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PU(2) monopoles. II: Top-level Seiberg-Witten
moduli spaces and Witten's conjecture in

low degrees

By Paul M. N. Feehan at Columbus and Thomas G. Leness at Miami

Abstract. In this article, a continuation of [10], we complete the proofÐfor a
broad class of four-manifoldsÐof Witten's conjecture that the Donaldson and Seiberg-
Witten series coincide, at least through terms of degree less than or equal to cÿ 2, where

c � ÿ 1

4
�7w� 11s� and w and s are the Euler characteristic and signature of the four-

manifold. We use our computations of Chern classes for the virtual normal bundles for
the Seiberg-Witten strata from the companion article [10], a comparison of all the orienta-
tions, and the PU�2� monopole cobordism to compute pairings with the links of level-zero
Seiberg-Witten moduli subspaces of the moduli space of PU�2� monopoles. These calcula-
tions then allow us to compute low-degree Donaldson invariants in terms of Seiberg-Witten
invariants and provide a partial veri®cation of Witten's conjecture.

1. Introduction

1.1. Main results. The purpose of the present article, a continuation of [10], is to
complete the proof that Witten's conjecture [58] relating the Donaldson and Seiberg-Witten
invariants holds in ``low degrees'' for a broad class of four-manifolds, using the PU�2�-
monopole cobordism of Pidstrigatch and Tyurin [51]. We assume throughout that X is a
closed, connected, smooth four-manifold with an orientation for which b�2 �X � > 0. The
Seiberg-Witten (SW) invariants (see O4.1) comprise a function, SWX : Spinc�X � ! Z, where
Spinc�X� is the set of isomorphism classes of spinc structures on X. For w A H 2�X ; Z�,
de®ne

SWw
X �h� �

P
s A Spin c�X�

�ÿ1�1
2�w2�c1�s��w�SWX �s�ehc1�s�;hi; h A H2�X ; R�;�1:1�
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by analogy with the structure of the Donaldson series Dw
X �h� [35], Theorem 1.7. There

is a map c1: Spinc�X � ! H 2�X ; Z� and the image of the support of SWX is the set B
of SW-basic classes [58]. A four-manifold X has SW-simple type when b1�X � � 0 if
c1�s�2 � 2w� 3s for all c1�s� A B, where w and s are the Euler characteristic and signature
of X. Let B?HH 2�X ; Z� denote the orthogonal complement of B with respect to the

intersection form QX on H 2�X ; Z�. Let c�X � � ÿ 1

4
�7w� 11s�. As stated in [10], we have:

Theorem 1.1. Let X be a four-manifold with b1�X� � 0 and odd b�2 �X �f 3. Assume

X is abundant, SW-simple type, and e¨ective. For any L A B? and w A H 2�X ; Z� for which
L2 � 2ÿ �w� s� and wÿL1w2�X � �mod 2�, and any h A H2�X ; R�, one has

Dw
X �h�1 01SWw

X �h� �mod hc�X�ÿ2�;�1:2�

Dw
X �h�1 22ÿc�X�e

1
2QX �h;h�SWw

X �h� �mod hc�X ��:

The order-of-vanishing assertion for the series Dw
X �h� and SWw

X �h� in equation (1.2)
was proved in joint work with Kronheimer and Mrowka [8], based on the results in an
earlier version [11] of this article and its companion [10].

The background material underlying the statement of Theorem 1.1Ðincluding the
de®nition and signi®cance of ``abundant'' and ``e¨ective'' four-manifoldsÐwas explained
in [10], O1, so we refer the reader to [10] for details and just brie¯y mention here some
aspects of the statement which may be less familiar.

As customary, b�2 �X� denotes the dimension of a maximal positive-de®nite linear
subspace H 2;��X ; R� for the intersection pairing QX on H 2�X ; R�. It is implicit in the
statements of Theorem 1.1, 1.2 and 1.4 that we have selected an orientation for
H 1�X ; R�lH 2;��X ; R�, and the Donaldson and Seiberg-Witten invariants are computed
with respect to this choice.

A four-manifold is abundant if the restriction of QX to B? contains a hyperbolic
sublattice ([10], De®nition 1.2). This condition ensures that there exist classes L A B? with
prescribed even square, such as L2 � 2ÿ �w� s�. All compact, complex algebraic, simply
connected surfaces with b�2 f 3 are abundant. There exist simply connected four-manifolds
with b�2 f 3 which are not abundant, but which nonetheless admit classes L A B? with
prescribed even squares ([8], p. 175).

As described in [10], De®nition 1.3, a four-manifold is e¨ective if it satis®es Conjec-
ture 3.1 in [8], restated as Conjecture 3.34 in this article. This conjecture asserts that
the pairings of Donaldson-type cohomology classes with the link of a Seiberg-Witten
moduli subspace of the (compacti®ed) moduli space of PU�2� monopoles are multiples of
its Seiberg-Witten invariants, so these pairings are zero when the Seiberg-Witten invariants
for that Seiberg-Witten moduli space are trivial.

For any w A H 2�X ; Z�, one can de®ne a Donaldson invariant (see O3.4.2 for a detailed
description) as a real-linear function ([35], p. 595)

Dw
X : A�X� ! R;
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where ([35])

A�X� � Sym
ÿ
Heven�X ; R��nL�

ÿ
Hodd�X ; R���1:3�

is the graded algebra. If z A A�X � is a monomial then Dw
X �z� � 0 unless

deg�z�1ÿ2w2 ÿ 3

2
�w� s� �mod 8�:�1:4�

Recall from [35], Equation (1.5) that the Donaldson series is de®ned by

Dw
X �h� � Dw

X

 
1� 1

2
x

� �
eh

!
� P

df0

1

d!
Dw

X �hd�� 1

2d!
Dw

X �xhd�; h A H2�X ; R�:�1:5�

A four-manifold with b1�X� � 0 and odd b�2 �X�f 3 has Kronheimer-Mrowka (KM) simple

type ([35]) if for some w and all z A A�X�,

Dw
X �x2z� � 4Dw

X �z�:

If as in Theorem 1.1, we do not assume that X has KM-simple type, then equation (1.5)
only de®nes Dw

X �h� as a formal power series and one cannot necessarily recover all invari-
ants of the form Dw

X �xmhdÿ2m� from the series (1.5). According to [35], Theorem 1.7, when
X has KM-simple type the series Dw

X �h� is an analytic function of h and there are ®nitely
many characteristic cohomology classes K1; . . . ;Km (the KM-basic classes) and constants
a1; . . . ; am (independent of w) so that

Dw
X �h� � e

1
2QX �h;h�Ps

r�1

�ÿ1�1
2�w2�Kr�w�are

hKr;hi; h A H2�X ; R�:

More generally [33], a four-manifold X has ®nite type or type t if

Dw
X

ÿ�x2 ÿ 4�tz� � 0;

for some t A N and all z A A�X �. Kronheimer and Mrowka conjectured that all four-
manifolds X with b�2 �X� > 1 have ®nite type and state an analogous formula for the
series Dw

X �h�; proofs of di¨erent parts of their conjecture have been reported by Frùy-
shov [23], Corollary 1, MunÄoz [49], Corollary 7.2 and Proposition 7.6, and Wieczorek
[57], Theorem 1.3.

