass of the Uhlenbeck limit (Ag, Zy) in Proposition 4.3 is 87% times an integer
and may be computed from the weakly convergent sequence {A,}52; by

(4.2) lim lim |F(Aq)]2, dVy,,

n—o00 a— o0 V.
n

where {V,}°° ;| is any exhaustion of X \ {p} by an increasing sequence of precompact open
subsets.
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4.2. Conformal blow-ups. Given a sequence of gg-anti-self-dual connections on a G
bundle P over Xy with curvature densities concentrating near a set of ‘singular points’ in
Xo, we define associated sequences of mass centres and scales. In a manner analogous to
Chapter 3, we then obtain sequences of ‘conformal blow-up maps’ f;, (defined exactly as
in §3.3) which resolve these singularities in a sense that will be made precise below and in
§4.3. As will become evident, the process of applying conformal blow-ups may need to be
iterated before the singularities are completely ‘resolved’.

Let us commence by defining the first level conformal blow-ups. Suppose {4, }5%, is a
sequence of gg-anti-self-dual connections over X, with weak limit (Ag, Zy). Let us consider
the behaviour of the sequence {A,}5%; in Mx, r(go) near the singular set Z, = {z;} 2%
in more detail. If the point x; has multiplicity k;, then

r—00 a—00
B(zi,r)

(4.3) lim lim / |F(Ay) !2]0 dV,, = 87°k;.

Choose constants dy, ro such that

(4.4) 0<dy < Ir;lﬁindist go(ziyzj) and 0<rg < imin{l, 00,do}-

i#]
We next define mass centres and scales of gg-anti-self-dual connections restricted to the
fixed ball B(z;,ro) C Xy by appropriately modifying the previous definitions of mass
centres and scales of §3.2 for g;-anti-self-dual connections over S*. First, note that

(4.5) lim / ([F(Aa)Z, — [F(A0)[2,) dVy, = 87%k;.

a— 00
B(zi,ro)

Choose a frame v; in F Xg|,, and let ¢ = qbl_,il be the associated geodesic normal coordinate
chart. For each ¢, define a sequence of mass centres {x;o }or, in B(xi,70) by Zia = ¢2,(Gia),

where gio = Centre [As|p(s;,r)] € R* and
1 ‘
46 Comtreldalirr] = g [ 0P, ~ IFC40)2,) ay,
B(l’i,T‘())

Define a sequence of scales {Aiq }oz; in (0,00) by setting X;q = Scale[As|B(z;,ry)], Where

1

872k;
B(zi,ro)

(4.7) ScaleZ[Aa|B(ri7r0)]E

| — gial® (IF(Aa)lz, — [F(A0)[2,) dVy,.

Asin §3.2., Eq. (4.7) leads to a T'chebychev inequality:
(4.8) / (IF(Aa)Z, — |F(Ao)[5,) dVy, < 87%kiR™2, R>1.
B(z;,r0)\B(zia,RXia)

Hence, if R > 1 and « is sufficiently large, the balls B(z;s, RAia) contain most of the
872k; quantity of A,-energy bubbling off at z;,.
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Remark 4.4. Other choices of scale function are possible. For example, we might have
chosen A;y to be the radius of the ball centred at z;, containing A,-energy 87?2(k‘i - %)
As in [D83], a cutoff function is required in order to regularise this definition.

Thus, we obtain a sequence of scales {)\;,}52, associated to the sequences of mass
centres {x;, 152 ; and connections {A,}22 ;. Moreover, Eq. (4.3) implies that the sequence
Tiq converges to z; and that the sequence of scales \;, converges to zero. Choose a
sequence of frames v;, € FXyl|,,, converging to the frame v; € FXy|,, and let qb;zla be
the corresponding geodesic normal coordinate charts. Let fr,. = ¢in 0 cx,, 0 ¢ , where
¢y, is the dilation of R* given by z + /)4, let ;o be the approximately round metric
on X/, defined as in §3.5, let Pjo = (f;.! )*P be the induced G bundle over X/, and let
Ao = (f;i)*Aa be the induced §;,-anti-self-dual connection on P;,. We call the maps
fz,. conformal blow-ups.

We obtain a sequence of open subsets X/, which exhaust X; \ {z;s}, a sequence of
metrics {Gin 152, and a sequence of §;,-anti-self-dual connections {A4;,}52 ; over the X/ .
The sequence {§in }22 ; converges in C'* on compact subsets of X; \ {z;5} to the standard
round metric g; on X; = S*. Let {g4}32, be the sequence of C'> metrics, defined as in
§3.5, on the connected sum X = #7° X! . defined as in §3.3, and let {4,152, be the
induced sequence of g,-anti-self-dual connections over X. We call the connected sums
(X, ga) conformal blow-ups of (Xo, go).

There is a uniform upper bound on the L? norms [ F(Aia)llz2(x7, §:a) Since

(4.9) /X F(Ain)

l;
T

2 AV, = / o [F(Aa)lg, dVy, < 87 (ki +1/2),
B(zia,NA/?)
for sufficiently large a by Eq. (4.3), while Eqs. (4.5) and (4.8) give a lower bound

(4.10) / |F(A;0)3 dV3,, :/ |F(AL)|2 dVy, > 8% (ki — 1/2).
X Gie B(zia,NAIL?) 90

1
i

Proposition 4.3 provides a subsequence {A;q }52; which converges weakly to an ideal ¢;-
anti-self-dual connection (A;, Z;) over X;, where Z; = {:1;”};”:’1 The energy bound of Eq.
(4.8) ensures that Z; C X; \ {zis}. Let pu; = p(A;, Zi) be the associated singular measure
on X; and note that its mass may be computed by

/ dp; = lim  lim |F(Am)|§m dvi,...
X

R— oo a—oo B(zin,R)

Since this must be 872 times an integer, Eqs. (4.9) and (4.10) imply that x,; has mass
8n%k;, where k; = z;n:io ki;, A; is a g;-anti-self-dual connection on a bundle P; over X;
with ¢2(P;) = kio, and each point z;; has multiplicity k;;.
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Remark 4.5. It is not strictly necessary that we construct a sequence of honest metrics
go over the connected sums X = #7% X/  above; a sequence of conformal structures [gq]
constructed as in §3.5 would suffice and this would eliminate the need for the choice of
conformal factors over the necks. In any case, the actual limits obtained are independent
of such choices.

The above conformal blow-up construction produces a sequence of g, -anti-self-dual
connections A, on increasing subsets X! of the four-sphere X; with weak ¢;-anti-self-
dual limit (A4;, Z;). With the inverse process of gluing in mind, we describe a modified
choice of conformal blow-ups which yield centred limats (fL, Zl) First, a technical lemma
concerning the variation of geodesic normal coordinate charts with their coordinate centres

is required. The proof uses Taylor’s theorem and is left to the reader.

Lemma 4.6. Let Xy be a closed C*> n-manifold with metric gy and injectivity radius
0o. Let zg € X, let vy € FX|,,, and let x = exp;o1 be the geodesic normal coordinate
chart on B(xq, o) defined by the frame vy. Suppose x1 € B(xq, 00/4) and p = exp, ' (z1),
so that dist 4,(z1,20) = |p|. We now define two coordinate charts on B(x1,09/2):

(a) Let vi € FX|;, be the frame obtained by parallel translating vy along the geodesic

joining xy to x1, and let w = exp,! on B(x1,00/2);

(b) Let 7, be the translation on R" given by ¢ — ¢ — p, and let w = 1, 0 expv_o1 on
B(x1,00/2). Then the coordinates w converge to w in C* on B(zg,00/4) as p — 0:
|w" —w*| = O(|wl|p]|), |Ow" /0w® —6%| = O(p), and for all m > 2, " w" /Qw®! - - Qw™ =
O(p).-

Next, we define the mass centre and scale of a positive Borel measure 1 on R* by

(4.11) p = Centre [u] = / zdp and  \? = Scale’[y] = / |z — p|* dp.
R* R#

Let © be the product connection over X;. The proof of the following lemma describes how
to choose conformal blow-ups which produce centred limits.

Lemma 4.7. Let {A,} be a sequence of gy-anti-self-dual connections over X, with
weak limit (Ag, Zy), where Zy = {x;};-° is non-empty. Choose ry as in Eq. (4.4). Then
for each x; € Z,, the sequence {A,} determines a sequence of points {w;,} converging
to z;, a sequence of frames vi, € FXy|y,, converging to a frame v; € FXyl|,,, and a
sequence of scales {k;o} converging to zero such that the following holds. Fix N > 4, let
fw,;., be the corresponding sequences of conformal blow-ups, and let A,,., be the induced
sequence of §y,,, -anti-self-dual connections with weak g;-anti-self-dual limit (fL, Zl) over
the four-sphere X;. The limit (fL, Zl) has the following properties:

(a) If A; # O, then A; is centred;

(b) If A; = O, then the corresponding singular measure ji; is centred.

Proof. (a) We begin by defining, exactly as before, a sequence of points {z;, } converging to
z;, a sequence of frames v;o, € FXg|;,, converging to a frame v; € FXy|,,, and a sequence
of scales {\;n} converging to zero. Let f., be the corresponding sequences of conformal
blow-ups and let A,, be the induced sequence of g, -anti-self-dual connections with weak
gi-anti-self-dual limit (A;, Z;) over X;. Suppose Centre [4;] = p; and Scale[A4;] = v;.
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Case 1. Z; = (). Recall that f,,, = ¢ino0ca,, © ¢>r_ila, Az, = (f_.i)*Aa, and §g,, =

T

/\_2(f1fii)*g0. Define h; = ¢in 0 ¢y, 0 7p; © gbl_nl and set f,. = hijo fy... Then

1]

£ — . -1 _ s—=1
Jwia = in © Cxinvi © Tpiria © Tia — Pin O Cryp O ¢wma

_ _ yy _ -1 F .
where wiq = ¢z, (Pidia), Kia = AiaVi, and ¢y, = ¢z, © Thidin - Thus, fu,, provides a

diffeomorphism from the small ball B(w;q, N/f}f) in Xy to the open subset B(x,, N/ii_alﬂ)
of X;. The sequence of points {w;,} converges to z; and the sequence of scales {kin}

converges to zero. As in §3.5, define a sequence of metrics on the increasing subsets

B(xin, N/fi_al/z) bY Guw. = K5 h2(fol )*go. Then g, converges to the standard metric g;

Wi
in C'* on compact subsets of X;\{zis}. Define a sequence of g, -anti-self-dual connections

over the balls B(z;p, N/ii_alﬂ) by Aw., = (ol )*Aa, and observe that A, = (h; )" A,,.,.

w;
The sequence {A,,, } converges to the centred connection (h;')*A4; in C* on compact
subsets of X; \ {z;s}.

It remains to replace the chart w = qB;ila on B(wia,00/2) by a geodesic normal
coordinate chart w = ¢! . Choose a frame v}, € F Xql|y,, by parallel translating the frame
Via € FXglg;, along the geodesic connecting x4 and wjq, noting that dist 4 (e, wia) =
|pilNia. Thus, as @ — oo, the coordinate chart w converges in C* on B(x;, 09/4) to the
geodesic normal coordinate chart w in the sense of Lemma 4.6. Define a new sequence
of conformal blow-up maps by setting fu,, = ¢in 0 Cx,, © qb;ila, and define corresponding

sequences of connections and metrics on the balls B(:z;m,N/ii_al/Z) by Awi. = (for ) Aa

and Gu,, = Ko h3(fyl )*g0. Lemma 4.6 implies that the sequences {§u,, } and {4y, }
converge in C'* on compact subsets of X; \ {z;s} to the metric g; and centred g;-anti-self-

dual connection A; = (h;')*A;. This completes the proof of (a) in Case 1.

Case 2. Z; # (). The proof is similar to that of Case 1. Let Z; = hl_l(Zl) Then the
sequences {A,, } and {A,., } converge in C*> on compact subsets of X; \ (Z; U {z;,}) to
the centred connection (hl_l)*Al

(b) One sets Centre [p1;] = p;, Scale[y;] = v;, and essentially repeats the proof of Part (a)

for the sequence of measures fi,,, = |F(Ag,, )7 . O

Remark 4.8. In the sequel, we require that the conformal blow-up maps be chosen as in
Lemma 4.7. However, to conserve notation, we will relabel the points w;, and scales k;,
by Zio and \ia, respectively, and the limit (A;, Z;) by (4;, Z;).

A technical point that we have not addressed above is that, just as in [P-W], the weak
limit of the sequence {A4;,} apparently depends on certain choices of parameters in the
conformal blow-up construction:

(1) Neck width parameter N. This was only included in this Chapter for the sake of
consistency with the gluing construction of Chapters 3 and 5: we could just as well have
set N = 2, say.
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(2) Radius ro. Following [P-W], the dependency is removed by letting rq — 0. The
conformal blow-up process gives a sequence of points {z;o(r0)}, scales {Aia(r0)}, blow-up
maps {fz;.(r0)}, metrics {gia(r0)}, and connections {A;4(r9)}. The sequence of connec-
tions {A;q(ro)} converges to an ideal g;-anti-self-dual limit (A;(r¢), Zi(ro)), for any fixed
ro > 0. We now let r¢ — 0 and by a standard diagonal argument, we obtain a weakly
convergent subsequence {A;4(r¢)} with weak limit (A4;, Z;), say.

(3) Frames vio and v;. The construction is SO(4) equivariant: Rotating the frames
Via € FX|z,, and v; € FX;, by elements of SO(4) induces an SO(4) action on the
connections A;, and A; as described in §3.2.

There is one final issue which will be important in our later discussion of alterna-
tive modes of convergence for sequences of anti-self-dual connections: we must exclude
the possibilty that curvature is lost over the necks 2; arising in the conformal blow-up
process described above. Of course, the curvature can only bubble off with masses equal
to an integer multiple of 872, so it suffices to show that we can choose the neck param-
eters to ensure that the curvature masses over the necks are strictly less than 872%. So,
consider again the sequence {A,}22; of go-anti-self-dual connections over X, with weak
limit (Ao, Zy), where Zy = {z;}"%, and let {A4;,}22, be the corresponding sequences of
Jia-anti-self-dual connections over X, having weak limits (A;, Z;), where Z; = {z;; };nzjl
Let {Xin}22; be the sequence of scales associated to the sequence of connections {A,}52
and the singular point x; € Zy. Given this set-up, standard arguments yield the following
curvature estimates near z;:

Lemma 4.9. Given e > 0, there exist positive constants Ry, 71, and «g with the following
significance. For large enough Ry, small enough ry and large enough «g, then Ry\;jo < r
for any « > «g and the following holds.
(a) |I‘F(Aia)H2L2(B(zi,R0),§ia) — 8m%k;| < €2,
() ME(Aa)lT2 (o, Roria) g0y = 87 Ril <€,
(C) HF(Aia)”L2(Q(ri,R0,r1)\i_1),§m) <g,

)

a

(d HF(ACY)HL%Q(M,ROAM77“1)790) <E&.

Thus, we have the following curvature estimate which ensures that in the limit there
is no ‘curvature loss’ over the necks Q;. (In particular, if A;, converges weakly to (A;, Z;),
then the singular set Z; C X; does not contain the south pole z;.)

Corollary 4.10. Given ¢ > 0 and N > 4, there is an oy > 0 with the following
significance. If Qo = Uija, N~ 1)\1/2 N/\I/Q) and, Bl, = B(wm,N/\l/z) then for any

o )
o > «ag, we have

(a) |[F(A )HL2(Qm go) <eg, a2nd
(b) E(ATz(py 4 — ST 2Ril <e.

Lastly, we note that the conformal blow-up process may of course be iterated if the
singular sets Z; are non-empty. In the next section we show that after repeating the
conformal blow-up process at most k times, we obtain a sequence of g,-anti-self-dual con-
nections {A,} which is strongly convergent. Indeed, given the weakly convergent sequence
{Aia}32, over the X/ near a point z;; with mult1phc1ty ki; in the singular set Z; C X,
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the second-level process differs from the first-level only in minor technical details: We de-
fine sequences of centres 7o = ¢u; (gija) converging to z;; and scales \;j, converging to
zero, now using the metrics ;o and a coordinate chart ¢,,; on X; given by ¢.,. = éin OTq_ijl
where ¢;n(gij) = x;;. The blow-up maps are then defined using coordinate charts on X;
given by ¢, = din OTq_l,jla and setting fi,;, = dijnocar;;, oqb;;a. We then proceed exactly
as before and similarly for all higher-level blow-ups.

4.3. Bubble tree compactification. By analogy with the arguments of [T88, §5] and
[P-W], we define a bubble tree compactification for the moduli space Mx, r(go) of anti-
self-dual connections. First, we need an appropriate notion of an “ideal connection”:

Definition 4.11. A bubble tree ideal go-anti-self-dual connection A of second Chern class
k over Xy is determined by the following data.
(a) An oriented tree J with a finite set of vertices {I}, including a base vertex 0, and a
set of edges {(I_,I)}. Each vertex I is labelled with an integer k; > 0 such that
(1) Xregkr =k,
(ii) If I > 0 is a terminal vertex, then k; > 0,
(iii) There are at most k terminal vertices, excluding the base vertex.
(b) A (2m — 1)-tuple (Ar,x1)re3, where m is the number of vertices in J.
(¢) If I = 0, then Ay is a go-anti-self-dual connection on a G bundle Py over X, with
CQ(P()) = ko 2 0.
(d) If I > 0, then
(i) Ar is either the product connection © or a centred gr-anti-self-dual connection
on a G bundle P; over the sphere X; = S* with cy(Py) = ky, where g; is the
standard round metric,
(ii) x7 is a point in Xy if I = 0 and a point in X7\ {z/,} if I_ > 0.
(e) If I > 0 and A; = O, then there are at least 2 outgoing edges emanating from that
vertex.

Definition 4.11 should be compared with the construction of approximately anti-self-
dual connections in §3.3. The ideal connection (A7, xs)res is often written as (Ar)res.
Heuristically, we may view an ideal gg-anti-self-dual connection A = (Ar)reg as a ‘connec-
tion” over the join Vyeg X7, where each sphere X7 is attached to the lower level X7 by
identifying the south pole z;, with the point x; € X7 . Let Z;_ C X;_ denote the set of
‘attachment points’ x7 in Xo, if I_ = 0, or points z7 in X;_ \ {z7s}, if I_ > 0. Let my be
the number of points in Zj, i.e., the number of outgoing edges emanating from vertex I.

Second, we need an appropriate notion of convergence. Let X = #7c9X; be the
connected sum defined in §3.3 by a set of scales {\7q}reg, with Aq — 0 as o — oo, and a
fixed neck parameter N. Similarly, if {g } is the corresponding sequence of C'*° metrics on
X defined in §3.5, then g, converges to gr in C* on compact subsets of X7\ (ZyU{zs})
for each I > 0. Following [D-K, §7.3.1], we consider the following modes of convergence
for sequences of anti-self-dual connections over X.
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Definition 4.12. Let {A,}22, be a sequence of g,-anti-self-dual connections on a fixed

bundle P with ¢3(P) = k over the connected sum X = #7¢5X.

(a) Y € sk(X) is a multiset in Ureg X7 \ (Z7 U {z1}), the sequence {Ay} converges
weakly to ((Ar,z1)res,Y) if the gauge equivalence classes [A,] converge in C*° to
([Ar])res over compact subsets of Ureg Xy \ (Z7 U {27} UY) and if the curvature
densities converge,

[F(Aa)lz, — Y _|F(AD)[}, + 8726y,
I€d

over compact subsets of Ures X7\ (Z7 U {x1s}).

(b) The sequence {A,} converges strongly to the limit (A7, x1)reg if it converges weakly
to (Ar, x1)res (with no singular set Y) and if Zlej c2(Pr) = c2(P). Here, the Ay are
gr-anti-self-dual connections on G bundles Pr over X with ¢o(Pr) = ky.