For a four-manifold X with b1�X� � 0 and odd b�2 �X�f 3, Witten's conjecture [58]
asserts that X has KM-simple type if and only if it has SW-simple type; if X has simple
type, then

Dw
X �h� � 22ÿc�X�e

1
2QX �h;h�SWw

X �h�; h A H2�X ; R�:�1:6�

Equation (1.2) therefore tells us that Witten's formula holds, modulo terms of degree
greater than or equal to c�X�, at least for four-manifolds satisfying the hypotheses of
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Theorem 1.1. Equation (1.2) is proved by considering Seiberg-Witten moduli spaces in
the top level, l � 0, of the compacti®ed PU�2� monopole moduli space; in order to prove
that equation (1.6) holds modulo hd for arbitrary d f c�X� (and the same w, L), one needs
to compute the contributions of Seiberg-Witten moduli spaces in arbitrary levels lf 0. In
[14] we use the case l � 1 to show that equation (1.6) holds mod hc�X ��2.

Equation (1.2) is a special case of a more general formula for Donaldson invariants
which we now describe; the hypotheses still include an important restriction which guar-
antees that the only Seiberg-Witten moduli spaces with non-trivial invariants lie in the top
level of the PU�2�-monopole moduli space. When b1�X �f 0, the Seiberg-Witten invariants
for �X ; s�, with s A Spinc�X �, are de®ned collectively as a real-linear function (see O4.1 for a
detailed description),

SWX ; s: B�X� ! R;�1:7�

where the graded algebra is given by

B�X � � R�x�nL�
ÿ
H1�X ; R��:�1:8�

Here, L�
ÿ
H1�X ; R�� is the exterior algebra on H1�X ; R�, with g A H1�X ; R� having degree

one, and R�x� is the polynomial algebra with generator x of degree two. If z A B�X � then
SWX ; s�z� � 0 unless

deg�z� � ds�s�;

where ds�s� is the dimension of the Seiberg-Witten moduli space Ms,

ds�s� � 1

4

ÿ
c1�s�2 ÿ 2wÿ 3s

�
:�1:9�

If z � xm A B�X� and 2m � ds�s�, then as customary ([34], [46], [58]) one has

SWX �s� � SWX ; s�z�:�1:10�

As in [50], O1, when b1�X �f 0 we call c1�s� A H 2�X ; Z� an SW-basic class if the Seiberg-
Witten function (1.7) is non-trivial. If b�2 �X� � 1 or b1�X� > 0, there are examples of four-
manifolds whose basic classes have positive-dimensional Seiberg-Witten moduli spaces:
CP2 and its blow-ups give examples with b�2 �X� � 1 ([52]), and connected sums of S1 � S3

and a four-manifold with non-trivial Seiberg-Witten invariants provide examples with
b1�X� > 0 ([50], O2).

For L A H 2�X ; Z�, de®ne

i�L� � L2 � c�X � � w� s:�1:11�

If S�X �H Spinc�X � is the subset yielding non-trivial Seiberg-Witten functions (1.7), let

r
ÿ
L; c1�s�

� � ÿÿc1�s� ÿL
�2 ÿ 3

4
�w� s� and r�L� � min

s AS�X �
r
ÿ
L; c1�s�

�
:�1:12�

See Remark 3.36 for a discussion of the signi®cance of r
ÿ
L; c1�s�

�
and r�L�. We then have:
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Theorem 1.2. Let X be a four-manifold with b�2 �X �f 1. Assume a ^ a 0 � 0 for

every a; a 0 A H 1�X ; Z� and that X is e¨ective. Suppose L;w A H 2�X ; Z� are classes such that
wÿL1w2�X� �mod 2� and, if b�2 �X� � 1, the class w �mod 2� admits no torsion integral

lifts. Let z � xd0 Qhd2 , where h A H2�X ; R�, Q A Ld1
ÿ
H1�X ; R��, and x A H0�X ; Z� is the posi-

tive generator, and write deg�z� � 2d, for d A
1

2
Z.

(a) If d < i�L� and d < r�L�, then

Dw
X �z� � 0:�1:13�

(b) If d < i�L� and d � r�L�, then

Dw
X �z� � 21ÿ1

4�i�L�ÿd�ÿd2ÿ2 d0�ÿ1�d0�d1�1
2�sÿw2��1�1:14�

� P
fs AS�X �: r�L; c1�s���r�L�g

�ÿ1�1
2�w2�c1�s���wÿL��

�Hw;s

ÿ
L2; deg�z�; ds�s�; d1

�
SWX ; s�Qx

1
2�ds�s�ÿd1��hc1�s� ÿL; hid2 ;

with Hw;s de®ned in equation (1.15). If
1

2

ÿ
ds�s� ÿ d1

� � 0, then

Hw;s

ÿ
L2; deg�z�; ds�s�; d1

� � 1:

If b�2 �X� � 1, then all invariants in equation (1.14) are evaluated with respect to the chambers

determined by the same period point in the positive cone of H 2�X ; R�.

(c) If L2 and d satisfy

2r�L� < 2de r�L� � 1

2

ÿ
r�L� � i�L��ÿ 2;

then equation (1.14) holds with Dw
X �z� � 0.

Remark 1.3. 1. When d1 > ds�s�, the Seiberg-Witten invariant SWX ; s�Qx
1
2�ds�s�ÿd1�� in

equation (1.14) is zero by de®nition.

2. If z � Yz 0 where Y A H3�X ; Z� and z 0 cannot be written as z 0 � xz 00 for
x A H0�X ; Z�, then equations (1.13) and (1.14) hold but the right-hand-side of (1.14)
vanishes.