We let BMx, r(go) denote the set bubble tree ideal go-anti-self-dual connection over
Xy of total second Chern class k. Thus, each point of BMx, r(go) is represented by a
(2m — 1)-tuple (Ar, x1)1eg, with m being the total number of vertices of the tree J.

Definition 4.13. We say that a sequence {A4,}22 ; of go-anti-self-dual connections on a
G bundle P over Xy with ¢2(P) = k converges strongly to a bubble tree ideal go-anti-self-
dual connection (xr, Ar)res in BMx, k(go) if there exist sequences of conformal blow-ups
{fra}res with the following property. Let {g,} be the induced sequence of C'*° metrics in
the conformal class [g] on the connected sum X = #7¢9X7. Let {4,} denote the induced
sequence of g,-anti-self-dual connections over X. Then we require that the sequence of
metrics {gq } converges in C*> on compact sets of X7\ (Z;U{x1s}) to the metric g7, I >0,
and that the sequence of connections { A4} converges strongly to the ideal gg-anti-self-dual
connection (A7, xr)res.

This definition of convergence extends to the space of bubble tree ideal connections
BMx, k(g0), which is then endowed with a second countable Haussdorf topology. Define

the bubble tree compactification M;mk(go) to be the closure of Mx, x(g0) in BMx, 1(g0)-

Theorem 4.14. The space H;mk(go) is compact.
The result follows from the special case below.

Theorem 4.15. Any infinite sequence in Mx (go ) has a strongly convergent subsequence
with limit point in M;mk(go).

Proof. The argument is similar to the proof of Proposition 5.3 in [T88]. Fix a G bundle P
over Xo with co(P) = k > 0 and let {A,}22; be a sequence of gg-anti-self-dual connections
on P. The main point is to repeatedly apply conformal blow-ups fr, until we obtain a
sequence of induced metrics g, over a connected sum X, with (X, ¢4 ) conformally equiva-
lent to (Xo,g0), and a sequence of induced ¢,-anti-self-dual connections over X, denoted
by {A4}, which is strongly convergent. We adopt the convention below that subsequences
are immediately relabelled.
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Step 1. There is a subsequence {A, } which converges weakly to an ideal gg-anti-self-dual
connection (A, Zy), with Zy = {x;}2% corresponding to a point in the symmetric product
sk(Xo). If Zy = () then we are done, so assume that mg > 1. Let k; be the multiplicity of
x; and note that 0 < k; < k. For each ¢ and large enough «, the connection A, determines
a set of mass centres {x;q }io%, With 2,0 — 7;, and a set of scales {\jq }12%, with A\jq — 0

as @ — 0o. Fix a neck width parameter N > 4, choose a sequence of frames v;, € F Xy

converging to a frame v; € FXy|,,, and let {fm} | be the conformal blow-up maps deﬁned
by these centres, frames, scales, and parameter N If X =#° X/, then (X, gq) is the
conformal blow-up of (Xo,go) detelmmed by the maps f;n. Let P now denote the induced
G bundle over X, let A, denote the induced g,-anti-self-dual connection over X, and let
A,o be the restriction of 4, to the open subset X .

The sequence [A;,]| has a weakly convergent subsequence, again denoted [4;,], with
weak limit (A;, Z;), where Z; corresponds to a point in s¥(X;). Corollary 4.10 implies that
no mass is lost over the neck ;. Hence, if each Z; = (), ¢ > 0, then we have Y i~ k; = k,
the sequence [A;,] converges strongly to [A |, and we proceed to the Final Step. Othelvvlse,

Z; # () for some i and we proceed to Step 2.

Step 2. For some ¢, Step 1 produces a non-empty singular set Z; = {x;}7.,. Let ki; be
the multiplicity of the point z;;, let ¢2(A;) = kig, and note that Zm’ kij =k; > 0. Let y;
be the singular measure associated with (A;, Z;). We now cons1del two cases, depending
on whether or not A; is the flat product connection © over Xj.

Case (a) A; = 0. Since Scale[y;]| = 1, the diameter of the set Z; must be positive and
so this case can only occur if m; > 1. Let k;; be the multiplicity of the point z;; and note
that as m; > 1 we must have max; k;; < k — 1.

Case (b) A; # O. Therefore, kip = ¢2(A;) > 0 and so we again must have max; k;; <
k —1, since Z;n;() kij =k <k.

For large enough «, the connection A;, determines a set of mass centres {jq }iry,
with ;o — i, and a set of scales {\;jq }ir;, With A;jo — 0 as @ — oo. Let {fija};ﬁ:il
be the conformal blow-up maps defined by these centres, scales, and parameter N. Let
P denote the induced G bundle over the new connected sum X = #;79 X] #7 X/

z]a’
A, denote the induced go-anti-self-dual connection over X, and let {A;;,} be the mduced
sequence of g,-anti-self-dual connections over the open subsets X”a of the spheres X;;.
The sequence [A;;o] has a weakly convergent subsequence with weak limit (A4;;, Z;;),
with no loss of mass over the necks Q;;o. If each Z;; = 0, j = 1,...,m;, then we have
Zm’ ki; = k;, the sequence [A;;q] converges strongly to [Al]] and the blow-up process
termmates at the vertices A;j. Otherwise, Z;; # () for some j and we proceed to Step 3.

Step I: 3 <1 < k. For some multi-index I of length |I| = 1 — 1, Step [ — 1 produces
a non-empty singular set Z; = {x”};?”‘:fl contained in the sphere X7. The sequence [Af,]
has a weak limit (A, Z;), where Z; corresponds to a point in s*7(X;). Let kr; be the

multiplicity of the point zr;, let ¢2(Ar) = kjo, and note that Z okr; =Fkr > 0. Let py
be the singular measure associated with (Ay, Zy).
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Case (a) A; = 0. Since Scale[us] = 1, the diameter of the set Z; must be positive.
Hence, m; > 1 and so we have

4.12 maxkr; <k—1+1, Ij|=1, 1<I<k.
: J
J

Case (b) A; # 0. Therefore, krg = c2(Ar) > 0 and so Eq. (4.12) again holds, since
Z;nzlo krj=Fkr <k.

Eq. (4.12) implies that the conformal blow-up process terminates completely after at
most k steps.

For large enough «, the connection Ay, determines a set of mass centres {a;fja};?"‘:fl in
Xr\{zrs}, with 27, — 27, and a set of scales {/\Ija};nzfl, with Arjo — 0 as @ — oo. Let
{f]ja};nzfl be the conformal blow-up maps defined by these centres, scales, and parameter
N. Let P denote the induced G bundle over the connected sum X = #,X7,#72, X7;,, let

A, denote the induced go-anti-self-dual connection over X, and let {474} be the induced
sequence of g,-anti-self-dual connections over the open subsets X}ja of the spheres X7;.
The sequence [Afj,] has a weakly convergent subsequence with weak limit (Ay;, Zr;),
with no loss of mass over the necks Qrj. If each Z;; = 00, j = 1,...,my, then we
have Z;n:IO kr; = kr, the sequence [Af;q] converges strongly to [Ar;], the blow-up process
terminates at the vertices Ayj, and we proceed to the Final Step. Otherwise, proceed to
Step [+ 1.
Final Step. After performing at most k& conformal blow-ups, we obtain a sequence of
ga-anti-self-dual connections {A,} over a connected sum X = #1e3X ], The sequence
{A,} converges strongly to a bubble tree limit (A, z7)7eg, since the singular points have
all been blown up and there has been no mass loss over the necks €2,. O

Plainly, the compactification M;mk(go) is “larger” than the Uhlenbeck compactifica-

tion H§(07k(go). Indeed, there is an obvious surjective map

(4.13) My, i(90) — My, i(90)

obtained by sending a bubble tree ideal connection (Ar, z1)res to the corresponding Uh-
lenbeck ideal connection (Ag, 21,...,Zm,). The multiplicity of z; € Xy is the sum of the
second Chern classes of the anti-self-dual connections Ay attached to the subtree lying
above the vertex 1.

Corollary 4.16. The map 7 : M;mk(go) — M;L(mk(go) is continuous.

4.4. D, convergence and strong convergence. We will need one further notion
of convergence in order to show that every point of the moduli space My i(g) lies in the
image of the gluing map g constructed in Chapter 5. Let P be a G bundle over a closed

manifold X with metric g. Following [D-K, §7.2.4], fix 4 < ¢ < oo and let D, be the metric
on the space Bx p given by

(4.14) D,([A],[B]) = inf |4 = u(B)|,(x,9)-

We recall the following definition of Donaldson and Kronheimer.



48 PAUL M. N. FEEHAN

Definition 4.17. [D-K, p. 308] Let {A\;4}52,, for each I > 0, be sequences of scales

- L a=1"
satisfying Ao — 0, where A\, = maxys Arq, and let {4, }22, be a sequence of connections

on a fixed G bundle P — X, where X = #,¢9X} and X; = S*if I > 0. The connected
sum X has a sequence of metrics {g,}52; defined by the sequence of scales {A74}52, a
sequence of points {z7,}52, where the z;, converge with respect to the fixed metric ¢y
to a point 7 € X;_, and a neck width parameter N. Assume that the connections A,
are ¢go-ASD with respect to the sequence of metrics {g,}22,; on X. Then the sequence
{Aa}aZy is Dy-convergent to (Ar,zr)res if Dy([Aalxy], [Ar]xy]) — 0 as a — oc.

D, convergence is called “L? convergence” in [D-K]. The result below explains the
relationship between strong convergence and D, convergence.

Theorem 4.18. [D-K, p. 309] Let {A,}52, be a sequence of connections on a bundle
P — X which are ASD with respect to the sequence of metrics {gq}or, determined by
the sequences of scales {\1o}, where A\, — 0. Then the sequence {A,}5%, is strongly
convergent if and only if it is D,-convergent. d

5. Differentials of the gluing maps

In this Chapter we obtain L? estimates for the differentials of the gluing maps g
T/T — M, - These give C° bounds for the components of the L? metric g on the
bubbling ends of 1\4}‘(071@(90) and allow us to complete the proofs of Theorems 1.1 and 1.2.
In particular, for the remainder of the article, the hypotheses of Theorem 1.1 are assumed
to be in effect.

5.1. Construction of the gluing maps. In this section we construct the gluing maps
d : T/ — Mk ,(g) and g T/T — Mx, x(90), and set up the analytical framework
required for the later sections. Our first task is to construct a right inverse to the linear
operator djz,’g and so we choose suitable Sobolev spaces L7, LT and for the remainder of
this Chapter, fix

(5.1) 2<p<4 and 4<¢g<oo sothat 1/441/¢=1/p.

By hypothesis, HE@; = 0 for all I and thus the operators dj;;gl have right inverses Pr.
More explicitly, if AZ;‘(H is the Laplacian dz;gl(dj;;gl)* and G:;‘ql is the corresponding
Green’s operator, we may set Py = (dj;gl)*G:;gI. A standard application of the Calderon-
Zygmund theory and the Sobolev inequalities gives the following bounds.

Lemma 5.1. Assume H?A; = 0. Then the operators Pr : L? — LY and Py : L? — L7 are
bounded and there are constants C; = Ci(Ar,g1,p), t = 1,2, such that

1Pl Lacxs,argn < CUllPréllirx, on < Colléllirx,gn, € € LPQ*( Xy ad Pp).

We next define the C°° cut-off functions to be used in the construction of a right
parametrix ) for dji',’g by patching together the operators P over X.
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Lemma 5.2. [Lemma 7.2.10, D-K], [D-S, p. 221] For any A > 0 and N > 4, there exists
a C* function By on R* and a constant K independent of A\, N, such that B\ n(z) =1
if |z| > $AY? and B n(z) = 0 if || < N7INY2 and ||dBa N || pagrs 5y < K(log N)~3/4,

Define C'*° cut-off functions ;7 on each X; by setting

(5.2) Br= (67 Brv [ (67, Bar, v om X1,
Iy

where the factor (¢1_81)*5>\1,N is omitted when I = 0. Here, the cut-off functions comprising

Br have been extended so that 8y = 1 on the complement in X of the balls BIS(%)\}M)
and BI+(%/\}_/|_2). Also, 37 = 0 on the balls BIS(N_l/\}/Z) and BH_(N_I/\}_/FZ) in X: thus,
we may extend (1 by zero to give f; € C°°(X). The L* estimate of Lemma 5.2 implies
that

(5.3) 1dB1] La¢xp.9m) < cK(log N)73/4,

for some ¢ = ¢(go, k). For the cut-off functions {v;} defined by Eqgs. (3.52) and (3.53), we
recall that >, v7 =1 on X. Note also that fr =1 on the support of ;.

Define operators Qr : LYQ™97 (X ad Pr) — LPQ'Y (X, ad Pr) by setting Qr = 81 Pryr
Define a right parametrix Q : LYQ1T9(X,ad P) — LPQ'(X,ad P) for the operator dj;,’g by
@ = >_; Q1. The error operator R : LPQ19(X,ad P) — LPQT9(X,ad P) is then given by

(5.4) PQ=1+R

Lemmas 3.15 and 5.1 then yield the following estimates for the operators @7 and Q.

Lemma 5.3. There are constants C; = Ci(go,p,T), ¢t = 1,2, such that for any t € T and
any £ € LPQT91( X ,ad Pr), for (a), or any £ € LPQT9(X,ad P), for (b), the following
bounds hold.

(a) 1QréllLacxron < CllQréllrr(xr,ar,90) < C2lléllze(x.00)5

(b) Q€ Lacx,g) < CrllQ€ller(xy < C2ll€llLr(x,9)-

Next, there is an analogue of Lemma 7.2.14 [D-K] (see also [D-K, p. 294]), giving an
L? bound for the operator R. The proof follows easily from Lemmas 3.9, 3.12, and 5.1,
and Eq. (5.3). In [D-K] it is assumed that the metrics g; are flat in small neighbourhoods
of the points 7, but this restriction is easily removed using Lemma 3.12.

Lemma 5.4. There is a constant ¢ = ¢(b, N,p), with e — 0 as N — oo and b — 0 such
that for any t € T and £ € LPQT9(X,ad P), ||RE|| 1r(x,9) < €lléllnr(x,g)-

Thus, for the remainder of this article choose Ny > 4 large enough and by < 1 small

enough so that (b, N,p) < 2/3forallb < by and N > Ny, and fix N = Ny and by = 4N/\}/2
for all I € J. We now construct a right inverse P for d';;?. Lemma 5.4 gives the (LP,LP)
operator norm bounds ||R|| < 2/3 and ||(1 + R)™'|| < 3. Since Q; = 31 Prvyr, we have the
(LP, L7) operator norm bound ||@Q;|| < C7, say, giving the (LP, L?) operator norm bound
Q|| < C =3, Cr. In summary, there is the following version of Proposition 7.2.35 [D-K].
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Proposition 5.5. There are constants Ny and by such that for any N > Ny, b < by,
and t € T, the operator P = Q(1 + R)™' : LYQT9(X,ad P) — LPQ'(X,ad P) is a right
inverse to dj;,’g and there are constants C; = Ci(go,p,7), ¢ = 1,2 such that for any
¢ e LPQT9(X,ad P),

P&l Lacx,g) < CillPEler(xy < Calléllnrx,g)-

We next construct families of solutions to the full non-linear anti-self-dual equation
over connected sums. For each t € T we seek a solution A(t) = A'(t)+a(t) to F""g(A’—I—a) =
0, or equivalently

(5.5) dj;,’ga +(aNa)™9 =—Ft9(A",
where a € Q'(X,ad P). If a = P¢, with £(t) € Q19(X,ad P), then this equation becomes
(56) €+ (PEA PEY™S = —FH3(4))

With the aid of Lemma 7.2.23 [D-K, p. 290] (an application of the Contraction Mapping
Theorem to Eq. (5.6)) and Proposition 5.5, one easily obtains the version below of Theorem

7.2.24 [D-K].

Theorem 5.6. For sufficiently small \g < 1, sufficiently large Ny > 4, and sufficiently
small Ta,, I € J, the following holds. For any t € T, there exists an L¥ g-anti-self-dual
connection A(t) = A'(t) + a(t) over X, with a(t) = P{(t). There are positive constants
C; = Ci(g0,p,T), 1 = 1,2,3, such that

—4
lallzacx,g) < Cilléllr(x,g) < CollFF (AN 1r(x ) < Csb v

We pull back the g-anti-self-dual connections A on P — X via the conformal maps
fr to give go-anti-self-dual connections A = A’ + @ on P — Xy, where A is defined by

(5.7) A=fr-f1A over f' - fTU(X]),

and similarly for A’ and a. In particular, A = A’ 4+ & is a solution to the go-anti-self-dual
equation F19°(A" 4+ &) = 0 over Xy, or explicitly

(5.8) A%+ (anayhe = —Fheo(d)),

where a € QY Xy, ad P) Standard arguments show that the anti-self-dual connections A
and A are actually C*> and that they are smooth points of the moduli spaces My 1(g) and

Mx, x(g0) [D-K]:



GEOMETRY OF MODULI SPACE ENDS 51

Lemma 5.7. Let A be the g-anti-self-dual connection over X produced by Theorem 5.6
and let A be the corresponding gg-anti-self-dual connection over X,. Then the following
hold:

(a) The connections A and A are C*,

(b) H% =0 and H% = 0, for small enough by and large enough Ny,
(¢c) H3 =0 and Hi = 0.

From §4.4, we recall that D, is the metric By ; given by D,([A],[B]) = inf,eg ||4 —
u(B)||L,(x,9- In particular, we have the following version of Theorem 7.2.62 [D-K] (com-
pare also Theorem 4.53 [D86]).

Theorem 5.8. Let A; be gr-anti-self-dual connections on G bundles Py over manifolds
X, I €3 IfI =0, then Xy is a closed, oriented, C'*° four-manifold with generic C'*°
metric gy and negative definite intersection form. If I > 0, then X; = S* with standard
round metric gy of radius 1. Let X = #7¢9X [, the connected sum four-manifold with C'*°
metric g (conformally equivalent to ¢¢) determined by the choice of points {xr}, frames
{vr}, scales {\r}, and neck width parameter N. Let P be the connected sum bundle over
X, where co(P) = k > 1. Let A\ = maxjeg A\;. Let T4, be open balls centred at 0 € Hih,
I'ed letT =]];eqTa, and T = Ta, x [[;¢4(Ta, x Glg;), as in Egs. (3.25) and (3.26).
Then, for sufficiently small \g < 1, sufficiently large Ny > 4, and sufficiently small T4,,
I € 7, the following holds. There is a C'>™ homeomorphism onto an open subset:

3:T/T — UCMxplg), t+—[A(t)],

where A(t) = A'(t)+a(t), a(t) = P{(t), and {(t) are as in Theorem 5.6. For any v > 0 and
4 < g < oo, the manifold T and constant A\g(v) can be chosen so that, for all A < Ag(v),
U ={[A] € MX p(g) : Dy([Alxy],[Ar]) < v}, forall I €7.

Proof. This is a straightforward generalisation of Theorem 7.2.62 [D-K] to the case of
multiple connected sums (see [D-K, §7.2.8]) and a restriction to the case where G = SU(2)
and b+ (Xy) = 0. The metric g is not required to be flat in small neighourhoods of the
gluing sites x;7 € Xy. Lemma 5.7 implies that the image of J lies in the dense open subset
M3 p(g) C Mx p(g). The fact that J is € is a calculation of the type that appears many
times in §§5.3, 5.4, and 5.5. See also Appendix A [T84b] and Remark 4.24 [D86]. O

We refer to § as a gluing map over the connected sum and its image U C M% (g) as
a gluing neighbourhood. Moreover, g extends to a C'*° gluing map on the larger paliameter
spaces T and T of Egs. (3.27) and (3.30). Further properties of these maps are described in
the next section. Lastly, for the original metric gy on the base four-manifold Xy, Theorem
5.8 takes the following form.