The hypothesis in Theorems 1.1, 1.2, 1.4, and Corollary 1.5 that X is e¨ective can be
eliminated if, in the de®nition (1.12) of r�L�, we replace S�X� with the (possibly larger) set
of all s A Spinc�X� for which the Seiberg-Witten moduli space Ms (as de®ned in [10], O2.3,
with perturbations depending on L) is non-empty. This additional generality does not seem
to be useful in practice, however.

When b�2 �X� � 1 and w �mod 2� admits no torsion integral lifts, Lemma 4.1 implies
that the walls de®ning the chamber structure for the Donaldson invariant Dw

X are given by
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the walls for the Seiberg-Witten invariants appearing in equation (1.14). Thus, both sides of
the equation will change when the period point crosses one of these walls.

The function Hw;s in equation (1.14) is de®ned as

Hw;s

ÿ
L2; deg�z�; ds�s�; d1

� � �ÿ2�dPa;b
d �0�;�1:15�

where d is a natural number and a, b are integers given by

d � 1

2

ÿ
ds�s� ÿ d1

�
;

a � 1

4

ÿ
3r�L� � i�L��ÿ 1

2
deg�z� ÿ d ÿ 1;

b � 1

2

ÿ
deg�z� ÿ 2r�L� ÿ ds�s�

�ÿ 1

4
�w� s�;

and Pa;b
d �x� is a Jacobi polynomial ([29], O8.96),

Pa;b
d �x� �

1

2d

Pd
u�0

a� d

d ÿ u

� �
b� d

u

� �
�xÿ 1�u�x� 1�dÿu; x A C:�1:16�

The polynomials Pa;b
d �x� may in turn be expressed in terms of hypergeometric functions

([29], O9.10, [38]), as we explain in O4.4. Since c1�s�2 1 s �mod 8�, equation (1.9) for ds

implies that the expression ÿ 1

2
ds ÿ 1

4
�w� s� in the de®nition of b is an integer.

When L A B?HH 2�X ; Z� and X has SW-simple type, the expression (1.12) for r�L�
becomes

r�L� � ÿL2 � c�X� ÿ �w� s�;�1:17�
and i�L� � r�L� � 2c�X�, by equation (1.11) for i�L�. Theorem 1.2 then simpli®es to:

Theorem 1.4. Let X be a four-manifold with odd b�2 �X�f 3 and b1�X� � 0. Assume

that X is e¨ective and has SW-simple type. Suppose that L A B? and that w A H 2�X ; Z� is a
class with wÿL1w2�X� �mod 2�. Let df 0 and 0eme �d=2� be integers.

(a) If d < i�L� and d < r�L�, then for all h A H2�X ; R� we have

Dw
X �hdÿ2mxm� � 0:�1:18�

(b) If d < i�L� and d � r�L� we have

Dw
X �hdÿ2mxm� � 21ÿ1

2�c�X��d��ÿ1�m�1�1
2�sÿw2��1:19�

� P
s A Spin c�X�

�ÿ1�1
2�w2�c1�s��w�SWX �s�hc1�s� ÿL; hidÿ2m:

(c) If r�L�< de
1

2

ÿ
r�L��c�X�ÿ2

�
, then equation (1.19) holds with Dw

X �hdÿ2mxm� � 0.
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We recall from [22], O6.1.1 that the symmetric algebra Sym
ÿ
H2�X ; R�� is canonically

isomorphic (as a graded algebra) to the algebra P
ÿ
H2�X ; R�� of polynomial functions on

H2�X ; R�. Thus, given the Donaldson invariants Dw
X �hdÿ2mxm�, we can recover all invari-

ants of the form Dw
X �h1 � � � hdÿ2mxm�.

Corollary 1.5 ([8], Theorem 1.1). Let X be a four-manifold with odd b�2 �X�f 3 and
b1�X� � 0. Assume that X is e¨ective, abundant, and SW-simple type, with c�X �f 3. Then

for any w A H 2�X ; Z� with w1w2�X� �mod 2� we have

SWw
X �h�1 0 �mod hc�X �ÿ2�:

In O4.6 we give a slightly di¨erent and more geometric proof of Corollary 1.5 than
provided in [8], O2, using the ®nal case of Theorem 1.4. This result proves a conjecture of
MarinÄo, Moore, and Peradze [40], [41] for four-manifolds of Seiberg-Witten simple type,
albeit with the additional hypotheses that the four-manifolds are abundant and e¨ec-
tive. The vanishing result for Donaldson invariants in Theorem 1.1 can be sharpened: see
Theorem 1.2 in [8].

1.2. Remarks on the hypotheses of Theorems 1.2, 1.4, and 1.1. To prove Theorem
1.2 (and thus Theorems 1.1, 1.4, and Corollary 1.5), we employ the moduli space of PU�2�
monopoles, Mt=S1, as a cobordism between a link of the moduli space of anti-self-dual
connections, M w

k , and the links of moduli spaces of Seiberg-Witten monopoles, Ms. Our
application of the cobordism method in this article requires that

(1) the codimension of M w
k in Mt, given by twice the complex index of a Dirac

operator, is positive (used in Proposition 3.29), and

(2) only the top level of the Uhlenbeck compacti®cation Mt of the moduli space of
PU�2� monopoles contains Seiberg-Witten moduli spaces Ms with non-trivial invariants
(used in Corollary 3.35).

In the proof of assertions (a) and (b) of Theorem 1.2, one has 2d � deg�z� � dim M w
k

and the hypotheses d < i�L� and de r�L� ensure that conditions (1) and (2) hold, respec-
tively. In the proof of assertion (c), one has dim M w

k � 2r�L�, which implies that condition
(2) holds while the inequality in the hypothesis of (c) implies that condition (1) is satis®ed.

Assertion (a) follows because the hypothesis d < r�L� implies that there are no
Seiberg-Witten moduli spaces contained in Mt with non-trivial invariants, and so Mt=S1 is
essentially a null-cobordism of the link of M w

k . Assertion (c) follows because the hypothesis
on deg�z� implies that deg�z� > M w

k , and only the pairings of Donaldson-type cohomology
classes with links of Seiberg-Witten moduli spaces can be non-trivial. In the remaining
assertion (b), the hypotheses imply that the cobordism yields an equality between pairings
with the link of M w

k and a sum of pairings with the links of Ms. The same remarks apply
to the hypotheses in assertions (a), (b), and (c) in Theorem 1.4.

The assumption that a ^ a 0 � 0 for all a; a 0 A H 1�X ; Z� greatly simpli®es the calcu-
lation of the Chern classes of the virtual normal bundle of Ms in Mt (see Corollary 3.30
in [10]) and hence its Segre classes (see Lemma 4.11). It should be possible to remove this
condition with more work, but this would take us a little beyond the scope of this article
and [10]. We plan to address this point elsewhere.

Feehan and Leness, PU(2) monopoles. II 141



When b�2 �X� � 1, we assume that w �mod 2� does not admit a torsion integral lift
in order to avoid complications in de®ning the chamber in the positive cone of H 2�X ; R�
with respect to which the Donaldson and Seiberg-Witten invariants are computed. See the
comments at the end of O3.4.2 and before Lemma 4.1 for further discussion.

The proof of Theorem 1.1 requires one to choose classes L A B? with optimally pre-
scribed even square in order to obtain the indicated vanishing results for the Donaldson
and Seiberg-Witten series, as well as compute the ®rst non-vanishing terms. The hypothesis
that X is abundant guarantees that one can ®nd such classes, though such choices are also
possible for some non-abundant four-manifolds [8].

1.3. Remarks and conjectures for formulas for Donaldson invariants involving Seiberg-

Witten strata in arbitrary levels. The following remarks are intended to convey an outline
of the remainder of our work on a proof of Witten's conjecture in [12], [13], [15], [14]. While
some details still remain to be checked, we are con®dent that the conclusions stated below
are correct based on our work thus far, despite their conservatively-stated current status as
conjectures rather than ®rm assertions.

As envisaged in [16], the PU�2�-monopole program proposed by Pidstrigatch and
Tyurin [51] for proving Witten's conjecture [44], [58] uses the oriented cobordism Mt=S1

between

. the links Lw
t;k in Mt=S1 of the anti-self-dual moduli subspace M w

k of Mt=S1, and

. the links Lt; s in Mt=S1 of the Seiberg-Witten moduli subspaces, Ms � Syml�X�, of

the space of ideal PU�2� monopoles,
Sy
l�0

ÿ
Mtl � Syml�X ��, containing Mt. (See [10], §2.2.)

The program therefore has two principal steps, which we now outline. The ®rst step is to
de®ne the links Lt; s of Ms � Syml�X� for arbitrary lf 0 using the gluing construction of
[12], [13], extending the construction in [10] which just treats the case l � 0. The oriented
cobordism Mt=S1 then yields a formula (with deg�z� � 2d),

Dw
X �z� � ÿ2ÿdc

P
s A Spin c�X�

�ÿ1�1
4�wÿL�c1�s��2hmp�z�^ mdc

c ; �Lt; s�i;�1:20�

where mp�z� and mc are Donaldson-type cohomology classes, and dc � 1

4

ÿ
i�L� ÿ d

�ÿ 1.

Work in progress [15] then strongly indicates that the pairings on the right-hand side of
equation (1.20) have the following general form, when b1�X � � 0 and z � xmhdÿ2m,

hmp�z�^ mdc
c ; �Lt; s�i � SWX �s�

Pr

i�0

dd; i

ÿ
hc1�s�; hi; hL; hi

�
Qlÿi

X �h; h�;�1:21�

where r � min�l; �d=2� ÿm�, l � 1

4

ÿ
dÿ r

ÿ
L; c1�s�

��
, d � dÿ 2�m� lÿ i�, and dd; i is a

degree-d, homogeneous polynomial (aside from stray powers of �ÿ1� and 2) in two vari-
ables with coe½cients which are degree-i polynomials in 2wG 3s,

ÿ
c1�s� ÿL

�2
, L2, andÿ

c1�s� ÿL
� � c1�s�.
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An interesting feature of the formula (1.21) is that one sees a factorization of the

pairings hmp�z�^ mdc
c ; �Lt; s�i into a product of SWX �s� and the term dd �

Pr

i�1

dd; iQ
lÿi
X . In

particular, the pairing (1.21) vanishes when SWX �s� � 0, implying that X is ``e¨ective'' in
the sense described in O1.1. The factors dd; i are similar to those appearing in the Kotschick-
Morgan conjecture [9], [32] for the form of the wall-crossing formula for the Donaldson
invariants of a four-manifold X with b�2 �X� � 1. However, dd; i is a polynomial in two
variables while the corresponding term in the conjectured wall-crossing formula for
Donaldson invariants is a polynomial in only one variable.

Explicit, direct computations of pairings with the links Lt; s of ideal Seiberg-Witten
moduli spaces, Ms � Syml�X�, are possible when l � 0; 1 or 2: indeed, Theorem 1.1 is
proved using the case l � 0 and we prove an l � 1 analogue of Theorem 1.1 in [14], while
the case l � 2 would follow by adapting work of Leness in [36]. However, direct compu-
tations appear intractable when l is large.

The idea underlying the second step of the program is to use the existence of formulas
(1.20) and (1.21) in conjunction with auxiliary arguments to prove Witten's conjecture,
since more direct calculations of the link pairings appear di½cult. The work of GoÈttsche
[27] suggests that such indirect strategies should succeed, as he was able to compute the
wall-crossing formula for the Donaldson invariants of four-manifolds with b�2 �X � � 1 and
b1�X� � 0, under the assumption that the Kotschick-Morgan conjecture [32] holds for such
four-manifolds. The facts that dd; i is a function of two variables and both w and s may vary
independently indicate that this second step in the PU�2�-monopole program is potentially
more complicated than that of [27], where the assumption that b�2 �X � � 1 implies that
s � 1ÿ bÿ2 �X� and w � 3� bÿ2 �X� (when b1�X � � 0). However, in the case of the PU�2�-
monopole program there are more sources of ``recursion relations'' of the type used by
GoÈttsche, in addition to those arising from the blow-up formulas of Fintushel-Stern [20],
[19] (for Donaldson and Seiberg-Witten invariants). Moreover, there is a rich supply of
examples of four-manifolds where Witten's conjecture is known to hold.