Corollary 5.9. Given the hypotheses of Theorem 5.8, there is a homeomorphism onto
an open subset

~

J:T)T — VC M5 5(90); t— [A(1)],

where V' C 1\/1;‘(07P(g0) is obtained by pulling back the subset U C M¥ p(g) of Theorem

5.8. U

Again, g extends to a €' map on the larger parameter spaces J and 7° and additional
properties of g are discussed in the next section.
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5.2. Structure of the compactified moduli spaces. The bubbling ends of H;O’k(go)
away from the diagonals are described in [D-K, §8.2]. We extend this description to
neighbourhoods of points in the diagonals of the Uhlenbeck compactification. For related
constructions and some further details, we refer to the papers of Taubes and Donaldson.

The proposition below is the basic result we require in order to parametrise neigh-
bourhoods covering the ends of M% ,(g) away from the reducible connections. See also
(D83, §III], [D86, §IV], and [T84b, p. 7529] for various special cases of the statements below.
The proof below is similar to arguments in the proofs of Proposition 5.17 & 5.22 [D-S] and
Theorem 4.53 [D86, p. 316 & p. 325].

Proposition 5.10. Given the hypotheses of Theorem 5.8, the following hold:

(a) The approximate gluing map §' : T/T' — B%  is a C* embedding,

(b) The gluing map §: T/T' — U C M% ,(g) is a diffeomorphism onto an open subset,

(¢) The extended gluing map J : T/T SUC M% (g) is a C°° submersion onto an open
subset,

(d) The extended gluing map g : T7°/T — U° C M% «(g) is a diffeomorphism onto an open

subset.

Proof. (a) The proof is essentially the same as the argument required for (b) and so is
omitted. (b) From Theorem 5.8, J is a C'> homeomorphism and so it is enough to show
that g is also an immersion, since T'/T" has dimension equal to that of 1\4}‘(’k(g). From the

proof of Theorem 5.8, there is a C'"*° I'-equivariant gluing map J:T — A%, t = A(t). So,
we first show that J is an immersion and then conclude that the induced map on quotients

is a diffeomorphism. The constant Ay may be chosen as small as desired and in (a) and

(b),the A; and xz; may be held fixed.

Step 1. Definition of restriction maps. Choose cut-off functions ¥y, as in §3.3, which
are zero on the balls Brs(br/2), By, (br,/2) and equal to 1 on the complement in X7
of the slightly larger balls Brs(bs), Br,(br,). Define a map mx, : L*QY(X,ad P) —
L*QY (X, ad Pr) by left multiplication with ¢, so that

(59) Hw - ﬂ-XIwHL2(XI7!]I) = O(X)a w e Ql(XfagI)a

since t5 1s equal to 1 on the complement of a set in X7 of g7-volume O(XZ). Next, for I > 0,
choose a cut-off function which is zero outside the annulus Q7, = Q(z 75, N_lx\}/z, N/\}/Z)

in X7 and which is equal to 1 on the slightly smaller annulus Q(zy,, %/\}/2,2/\}/2) con-
taining the supports of the derivatives of the cut-off functions ~;_,~7. Define a map
mq, : L*QY(X,ad P) — L*Q'(Qrs,ad Pr) by left multiplication with this cut-off function.
Lastly, let IT = 79 ©r>0 (7x, & 7q, ) be the induced map

L’QY(X,ad P) — L*Q'(Xy,ad Py) P (L*Q" (X1, ad Pr) & L*Q" (Q1s,ad Pp)) .
>0

Step 2. Partial derivatives with respect to lower moduli parameters. We have €™ T'4,-
equivariant maps 07 : T4, — .A}I ppy 1 Ar(tr) given by the Kuranishi model. Let v be



GEOMETRY OF MODULI SPACE ENDS 53

a tangent vector to Ty, , i.e., suppose [v] € H}AI. Then Eq. (5.9) and the estimates of §5.4
give the following bounds for the differentials with respect to the lower moduli parameters:

).

The map J; is an immersion and so the range of D9; has dimension equal to dim Hih.

1/2

(5.10) l7x, Dd(v) = DI1(0)ll2(x1,6r) = ON

For small enough ), Eq. (5.10) implies that the range of 7y, DJ also has dimension equal
to dim Hzlh‘

Step 3. Partial derivatives with respect to gluing parameters. Let v be a tangent vector
to Gly. The estimates of §5.5 give the following bounds for the differentials with respect
to the gluing parameters:

—2
(5.11) I7e, D3(v) — D' (v)ll 11 (x1,91) = O(A ),
recalling that DJ'(v) is supported on QI(%)\}/z,Q/\}/z). But from Proposition 3.28 we have
(5.12) 1DF (W)l L+ x1,90) = el

for some constant ¢ > 0 independent of . In particular, the range of g, DJ’ has dimension
equal to dim Gl;. So, for sufficiently small A, Eqs. (5.11) and (5.12) imply that the range
of mq, Dd also has dimension equal to dim Gly.

Step 4. The quotient map. Combining these observations, we find that the range of I1DJ
has dimension equal to dim H 4,4/ ,(dim H}AI +dim Gl7) = dim T, so that ker IIDJ = 0
and J is an immersion. From Theorem 5.8, the open subset U = ?J(T) in A}’k projects to an
open subset U = J(T) in M¥ ;(¢g) and composing J with the projection A% = Ak /9,
we obtain a submersion g : T' — M?% ,(¢). The group I acts freely on T, Jis [-equivariant,
and dim7T'/T' = dim M% ,(g), and the gluing map descends to a diffeomorphism g : T/T —
M*% (g), as required. (é) This follows from (b). For the derivatives with respect to A or
xr, the cut-off functions required to define II should be replaced by cut-offs with similar
supports and which are fized with respect to small variations in the scales and centres.

(d) This is similar to the proof of (¢) and uses Proposition 3.5. O

In order to parametrise neighbourhoods of boundary points in M}mk(go), we use the
following corollary to Proposition 5.10.

Corollary 5.11. Given the hypotheses of Theorem 5.8, the following hold:

(a) The approximate gluing map §' : T/T' — B  is a C> embedding,

(b) The gluing map I T/T =V C Mx, (g0) is a diffeomorphism onto an open subset,

(¢) The extended gluing map J : T/T =V C Mk, 1(90) is a C° submersion onto an open
subset, X

(d) The extended gluing map J : T°/T — V° C M%, +(g0) is a diffeomorphism onto an

open subset.

Taken together, Theorems 7.3.2 and 7.2.62 in [D-K] imply that if A is any g-anti-self-
dual connection on a fixed G bundle P over the connected sum X and the necks €2 are all
sufficiently pinched (so that X is small), then [A] lies in the image of the gluing map. The
corresponding statement in our application is given below.
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Theorem 5.12. Given the hypotheses of Theorem 5.8, then the following holds. Let
{A.}52, be a sequence of connections on a G bundle P over the connected sum X =
#1e9X1 which are anti-self-dual with respect to the sequence of metrics {gq}5%, deter-
mined by the sequences of scales {\ro} with Ay — 0, a fixed neck width parameter N,
sequences of points {x1,} converging to {x;}, and frames in F X,|,,. converging to frames
in FXg|z,. Suppose the sequence {A,}52 , is strongly convergent to (Ar)reg, where Af
is a gr-anti-self-dual connection over each summand X;. For «y sufficiently large, there
exists a gluing neighbourhood U such that [A,] € U, for all & > «y.

Proof. See [D-K, §7.3.1]. Theorem 4.18 implies that the sequence {A,} is D, convergent
(for any 4 < g < o0) to (Ar)reg. So, Theorem 5.8 implies that the points [A4,] are contained
in a gluing neighbourhood U, for all & > ag if «y is sufficiently large. O

Recall that Gl,, = SU(2) ~ S%, a copy of the standard three-sphere, and let G,
be the closure of Gl,, x (0,)g) in the cone (Gl;, x [0,)))/ ~, where (p,0) ~ (p’,0) if
p,p" € Gl;,. Then, by analogy with [D-K, §8.2] and [D86, §V], we set

(5.13) T =Ta, x [[ (Ta, x B(zr,7m0) x Glp,))
1€d

and likewise, define F°. 1t is also convenient to define
(5.14) 0T = {teoc = (t1,y1,p1,A\1)1€7 € T : Ar = 0 for some I},

where the 4-tuple (t7,yr,pr, A1) above is replaced by t°, if I = 0. The space 9T is
defined similarly. Moreover, the gluing map g has a natural definition on the boundary
0T. Suppose to € 0T and let (Aq,..., ) denote the corresponding scales in Eq. (5.14)
which have been set equal to zero. By cutting the edges with A; = 0, we may view the
tree J as a union of subtrees US_,J%. If t,, € T, we write to, = (t!,...,°), with ¢! € T,
and set

(5.15) Atoo) = (B(F),-. 8(H)),  tw€T,
where each J(t') is an anti-self-dual connection over a connected sum Y; = H#res X,
say, and X = #7c9X7 = #{_,Y;. The relationship between the gluing maps g and J°

is explained by the continuity result below, which we just state in the special case X =
Xo#X1#X,, for the sake of clarity. The argument required for this case carries over with
no significant change to the more general cases just described.

Proposition 5.13. Let X = Xo#X #Xs, let Y = Xo#X,, and let Y = Y \
B(xq, %)\1/2). Assume the hypotheses of Theorem 5.8 and let Jx, dJy be the gluing maps
over the connected sums X and Y, respectively. Then there is an ¢ = ¢(q) > 0 and a

constant C' = C(go,q,7T) such that ||dx(t)|y» — v ||ra(v,y) < CAT°.