1.4. Remarks on abelian localization. One of the ®rst observations concerning the
moduli space of PU�2� monopoles is that the Donaldson stratum, i�M w

k �, and the Seiberg-
Witten strata, i�Ms�, are ®xed-point sets under the circle action given by scalar multiplica-
tion on the spinor components of PU�2�-monopole pairs; see [10], O3.1 for a detailed ac-
count. This raises the question of whether the technique of abelian localization, as applied to
circle actions on compact manifolds [1] or its generalizations to singular algebraic varieties
(for example, see [28]), can be usefully applied here to prove Witten's conjecture. As we
indicate below, if the moduli space of PU�2� monopoles were a compact manifold and the
Donaldson and Seiberg-Witten strata were smooth submanifolds, then an application of
the localization formula would be equivalent to our construction of links and application of
the PU�2�-monopole cobordism. There is no saving of labor and the essential point re-
mains, with either equivalent view, to compute the Chern classes of the normal bundles
of the ®xed-point sets. As the moduli space of PU�2� monopoles is non-compact, equipped
with the highly singular Uhlenbeck compacti®cation or somewhat less singular but more
complicated bubble-tree compacti®cation, our application of the PU�2�-monopole cobor-
dism can be thought of as an extension of the localization method to those di¨erential-
geometric, singular settings.
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The technique of abelian localization does not reduce the information about neigh-
borhoods of singularities needed to compute intersection pairings because the localiza-
tion formula requires a computation of an equivariant Thom or Euler class of the normal
bundle of the ®xed point set. For example, if F HM is the ®xed point set and N ! F is
its normal bundle, the equivariant Euler class of N is the Euler class e�NS 1� of the bundle

NS1 � ES1 �S1 N ! BS1 � F ;

where ES1 is the universal S1 bundle over the classifying space BS1. Let

pS1 : ES1 �S1 M ! BS1 and i: ES1 �S 1 N ! ES1 �S1 M;

be the projection and embedding maps, respectively. If dim M � m, then because

H m
S 1�MnF ; R�GH m

ÿ�MnF�=S1; R
�
;

any class x A H m
S1�M; R� has compact support in ES1 �S1 N by dimension counting. The

abelian localization formula [1], Equation (3.8) states that

�pS 1��x �
i�x

e�NS1� =�F �:�1:22�

If h is the pullback of the universal ®rst Chern class from BS1 to BS1 � F and
pF : BS1 � F ! F is the projection, then the splitting principle shows that

e�NS1� �Pr

i�0

hip�F crÿi�N�;

where r � rank N. A simple algebraic computation (see [14]) shows that computing �pS1��x
using formula (1.22) and ®nding the inverse of e�NS 1� is equivalent to computing the Segre
classes of N.

Thus, if Mt were a compact manifold and the Seiberg-Witten moduli spaces Ms were
smooth submanifolds of Mt, the abelian localization method would be equivalent to the
one used in this article.

If X is a complex algebraic surface, it should be possible to construct the Gieseker
compacti®cation for the moduli space of PU�2� monopoles over X, by analogy with the
construction of Morgan [45] and Li [37] for the moduli space of PU�2� monopoles, and
then apply the results of [28] to this compacti®cation. However, one would still need to
compute the equivariant Euler classes of the normal sheaves of strata of ideal, reducible
PU�2� monopoles, in order to apply [28], Equation (1). If X is not algebraic, one would
need to solve the non-trivial problem of de®ning the normal sheaves of these strata in
gauge-theoretic compacti®cations.

1.5. A guide to the article and outline of the proofs of the main results. The present
article is a direct continuation of [10] and rather than repeat many of the de®nitions here,
we shall refer to [10]. The ®rst version of this article was distributed in December 1997 as
sections 4±7 of the preprint [11].

Feehan and Leness, PU(2) monopoles. II144



As in [10], we let s � �r;W� denote a spinc structure on X, where W is a Hermitian,
rank-four bundle over X and use t � �r;V� to denote a ``spinu structure'' on X, where V is
a Hermitian, rank-eight bundle over X ([10], De®nition 2.2).

One of the main results (Theorem 3.31) of [10] is a calculation of the Chern charac-
ters of vector bundles de®ning tubular neighborhoods of Seiberg-Witten moduli spaces
in local, ``thickened'' moduli spaces of PU�2� monopoles Mt. In O2 of this article,
we compare the orientations of the moduli spaces of anti-self-dual connections, Seiberg-
Witten monopoles, and their links in the moduli space of PU�2� monopoles. In O3 we de®ne
cohomology classes and dual geometric representatives on the moduli space of PU�2�
monopoles and in O4 we prove Theorem 1.2 by counting the intersection of these represen-
tatives with links of the moduli spaces of anti-self-dual connections and top-level Seiberg-
Witten monopoles.

Compatible choices of orientations for all the moduli spaces appearing in the strati-
®cation [10], Equation 3.17 of Mt and of the links Lw

t;k and Lt; s are a basic requirement
of the cobordism method and a discussion of our orientation conventions is taken up in
O2. As in [10], Equation (2.40), we let M�;0

t HMt denote subspace represented by PU�2�
monopoles which are neither zero-section pairs (corresponding to anti-self-dual connec-
tions) or reducible pairs (corresponding to Seiberg-Witten monopoles). In O2.1 we show
that M�;0

t =S1 (the smooth locus or top stratum of Mt=S1) is orientable, with an orientation
determined by a choice of an orientation for the moduli space of anti-self-dual connections,
M w

k , as explained further in O2.2: this allows us to compute the oriented intersection of one-
manifolds with the link Lw

t;k, where the one-manifolds arise as the intersection of geometric
representatives of the cohomology classes on M�;0

t =S1. We also de®ne an orientation for
M�;0

t =S1 induced by an orientation of Ms, as in O2.3, and this allows us to compute the
oriented intersection of one-manifolds with the link Lt; s. In O2.4 we compare the two ori-
entations of M�;0

t =S1 naturally induced by those of M w
k and Ms. Finally, in O2.5 we com-

pare the natural orientations of these links with the orientations obtained by considering
them as boundaries of the complement in Mt=S1 of small open neighborhoods of the
anti-self-dual and Seiberg-Witten strata.

In O3.1 and 3.2 we describe the cohomology classes mp�b� on the moduli space M�
t =S1

and mc on M�;0
t =S1 and their dual geometric representatives V�b� and W, following the

methods of [4], [6], [7], [35] for the classes mp�b�. A technical complication not present when
dealing solely with M w

k is that the lower strata of Mt have smaller codimension than those
of M w

k . The unique continuation property for reducible PU�2� monopoles [17], Theorem
5.11 plays a role here analogous to that of the unique continuation property for reducible
anti-self-dual SO�3� connections in [7], [35]. In O3.3, we show that the closures V�b� and
W of these geometric representatives in Mt=S1 meet the lower strata of M�;0

t =S1 trans-
versely, that is, in a subspace of the expected codimension away from the reducible and
zero section solutions appearing in lower levels. Thus, the closure of the one-manifolds will
have boundaries in M w

k or in some stratum Ms � S of reducible PU�2� monopoles, where
SH Syml�X �. The hypotheses of Theorem 1.2 exclude consideration of the more di½cult
case l > 0. In O3.4 we show that the number of points, counted with sign, in the boundaries
of the one-manifolds de®ned by an appropriate choice of geometric representatives in the
link Lw

t;k of the stratum M w
k is given by a multiple of the Donaldson invariant, thus com-

pleting the proof of Theorem 3.33. In the course of proving this result we also show that
M�;0

t is nonempty for su½ciently negative p1�t�Ðsee Proposition 3.30 in O3.4.
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In O4 we calculate the intersection of these geometric representatives with the link Lt; s

of the stratum Ms and show that it is given by a multiple of the Seiberg-Witten invariant
associated to the spinc structure s (see Theorem 4.13). The geometric representatives, in
general, intersect the strata Ms in sets of higher than expected dimension, so our calculation
of the link pairings here may be viewed as a di¨erential-geometric analogue of the ``excess
intersection theory'' calculations discussed in [24]. Combining the link pairing calculations

of O3 and O4 and applying the cobordism M�;0
t =S1 then yields the formulas for Donaldson

invariants in terms of Seiberg-Witten invariants in Theorem 1.2, from which Theorems 1.1
and 1.4 and Corollary 1.5 are derived in O4.6.
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2. Orientations of moduli spaces

Following the pattern in [5] and [7], O5.4 and O7.1.6, we ®rst show that M�;0
t is an

orientable manifold and then show that its orientation is canonically determined by a
choice of homology orientation of our four-manifold X and an integral lift w of w2�t�. The
orientation for M�;0

t will be invariant under the circle action and thus give an orientation
for M�;0

t =S1. We also obtain relations between the orientations of the smooth, top stratum
M�;0

t =S1, the stratum M w
k ,!Mt=S1 de®ned by the anti-self-dual moduli space, and the

strata Ms ,!Mt=S1 de®ned by the Seiberg-Witten moduli spaces.

2.1. Orientability of moduli spaces of PU(2) monopoles. In this section we show that
M�;0

t is orientable.

As in [10], O2.1.5, we let ~Ct denote the pre-con®guration space of pairs �A;F�, where
A is a spin connection on V � V�lVÿ with ®xed determinant connection Adet � 2AL on
det�V�� and F is a section of V�. We de®ned Ct � ~Ct=Gt, where Gt is the group of spinu

automorphisms of V ([10], De®nition 2.6).

Recall that DA;F � d �;0A;F � d 1
A;F is the ``deformation operator'' corresponding to the

elliptic deformation complex [10], Equation (2.47) for the moduli spaces Mt. Let det Dt

be the real determinant line bundle over the pre-con®guration space ~Ct, with ®ber over
�A;F� A ~Ct given by

detDA;F � Lmax�KerDA;F�nLmax�CokerDA;F��:�2:1�
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(See [7], O5.2.1 for the construction of determinant line bundles for families of elliptic
operators.) The kernel and cokernel of DA;F are equivariant with respect to the action of
the group Gt �fG1g S1. The stabilizer, in Gt �fG1g S1, of the pair �A;F� acts trivially on the
®bers of det Dt because this stabilizer is connected and the structure group of the ®ber of
det Dt (which is a real line) is fG1g and thus disconnected. Hence, the bundle det Dt

descends to Ct=S1 and so to Ct as well. We will show that the bundle det Dt ! Ct=S1 is
trivial.

Motivated by the remarks of [22], p. 330, we say that an orientation for Mt is a choice
of orientation for the real line bundle det Dt (restricted to Mt): an orientation of the ®bers
of det Dt gives orientations for the real lines

detDA;F � Lmax�H 1
A;F�nLmax�H 0

A;F lH 2
A;F��; �A;F� A Mt:

If �A;F� is a smooth point of Mt, so CokerDA;F GH 0
A;F lH 2

A;F � 0, then

KerDA;F � H 1
A;F � TA;FMt

and

detDA;F � Lmax�H 1
A;F� � Lmax�T�A;F�Mt�;

so an orientation for det Dt de®nes an orientation for the open manifold M�;0
t of

smooth points of Mt. Therefore, det Dt is an orientation bundle for Mt and Mt is orient-
able if det Dt is trivial. As in [5], we show that Mt is orientable because the bundle
det Dt ! Ct=S1 has a nowhere vanishing section, that is, its ®rst Stiefel-Whitney class
vanishes.

Suppose E ! X is a rank-two, complex Hermitian bundle with c1�E� � w and
p1

ÿ
su�E�� � ÿ4k. Denote the group of determinant-one, unitary automorphisms of E

by Gw
k and the space of SO�3� connections on su�E� by Aw

k . Over the quotient space of
connections Bw

k �Aw
k =G

w
k there is an orientation bundle det dE (see [7], Equation (5.4.2))

with ®ber over �Â � A Bw
k given by

det dÂ � Lmax�Ker dÂ�nLmax�Coker dÂ��;�2:2�

coming from the rolled-up deformation complex for the anti-self-dual moduli space M w
k ,

dÂ � d �
Â
� d�

Â
: Cy

ÿ
L1 n su�E��! Cy

ÿ�L0 lL��n su�E��:�2:3�

Thus, an orientation for det dE de®nes an orientation for the manifold M w
k , since

det�d �
Â
� d�

Â
� � Lmax�H 1

Â
�nLmax�H 0

Â
lH 2

Â
��:

We recall the following result of Donaldson:

Proposition 2.1 ([5], Corollary 3.27). The bundle det dE ! Bw
k is topologically trivial.
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We now show that det Dt is trivial using the fact that det dE is trivial, where
t � �r;V�, V �W nE, we identify gt G su�E� and so w2�t�1w �mod 2� and

p1�t� � ÿ4k:

We shall denote

DA;Q � DA � r�Q� and DB;Q � DB � r�Q�;�2:4�

where DA: Cy�V�� ! Cy�Vÿ� and DB: Cy�W�� ! Cy�Wÿ� are the Dirac operators
de®ned by spin connections A on V and B on W, respectively ([10], O2.2 and O2.3).

Lemma 2.2. The bundle det Dt ! Ct=S1 is topologically trivial.