The proof is similar to that of Proposition 7.2.64 [D-K] and the arguments in §5.3,
and so 1s omitted. It now follows that g extends continuously to 7.
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Proposition 5.14. Assume the hypotheses of Theorem 5.8. Let {t,}22 , be a sequence
in T which converges to to, € 0F. Then the sequence {J(to)}22, converges strongly to

Itoo)-

Proof. Let {)\;}{_,; denote the scales, determined by ¢, which have been set equal to zero
in Eq. (5.14). The points t, € T are then naturally written as t, = (t.,...,t%), with the
sequences t, converging to ¢! € T, say. According to Proposition 5.13, the sequence J(t,)
is then D, convergent to (J(t'),...,d(t°)) and hence, strongly convergent by Theorem 4.18.
O

It remains to show that Mx, x(go) has a finite cover consisting of gluing neighbour-
hoods. Of course, away from the bubbling ends, the moduli space is covered by the standard
Kuranishi charts. In addition, the geometry of these charts around the reducible connec-
tions has already been analysed in [G-P89], so our focus here is on the bubbling ends.
Given any Uhlenbeck boundary point (Ag, z1,...,2;) € H}mk(go), where ca(Ag) =k — 1
and each z; has multiplicity 1, Theorem 8.2.3 [D-K] provides an open neighbourhood V
of (Ag,z1,...,27) in M;O7k(go), a parameter space T°/T', and a gluing map J giving a
homeomorphism of 7°/T with V = VN M%, 1(90). Theorem 8.2.4 in [D-K] states that this
gluing map extends to a homeomorphism g fo/f’ — V. Thus, away from the diagonals,
the ends of H}m «(90) are covered by gluing neighbourhoods. The generalisations below

provide a covering of the ends of H§(07k(go), including the diagonal boundary points.

Theorem 5.15. Let (Ag,21,...,2m,) be a boundary point in M}mk(go). Under the
hypotheses of Theorem 5.8, there exist neighbourhoodsV C M}O’k(go) of (Ag, 1, ., Tmy)
and a parameter space T° such that the following holds. If V =V N ﬂl}‘(mk(go), then the
gluing map g JO/T — V is a diffeomorphism.

Proof. Suppose {[Aa]}3Z; is a sequence in Mx, k(go), converging weakly to the Uhlenbeck
limit (Ao, 1,...,%m,). Let {[Aa]}oZ, be the corresponding strongly convergent sequence
in Mx ;(go) with the bubble tree limit (A7, z7)rey. Then Theorem 5.12 produces a gluing
neighbourhood J(T°/T') = U C Mx i(ga) and an «g such that [A,] € Ufor all & > a. Let
V be the corresponding neighbourhood in My, r(g9). Then the conclusions follow from
Corollary 5.11. O
Theorem 5.16. Given the hypotheses of Theorem 5.15, the gluing map J extends to a
homeomorphism OfTO/F with a neighbourhood V of (Ag, x1,...,%m,) in H}mk(go).

Proof. This follows from Proposition 5.14 and Theorem 5.16. g

Remark 5.17. So, every boundary point in M;L(mk(go) has a neighbourhood constructible
by gluing. Plainly, the same statement holds for boundary points in H;mk(go).
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5.3. Derivatives with respect to scales and centres. The main purpose of this
section is to obtain L? estimates for the partial derivatives of the family of gg-anti-self-dual
connections A with respect to the scales Ay and centres x7.

Unless noted otherwise, throughout this section and for the remainder of this article,
we assume that p and ¢ are Sobolev exponents satisfying the strict inequalities 2 < p < 4
and 4 < ¢ < oo, where ¢ is determined by 1/p = 1/441/q. The constant Ay > 0 is assumed
small and may be decreased as needed. We use C' = C(gg,p,T) to denote constants which
are independent of the points t = (t7, pr, 7, A1) € . Asusual, we abbreviate the derivative
with respect to the centre parameters, pfd/dq} (where |pr| < 1) by 9/dp;.

Denoting n = —FT9(A’) in Eq. (5.6), we have the following preliminary estimate for
the derivatives of a with respect to the A; and x; parameters.

Lemma 5.18. Let € and a = P§ be as in Theorem 5.8, and assume that the conditions
of that theorem hold. Then, for small enough \g > 0, there is a constant C = C(go,T)
such that for any t € T,

(a) 108/OA 1|12 (x0.00) < C (125 €l 12(x ) + 19€/OArl| 2,90 + WA /2),
(b) 119a/0prl| 2xo.a0) < € (1195l i20x.0) + 196/ 9p1 1 120x,5) + X))

Proof. From Proposition 3.24, we have

—1/2
+ CA; / HaHLf(X),

Ha/\f L2(X0,g0) Ha/\f

L?(X.9)

where a = P¢ and 8P5 = ap f + P The estimates of Proposition 5.5 and Theorem
5.6 then gives (a). The proof of (b) is snnilar. O

We now differentiate the g-anti-self-dual equation and obtain a priori estimates for
the partial derivatives of £ with respect to Ay and xj.

Lemma 5.19. Let ¢ be as in Theorem 5.8 and assume that the conditions of that
theorem hold. Then, for small enough \g > 0, there is a constant C' = C(go,T) such that
for any t € T,

) 2 — ~
(8) 10€/0A1 ] 120x,0 < € (1 XA + X1 2t 1scx.0)-
(b) 19¢/9prllzcx, < € (14 MEEEN 2 (x,0)-
Proof. Differentiating Eq. (5.6) with respect to Ay gives

o6 On O« oP¢ o oP¢
aAI_aAI_aAj(P“PS)_<aA AP5> <P‘5Am[>

The estimates of Lemma 3.14 and Proposition 5.5 imply that

5 17,
S| enaar el (|55
L2

)

H OAr

o l.. <
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Proposition 3.26 gives ||0n/0\[| > < C, while Theorem 5.6 gives ||€||z: < C'A. Thus, for
Ao small enough, we may assume C||{]|2 < 1/2. Part (a) then follows by combining the
above estimates and rearranging, and the proof of (b) is similar. O

To complete our task, we need an estimate for the derivatives of P with respect to Ay
and zy. Before proceeding, we first record some bounds for the derivatives of the cut-off

functions f; and ;. Suppose 1 < p < oo. From the definition of g7 there is a constant
C = C(gr,N,p) such that

(5.16) dBrly; < CAFM? on Qp,Qr, and  ||dBr|| (xS CAZ/PTY2,
Second, for the derivatives of 37 with respect to Ay, one has

(5.17) 1087/0A1| 10 (x,,95) < C')\I_l and  [0dB1/OA1|1=(x,.9,) < C/\I—3/27
H(’)ﬁj/a/\IHLp(XMJ) < /\3/19—1 and Hadﬁj/a/\I”LP(XJ,gJ) < Cf/\§/19—3/27

for J = I_ or I, these derivatives being zero otherwise. Third, for the derivatives of 3;
with respect to xy, one has

(5:18)  119085/0p1ll 1= (x50 < CAT? and [0dBs/Op1] e (x,00) < CNF '
1081/0p1|1r(x,,95) < /\i/p—l/2 and  ||0dB;/0pr|Lr(x,.0,) < C)\?/p—l7

for J = I_ or I, these derivatives being zero otherwise. The cut-off functions ~; also

satisfy the bounds of Eqgs. (5.16), (5.17) and (5.18).

Proposition 5.20. For any 0 < § < % and 2 < p < 4 defined by p = 4/(1 + 2¢),
and small enough Xy, there is a constant C = C(6,¢0,7) such that for any t € T and
£ e LPQT9(X,ad P),

—1/2-6
(@) 155 Ellscx < CALP 7€l .
() I 55-€llzacxe) < CATNEN Lo x 0)-

Proof. (a) As P = Q(1+ R)™!, we first obtain operator bounds for 8Q/d\;, OR/d\;, and
then deduce an operator bound for OP/0A;.

Step 1.  Estimate for 0Q/0Ar. Recall that Q¢ = >, Q €, where Q; = B5Pyyy is
independent of Ay for J # I_, I, and so

0Q 9Qr  0Q; - 0Q, 0B ey
o, an, Tan, Where o =gy Pt OrPrgs

with the analogous expression for 0Q;_/0A;. Choose 4 < q,¢1 < o0 and 2 < p,p; < 4 by
setting

(5.19) p=4/(1426) and ¢=4/(1-20)
1/p=1/441/¢; and 1/2=1/p; +1/q,
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and observe that 1/4 = 1/¢+ 1/¢; and 1/2 = 1/p + 1/q, while 2/p = 1/2 + ¢ and
2/q = 1/2 — 6. Applying Holder’s inequality, the operator bounds for P; of Lemma 5.1,

and the fact that ||08r/0A1]| e and ||0vyr/OA1]| e are bounded by C'/\i/q_1 from Eq. (5.17),
we find

ovr
el + |5

81

» < CAY e s
o, 1€l e < CAYT €L

La

b
OAr

o

L4

Combining the above estimate with the analogous bound for the 0Q;_/0\; term, we see
that

0
- K

<NV 1o,
L4

completing Step 1.

Step 2. Estimate for OR/0N;. We have R = djz,’g — 1 on X and so differentiating with
respect to Ay gives

OR = O« DA’ +’g+ e oQ
A oar

——t=—Idu el
5/\1 aAIdA Qf—l_ aA]?Q‘f

Using our L bound for 9*,/0A| of Lemma 3.14, the L* bound for dA’/OA| of Proposition

3.25, and the operator norm bounds for ) of Lemma 5.3, we see that

d+79 aQ

OR
(5.21) Ha—/\] A’ a/\j

< CN VPl a Q€ 12 + C €| e +
L2

L2

For the d 4@ term above, note that d4Q& =), d a4, Q1€ and writing A, = Ay +ay over
X', we have

dan, Qi€ =dBs N Pyvs€+ Bida, Pryi€+ Balas, Prys€].