Proof. We recall that the K-theory isomorphism class of an index bundle over a
compact topological space depends only on the homotopy class of its de®ning family of
Fredholm operators (see, for example, [2], p. 69). Moreover, the isomorphism class of the
determinant line bundle (over a possibly non-compact topological space) depends only on
the homotopy class of the family of Fredholm operators [46], Lemma 6.6.1. In partic-
ular, the de®ning family of Fredholm operators DA;F, parameterized by �A;F� A Ct=S1, is
homotopic through DA; tF, t A �0; 1�, to the family of Fredholm operators

DA;0 � �d �Â � d�
Â
�lDA;Q

parameterized by �A;F� A Ct=S1. Thus,

detDA;F G det�d �
Â
� d�

Â
�n det DA;Q:�2:5�

Let det DV be the real determinant line bundle over Ct=S1 associated to the family of
perturbed Dirac operators, DA;Q, where �A;F� A Ct. Let

pB: Ct=S1 ! Bw
k ; �A;F� 7! �Â ��2:6�

be the projection. Equation (2.5) implies there is an isomorphism

det Dt G p�B det dE n det DV

of real determinant line bundles, so

w1�det Dt� � p�Bw1�det dE� � w1�det DV �:

Because the Dirac operators DA;Q have complex kernels and cokernels, the real line bundle
det DV ! Ct=S1 is topologically trivial and hence w1�det DV � � 0. By Proposition 2.1 we
have w1�det dE� � 0. Combining these observations yields w1�det Dt� � 0. r

2.2. Orientations of moduli spaces of PU(2) monopoles and anti-self-dual connections.

We introduce an orientation for the PU�2�-monopole moduli space Mt determined by an
orientation for the moduli space M w

k ,!Mt of anti-self-dual connections.
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An orientation for the line bundle det Dt determines an orientation for Mt. The space
~Ct is connected, so the quotients Ct and Ct=S1 are connected and a choice of orientation
for det Dt is equivalent to a choice of orientation for a ®ber detDA;F over a point �A;F�.
The proof of Lemma 2.2 provides a method of orienting det Dt from an orientation for
det dE , and thus from a homology orientation and integral lift w of w2�t�, using the iso-
morphism (2.5) of real determinant lines. Indeed, it su½ces to choose an orientation for the
line det�d �

Â
� d�

Â
� and thus an orientation for det dE and choose the orientation of det DV

induced from the complex orientations of the complex kernel and cokernel of DA;Q.

To ®x our conventions and notation, we outline Donaldson's method for orienting
det�d �

Â
� d�

Â
�, and thus det dE , given a homology orientation W and an integral lift w of

w2�t�: the detailed construction is described in [5], O3. Suppose E GClL is a Hermitian,
rank-two vector bundle over X, where C � X � C and L is a complex line bundle with
c1�L� � w. Then su�E�G iRlL has w2

ÿ
su�E��1 c1�L� �mod 2�, where R � X � R.

Suppose dC lAL is a reducible connection with respect to the splitting of E, where dC is the
trivial connection on C, and Â � dR lAL is the corresponding reducible connection on
su�E�, where dR the trivial connection on R. Then the induced rolled-up deformation
complex for the anti-self-dual equation (2.3) splits as

d �
Â
� d�

Â
� �d � � d��l �d �AL

� d�AL
�;�2:7�

where,

d � � d�: Cy�iL1� ! Cy�iL0 l iL��;�2:8�

d �AL
� d�AL

: Cy�L1 nR L� ! Cy
ÿ�L0 lL��nR L

�
:�2:9�

The real determinant line,

det�d � � d��GLmax
ÿ
H 1�X ; R��nLmax

ÿ
H 0�X ; R�lH��X ; R���;

is oriented by a choice of ``homology orientation'' W ([5], O3), that is, an orientation for
H 1�X ; R�lH 2;��X ; R�, while H 0�X ; R� is oriented by the choice of orientation for X
([46], O6.6). The operator d �AL

� d�AL
is complex linear, and hence the complex orientations of

its complex kernel and cokernel determine an orientation for the real line det�d �AL
� d�AL

�.
Thus, an orientation for det�d �

Â
� d�

Â
� is de®ned by the class w and homology orientation W.

An isomorphism between any two pairs of Hermitian, rank-two complex vector
bundles E, E 0 over X with ®rst Chern class w can be constructed by splicing in
jc2�E� ÿ c2�E 0�j copies of SU�2� bundles over S4 with second Chern class one. Given a
U�2� connection on the bundle over X with smaller second Chern class, we obtain a U�2�
connection on the other U�2� bundle by splicing in copies of the one-instanton on S4. The
excision principle [5], O3, [7], O7.1 implies that an orientation for one of the pair det dE ,
det dE 0 determines an orientation for the other.

For the moduli space M w
k of anti-self-dual SO�3� connections, we let o�W;w� denote

the orientation determined by the class w A H 2�X ; Z� and corresponding split U�2� bundle,
ClL, with c1�L� � w, together with a homology orientation W.
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De®nition 2.3. Let w A H 2�X ; Z� be an integral lift of w2�t�. The orientation
Oasd�W;w� for the line bundle det Dt over Ct=S1, and so for the moduli space Mt, is
de®ned by:

. the orientation of a ®ber detDA;F over a point �A;F� A Ct, via isomorphism (2.5),

. the complex orientation for det DA;Q, and

. the orientation o�W;w� for det�d �
Â
� d�

Â
�.

For the moduli space of anti-self-dual connections on an SO�3� bundle, we shall need
to compare orientations de®ned by di¨erent integral lifts of its second Stiefel-Whitney class:

Lemma 2.4 ([7], p. 283). Let X be a closed, oriented, Riemannian four-manifold and
let W be a homology orientation. If w;w 0 A H 2�X ; Z� obey w1w 0 �mod 2�, then

o�W;w 0� � �ÿ1�1
4�wÿw 0�2 o�W;w�:

2.3. Orientations of moduli spaces of PU(2) and Seiberg-Witten monopoles. We
introduce an orientation for the PU�2�-monopole moduli space Mt determined by an
orientation for a Seiberg-Witten moduli space Ms ,!Mt.