Using the bounds ||dB,||z+ < C of Eq. (5.16), |las|lps < CX of Lemma 3.9, Holder’s
inequality, and the operator bounds for P; of Lemma 5.1, we find that

(5.22) ldaQ€llz> < Cl[E][ 12

For the dz,’gaQ/a)\I term, note that

oQ 2Qr_ 0Q
d-l—;!]_ — d+}g d+}g
A 8/\] A7 8)\1 * AT 8/\1’
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where, using dz;gIPI =1 and g; = 1 on supp~s, we have

b o +.9 X
d—l— g QI <d Br A PI’YIf) + ﬁ[GI,P]’ﬂf]—i—’g

A1 0N OA
oy \7 0 ovr ]
(dﬂf APrgg ) e {aI,PI o 5}
106r ) a’YI
5 (‘3/\1(* — *g;)da; Pryré + 551(*g — *g )dAIPIa/\If

with the analogous expression for d+ 5’@1 /OAr. From Lemma 3.14 and Lemma 5.1, we
see that

;90 ap
‘ AT ONr H axj |‘£””+CH - HCLIHMHSHLP
L2 LP1
87[ 6’71 afw
v H el + Cllarlis | 30| el
9 0
+CAH Pr HﬁHLerCAH o ngm

Now |lar||z+ < CX by Lemma 3.9, and from Eq. (5.17), we have that ||087/0)||1« and
|0~vr/0Ar|| e are bounded by C'/\i/q_l. Hence,

.9 QI

d+
Y

< N E e

with the analogous bound for the dz,’g 0Q1_ /0 term. Therefore,
T_

d+7g aQ

v IS YA P

(5.23)

Combining the above inequalities and noting that ||{|[z2(x 4) < C||€]|zr(x,g), We have

(5.24) < N TY€ g

H OR
LY(X,g)

OAr

which completes Step 2.
Step 3. Estimate for 9P/0)\;. Differentiating P = Q(1 4+ R)™! with respect to A\; gives

oP  0Q . OR

T o, LR QAR o

1
N DA VRN
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and thus applying the bounds from Steps 1 and 2, we have

< N €N o x
L4(X,g)

19)

o
O\r

which yields (a) since 2/¢—1 = —1/2—¢. For (b), the strategy of (a) shows that || aQ R
LT

and || 8pI£HL4(X g) are bounded by CA; giving
(5.25) H 3 <A Tl o
PT 111X )
and so (b) follows. O

As is readily verified, Lemma 5.19 and Proposition 5.20 then provide the the following
estimates for the derivatives of ¢ and a with respect to Ay and x:

Corollary 5.21. Let £ and a = P§ be as in Theorem 5.8 and assume that the conditions
of that theorem hold. Then, for small enough \g > 0, there is a constant C = C(6, g9, 7T)
such that for any t € T,

(a) [|0€/OArllL2(x,9) < C

( 3/2‘1‘5/\—1/2—6)
(b) 110¢/0prlr2(x,9) < C(1 4 A

14+ A
—3/2+6

Y

) /\I )7
(c) [|[0a/OAr||L2(x,9) < C(1+ /\1/2“/\—1/2—6)7
—1/2+46
(d) [0a/0prllr2(x,9 < C(1+ A / A0,

With bounds for the derivatives of { and P with respect to Ay and z; at hand, we
obtain our final estimates for the derivatives of the anti-self-dual connections A and A.
Since A = A’ 4+ a and combining Proposition 3.25 and Corollary 5.21, we have:

Corollary 5.22. Assume that the conditions of Theorem 5.8 hold. Then, for any
0 < 6 < 1/2 and small enough Xy > 0, there is a constant C = C(6, g9, T) such that for
any t € T, the following bounds hold:

() 104/0\ |10 ) < COLHNPFATH278),
~1/244
(b) 104/0prllz2x g < CL+XTATD),

Theorem 5.23. Assume that the conditions of Theorem 5.8 hold. Then, for any
0 < 6 < 1/2 and small enough Xy > 0, there is a constant C = C(6, g9, T) such that for
any t € T, the following bounds hold:

( ) Haa/a)\IHL2(XO 70) < C(]_ + /\1/2+5/\—1/2—6)7

( ) H@A/a/\IHB(XO 40) < C(]_ + /\1/2-1-5/\—1/2—5)7
—1/246

() 1106/3p1ll12(xg.00 < C(1+ X/ 2TON70),
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~1/246

(d) 104/8prllr2(xo,00) < CLHX TN,

Proof. Using the bound ||¢]|rr < C'X2/p of Theorem 5.6, the equality 2/p = 1/2 + §, the
L? estimate for 8a/OA; in Lemma 5.18, the L? estimate for 9¢/9A; in Corollary 5.21, and
the operator estimate for 0P/0A; in Proposition 5.20, we obtain

T1/2+6, —1/2-6 3/2+6, —1/2—6 | T1/2+6,-1/2
<C(A A +1+A A + A A ,

H OM Il 12(0,90) ~ ( ' )
which gives (a). Then (b) follows from (a) and the estimate H@A’/a/\IHLz(XmgO) < C of
Proposition 3.27. The proofs of (¢) and (d) are similar. O

5.4. Derivatives with respect to lower moduli. In this section we obtain estimates
for the derivatives of the family of g¢-anti-self-dual connections A with respect to the lower
moduli parameters t;7 € T4,. Just as in §5.3, the strategy is to use the g-anti-self-dual
equation of Eq. (5.6), together with its derivatives with respect to the t; parameters, to
first obtain estimates for the derivatives of a and &, and then the required derivatives of
a and A’. The Sobolev exponents p, g are fixed so that 2 < p < 4 and 4 < ¢ < oo, where
q is determined by 1/p = 1/4 4+ 1/q. We have the following preliminary estimates for the
derivatives of ¢ and a.

Lemma 5.24. Let ¢ and a = P¢ be as in Theorem 5.8, and assume that the conditions
of that theorem hold. Then, for small enough \g > 0, there is a constant C = C(go,p,T)
such that for any t € T,

(a) 19a/0tr||Lr(x.9) < CNOE/Ot 1|l Lo (x 0 + | 5Nl (.09
—2/p—1/2 2/
() 10¢/0trllnscxgy < € (X777 X182 E N nacxg).

Proof. Differentiating Eq. (5.6) with respect to t; gives

o6  9n [0P¢ tg oP¢
ot oty <8t1/\P§> PENG)

oP¢ 0P ot
T T

The proofs of (a) and (b) are then similar to those of Lemmas 5.18 and 5.19. O
Thus, an operator estimate for P/t  is required. Since P = Q(1 + R)™!, we have

P 90 OR

(5.26) pTe al”(1 +R)7'-Q1+R)! o%,

—(1+R)"!

We recall that Py = d;’}ql Gj;;gl. Differentiating with respect to ¢;, we obtain

) +7
aPI — adAfI G+7gI d*:gl G+7g1 aA ! G+7gI

8—t1_ oty at] Ar
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The derivatives of dj;;gl and d;’fl with respect to t; are given by

ad ;" [EMI r’gf [EMI r’gf
w = = . w,

otr otr’ a—tl’
8d4’f’ DA; 0A; 17
———§= [8—t1’*§] = [5—7%’ ] £,

for any w € Q'(X;,ad Py) and £ € Q197 (X, ad Pr). Therefore,

ALY _[0Ar 17 4 oy ghon [242 1
oty otr’ otr’ ’

and so we find that

* +7gI
(5.27) opP, OA; OA; } .

—:1—Pd+’g1 bkt A +7!]I_P Yar
8t1 ( IAI)|:atI7:|GAI I|:at[’

Note that 1— dez;gl is a bounded (L, L?) operator on Q797( X, ad Pr) by the Calderon-
Zygmund theory.

Lemma 5.25. There is a constant C = C(go,p,T) such that for any t € T,
(a) | 552 7 Ll pacxrign) S ClEllLr(x1,90), for § € LPQT91( X, g1),
(b) 1152€lLacx.g) < ClléllLr(x.g), for € € LPQTI(X, g).

Proof. Since 1 — de:;gz is bounded on LY(X7,gr), then Eq. (5.27) and the Holder in-

equalities show that

oP
H d IGE el e+ C

E7

H@AI

5,

1 Pré] za-

But Gj;gl and Pr are bounded (LP, L?) operators and noting that the family A;(t7) is
smoothly parametrised by t; € T4,, we obtain (a). Now Qr = SrPryr and Q =), Qr, so
inequality (b) follows. O

It remains to estimate the derivative of R with respect to ¢;.

Lemma 5.26. There exists a constant C = C(gg,p,T) such that for any t € T and
f c Q-hg(X,g) we have H BtI'EHLp(Xﬂ) < CH.fHLp(X 9)

Proof. We recall that R = dﬁ_,’g — 1 over X and R = d+’gQ1 — 1 over X7. Writing
A" = Ay + ay, we find that

1
R =dB; A Pryr + Brd " Pryr + Brlag,- |79 Pryr + 2(* — %, )Brda, Pr — 1.
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Noting that dz;gl P; =1 and differentiating with respect to t;, we have

oP i or; 1t
(5.28) 5 dBr A wa—l—ﬂj PI’YIf + Br |ar, =1k
6t1 otr
1 1 oP
—|—§(* — %y, )01 [— 1716} 2(* —*g,)B1da, atjwfa
and so
OR OP Oa
620 |G| < crase |Grue| wo |G| 1Pt
oP 0A
+ Ol atfws PRy e INERRI
— O0Pr
+CX|day Gt

where ar = (¢5r — 1)ojAr and Oar/0t; = (5 — 1)o;0Ar/0t;. Aside from the self-dual
projection and factor 57, the last term on the right-hand side of Eq. (5.28) is given by

0Py _ O0A7 +7g1 .91 9Ar +791
dAIa—tIVIf = —da, * [E% Gy vi€| +da, Prdy D0, G A 1€
aA +,9
— dAIP] {(‘% P]’y[f:| .

Since Py is a bounded operator from L? to L! and using the bounded inclusion L} — L1,
we see that

(9] aAI + aA
< 7gI
e I R | W [
0A 0A
<c|5| e+ eS| e
1o
0A 0A
*CHan el + |G| 1Pl
[0 L4

' 91

Since the family A(t) is smoothly parametrised by t; € T4, and as G+ is a bounded

operator from L? to L}, we have

0Py
(530 i | <t
I r
Egs. (5.29), (5.30) and Lemma 5.25 then yield the required bound for OR/0t;. O

Thus, Eq. (5.26), together with Lemmas 5.25 and 5.26, provides an estimate for the
derivative of P with respect to ¢r:
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Proposition 5.27. There is a constant C = C(go,p,T) such that for any t € T and
£ € L0 9(X,ad P), we have | 22€] 1acx ) < ClElincx py

This leads to our final estimates for the derivatives of £ and a with respect to ¢j.

Corollary 5.28. Let £ and a = P§ be as in Theorem 5.8, and assume that the conditions
of that theorem hold. Then, for small enough \g > 0, there is a constant C = C(go,p,T)
such that for any t € T,
—2/p—1/2
(a) [0/t Lr(x,9) < CA :
o ~2/p—1/2

(b) [10a/dt ]| e(x.q) < CXT72

Proof. Inequality (a) follows from Lemma 5.24 and Proposition 5.27, since |[£||zr < sz/p
by Theorem 5.6. Inequality (b) then follows from (a) and Lemma 5.24. O

By combining Proposition 3.30 and Corollary 5.28 we obtain an estimate for the
derivatives of the connections 4 = A’ + a over X:

Corollary 5.29. Assume that the conditions of Theorem 5.8 hold. Then, for any
2 < p < 4 and sufficiently small \g > 0, there is a constant C' = C(go,p,T) such that for

anyt €7,
(a) 0A/0t; — DAL /Ot1]| 1o (xr gry < CX/TT2,
(b) 104/0t1]|Ls(x,g) < C.

We now come to the main result of this section.

Theorem 5.30. Assume that the conditions of Theorem 5.8 hold. Then, for any
2 < p < 4 and sufficiently small X\g > 0, there is a constant C' = C(go,p,T) such that for

anyt €7,
(a) [10/0t1] o0 40y < NP7
(b) 1104/0t1]| 1o (0.0 < C-

Proof. Let U = fi'--- f;'(X}) C X, and note that aata Yo }‘aat“ on U. Now

Lemma 3.19 gives

Oa

fO fI 3t1

)
Lr(X,g)

<CZ
I

and so Part (a) follows from Corollary 5.28. Then Part (b) follows from (a), the estimate
|0A"/0tr|| 1r(x0,90) < C of Proposition 3.32. O

<c|5

Hat] oty

Lr(Xo,90) LP(Xo,90)
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5.5. Derivatives with respect to bundle gluing parameters. We obtain estimates
for the partial derivatives of the family of g¢-anti-self-dual connections A(t) with respect
to the bundle gluing parameters p; € Gl;. The Sobolev exponents p, ¢ are fixed so that
2 <p<4, with 4 < g < oo determined by 1/4 + 1/q = 1/p. We first recall the estimate
of Donaldson and Kronheimer for the derivative of a = P¢ with respect to the gluing
parameters pr. As described in §3.8, we work with an equivalent family of g-anti-self-dual
connections A = A’ 4+a on a fixed bundle P. Thus, considering only the gluing parameters,
we have a diffeomorphism By 5 v — A(pr,v) € A% p (where By is the unit ball in g),
giving a family of C'*° connections on a fixed bundle P= P(pr), as in Eq. (3.58). Here,
By 5 v — pr(v) = prexp(v) € Gly is a coordinate chart centred at pr € Gly, as in Eq.
(3.57). This understood, one has the following bounds.

Proposition 5.31. [D-K, p. 303] Let a be as in Theorem 5.8, and assume that the
conditions of that theorem hold. Then, for small enough A\g > 0, there is a constant

C = C(go,p,7T) such that for any t € T, ||0a/0v||1q(x,q4) < NG
Proof. The proof in [D-K] deals only with single connected sums X = X¢#X;, but the

argument adapts without significant change to the general case of multiple connected sums
#1e95X 1. Likewise, the assumptions in [D-K] that I'; = 1 and Hgl = H}h = 0, for all I,

do not affect the relevant estimates. O

Corollary 5.32. Let A be as in Theorem 5.8, and assume that the conditions of that
theorem hold. Then, for small enough \g > 0, there is a constant C = C(go,p,T) such

that for any t € T, ||0A/0v||1r(x,9) < C’)\Z/p 1/2
Proof. Combine Propositions 3.28 and 5.31. g

Moreover, we have the following estimates for the derivatives of the g¢-anti-self-dual
connections A A + @ on the fixed bundle P over Xo.

Theorem 5.33. Assume that the conditions of Theorem 5.8 hold. Then, for small
enough Ao > 0, there is a constant C = C(go,p,T) such that for any t € T,

—2/p+1
(a) [10a/30]| 1o (x g < CX'

~2/p—1/2
(b) 104/00] 1r(x.q) < CX/P7 .
Proof. Since a = fi---ffaon U = fy ' o---0 f;'(X}), Lemma 3.19 gives

fO ffav

M)
Lr(X7{.,91)

<c|

ov

LP(U7gO)

and Proposition 5.31 gives (a). Similarly, (b) follows from (a) and Proposition 3.29. O
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5.6. Differentials of the gluing maps and final arguments. We summarise the
results of the preceding sections and record our bounds for the differentials of the approx-
imate gluing maps g and J. The estimates for DJ then give bounds for the diagonal (and
so all) components of the L? metric g and completes the proof of Theorem 1.1. Combin-
ing these metric bounds with results of Donaldson in [D89] then completes the proof of
Theorem 1.2. The following two theorems summarise the estimates obtained in §§5.3 to
5.5, the first following from Corollaries 5.22, 5.29, and 5.32 and the second from Theorems
5.23, 5.30, and 5.33.

Theorem 5.34. Let J: T /I' = MX ;(g) be a gluing map and assume that the conditions
of Theorem 5.8 hold. Then for sufficiently small A\¢ > 0 and any t € T, there exists a
constant C' = C(go,7T) such that the following bounds hold:
(a) [[D(0/0tF )l L2(x,q) < C, "
(b) I1D3(3/0p)ll12(x.g) < CA s
—1/2+
() ID3/ 02 r2(x,) < C(LHXTTAT),
1/246  —1/2—
(@) I1D3O/OM |2 xgy < CL+XTTAT0),
Theorem 5.35. Let J : T/T — M%, 1(g0) be a gluing map and assume that the
conditions of Theorem 5.8 hold. Then for any 0 < 6 < 1/2, sufficiently small Aoy > 0 and
any t € T, there exists a constant C = C(6,go,7) such that the following bounds hold:

(a) ||1D3(B/0t)| 1> (x0.90) < C,
(b) 11D3(0/3p ) 12 (x0.g0) < CX %,
() D0/l 200 < C(1+XZFNT0),

(d) 1DA(O/ON |12 (xg.00) < C(1+ X 7TNT/278),

~1/246

It remains to reinterpret the bounds of Theorem 5.35 in terms of the corresponding
bounds for the diagonal components of the L? metric g.

Corollary 5.36. Under the hypotheses of Theorem 5.35, the following bounds hold:
(a) g(0/0t¢ 8/5ta) <C,

(b) g(0/9p}.0/9p}) < CX,

(c) g(9/0a],8/02) < C(L+X""A7?),

(d) g(8/dAr,0/0Ar) < C(1+ N T2a71-20)

Recall that the g-length of a path (so,s1) 3 s = A(s) € M, 4(g0) is computed by

IRGCEILETA

The proofs of our main results are now essentially complete.

Proof of Theorem 1.1: Since 0 < é < 1/2, the bounds of Theorem 5.36 imply that the

gluing neighbourhoods V = ?J(TO /T') have finite g-volume and g-diameter. Therefore, the
bubbling ends of MY ;(go) have finite g-volume and g-diameter since the entire moduli

~1426

0A

— ds.
0s s

L2(Xo,90)
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space is covered by finitely many such neighbourhoods. Away from the Uhlenbeck bound-
ary, gluing neighbourhoods consist simply of C'>° Kuranishi charts. The conical ends
corresponding to Kuranishi charts around the reducible connections have finite g-volume

and g-diameter by Theorem 1 [G-P89]. O

Next we consider the relationship between the metric completion and the Uhlenbeck
compactification of the anti-self-dual moduli space. Let dy be the distance function on
M%, «(g0) defined by the L? metric g. Thus, if [4], [B] are two points in M%, +(90), then
dg([A], [B]) is the infimum over all g-lengths of paths in M¥_ ;(go) joining [A] X [B]. If the
two points lie in different path components of the moduli spa(;e, then set da([A], [B]) = 0.
Since bT(Xy) = 0, the moduli space has at most finitely many path components; we
say that MY ,(go) has finite g-diameter if the sum of the g-diameters of the connected
components is finite. In [D89], Donaldson constructs two other distance functions, Dy and
D3, for any fixed € > 0. First, given points [A], [B] in B, set

D2([A]7 [B]) = irelg HA - U*BHL2(X0790)'

Lemma 2 [D89] (or Lemma 4.2.4 [D-K]) show that D, is a well-defined distance function on
B, r- Moreover, Lemma 1 [D89] shows that D»([A], [B]) is equal to the distance function

defined in the usual way by the L? metric on B, x as the infimum over g-lengths of paths
in B, ; joining [A] and [B]. One then obtains a second distance function on M% ;(g0)
by restriction. Define an e-neighbourhood of M¥ ;(g0) in B ; by

By ={[A] € Bx, it 1F P Nl 12(X0,90) < €}

Then D5([A],[B]) is defined as infimum of the g-lengths of paths in BY® | joining two
points [A] and [B] in BY® ;. One now obtains a third distance function on M%_(g0) by
restriction. The three distance functions dy, D2, and D5 on 1\4}‘(07,6(90) are related by

(5.31) Dy([A], [B]) < D5([A],[B]) < do([A], [B]),  [A],[B] € Mx, x(90)-

To show that the dy-completion of J\l}o7k(go) is homeomorphic to the Uhlenbeck compact-
ification H;O7k(go), it is enough to show that a sequence [A®] in M% ;(go) is d2-Cauchy
if and only if it is convergent in the Uhlenbeck topology. For the metric D5, one has
Theorem 5.37. [D89, Theorem 4] For any ¢ > 0, the D5-completion of M% ;(go) is
homeomorphic to M}mk(go). O
Thus Donaldson’s result gives part of the proof of Theorem 1.2: Suppose a sequence
[A°] in M% 1(go) is d2-Cauchy. According to Eq. (5.31), it must also be D5-Cauchy and
so 1s convergent in the Uhlenbeck topology by Theorem 5.37 or simply by Proposition 6

[D89]. The proof of the reverse direction, namely that a sequence [A®] which is convergent
in the Uhlenbeck toplogy is also dz-Cauchy, is included in [F94].
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[D-M-M]

[D86]
[D87]
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