Let �A;F� � i�B;C� � �BlBnAL;C� be a reducible pair in ~Ct, with respect to
a splitting V �W lW nL, where s � �r;W� and t � �r;V� and i: ~Cs ,! ~Ct denotes the
embedding (see Lemma 3.11 in [10]). Recall from [10], O3.4 that the deformation operator
Di�B;C� admits a splitting Di�B;C� � D t

i�B;C�lDn
i�B;C� into tangential and normal compo-

nents given by [10], Equations (3.36) and (3.37); the splitting is Gs-equivariant with respect
to the inclusion Gs ,! Gt of automorphism groups in [10], Equation (3.10). Hence, we have
an isomorphism of real determinant lines,

detDi�B;C�G detD t
i�B;C�n detDn

i�B;C�:�2:10�

Furthermore, by comparing Equations (2.59), (2.60), and (2.62) with [10], Equations (3.26)
and (3.32), we see that the rolled-up Seiberg-Witten elliptic deformation complex is iden-
ti®ed with the rolled-up tangential deformation complex following (3.34) in [10]. This
identi®es an orientation for the line detDB;C with an orientation for detDt

i�B;C�. Combined
with the isomorphism (2.10), this yields

detDi�B;C�G detDB;C n detDn
i�B;C�:�2:11�

The pair i�B;C� A ~Ct is a ®xed point of the S1 action on ~Ct induced by the S1 action on
V �W lW nL given by the trivial action on the factor W and the action by scalar
multiplication on L (see [10], Equation (3.2)). The operator

Dn
i�B;C�: Cy�L1 nL�lCy�W�nL� ! Cy�L�lCy�L�nL�lCy�WÿnL�

is gauge equivariant and thus, because i�B;C� is a ®xed point of this S1 action, is complex
linear. Hence, Dn

i�B;C� is complex linear and the complex orientations on its complex kernel
and cokernel induce an orientation for detDn

i�B;C�.
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We recall that a homology orientation W de®nes an orientation for Ms ([46], O6.6). As
in [10], O2.3, we let ~Cs denote the pre-con®guration space of pairs �B;C�, where s � �r;W�,
B is a spin connection on W, and F is a section of W�; then Cs � ~Cs=Gs is the con®gura-
tion space, where Gs GMap�X ;S1� is the group of spinc automorphisms of W. If �B; 0� is a
point in ~Cs then from [10], Equations (2.61) and (2.62), the rolled-up Seiberg-Witten elliptic
deformation complex is given by

DB;0: Cy�iL1�lCy�W�� ! Cy�iL0 l iL��lCy�Wÿ�:

According to [10], Equations (2.59), (2.60), and (2.62), we have

DB;0 � �d � � d��lDB;Q;

where d � � d� is the operator in (2.8) and DB;Q is the Dirac operator in (2.4). Thus,

detDB;0 G det�d � � d��n det DB;Q:�2:12�

The determinant line bundle det Ds with ®bers detDB;C is topologically trivial over Cs,
so Ms is orientable and, as Cs is connected, an orientation for the real line detDB;0

de®nes an orientation for det Ds. A homology orientation W determines an orientation for
det�d � � d��. Since the Dirac operator DB;Q is complex linear, the complex orientation
for its complex kernel and cokernel de®nes an orientation for the real line det DB;Q. The
product of these orientations then de®nes an orientation for detDB;0 and hence for det Ds

and Ms.

De®nition 2.5. The orientation Ored�W; t; s� for the real line detDA;F, and so for the
line bundle det Dt and the moduli space Mt, is de®ned, through the isomorphism (2.11), by:

. the orientation for detDB;C, and thus det Ds, given by the homology orientation W,

. the complex orientation for detDn
i�B;C�.

2.4. Comparison of orientations of moduli spaces of PU(2) monopoles. We now com-
pare the di¨erent possible orientations for Mt which we have de®ned in the preceding
sections.

Lemma 2.6. Let t be a spinu structure on an oriented four-manifold X and let W be
a homology orientation. Suppose that w is an integral lift of w2�t� and that t admits a splitting

t � sl snL, for some complex line bundle L. Then,

Oasd�W;w� � �ÿ1�1
4�wÿc1�L��2 Oasd

ÿ
W; c1�L�

�
;

Oasd
ÿ
W; c1�L�

� � Ored�W; t; s�:

Proof. By De®nition 2.3, the di¨erence between Oasd�W;w� and Oasd
ÿ
W; c1�L�

�
is

equal to the di¨erence between the orientations o�W;w� and o
ÿ
W; c1�L�

�
for the moduli

spaces of anti-self-dual connections on SO�3� bundles with second Stiefel-Whitney classes
w �mod 2� and c1�L� �mod 2�, respectively. Since gt G iRlL and w2�t�1w �mod 2� by
hypothesis, we have c1�L�1w �mod 2� and so Lemma 2.4 applies to compute the di¨er-
ence in orientations.
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To see the second equality, write t � �r;V� and s � �r;W � and let

�A;F� � i�B; 0� � �BlBnAL; 0�

be a pair in ~Ct which is reducible with respect to the splitting V �W lW nL and which
has a vanishing spinor component, with AL � AL n �Bdet��. Recall from [10], Lemma 2.9
that Â is then reducible with respect to the splitting gt � iRlL and can be written as
Â � dR lAL. The Dirac operator DA;Q also splits,

DA;Q � DB;Q lDBnAL;Q;�2:13�

where

DB;Q: Cy�W�� ! Cy�Wÿ� and DBnAL;Q: Cy�W�nL� ! Cy�WÿnL�:

The isomorphism (2.5) of determinant lines giving the orientation Oasd
ÿ
W; c1�L�

�
to the

line detDA;0 and the decompositions (2.7) of d �
Â
� d�

Â
and (2.13) of DA;Q at a reducible

connection A yield the isomorphisms

detDA;0 G det�d �
Â
� d�

Â
�n det DA;Q�2:14�

G det�d � � d��n det�d �AL
� d�AL

�n det DB;Q n det DBnAL;Q:

The operators d �AL
� d�AL

, DB;Q, and DBnAL;Q are complex linear and thus have complex
kernels and cokernels. By De®nition 2.3, the orientation Oasd

ÿ
W; c1�L�

�
is de®ned by

choosing a homology orientation W for det�d � � d��, and the complex orientation on the
remaining factors on the right-hand-side of (2.14).

On the other hand, the isomorphisms (2.11) and (2.12) of determinant lines giving
the orientation Ored�W; t; s� to the line detDA;0 yield the isomorphisms

detDA;0 G detDB;0 n detDn
i�B;0��2:15�

G det�d � � d��n det DB;Q n det�d �AL
� d�AL

�n det DBnAL;Q:

By De®nition 2.5, the orientation Ored�W; t; s� for detDA;0 is induced by the isomorphism
(2.15), a choice of homology orientation W for det�d � � d��, and the complex orientation
on the remaining factors on the right-hand side of (2.15).

The isomorphisms (2.14) and (2.15) thus yield the same orientation of detDA;0, and
therefore Oasd

ÿ
W; c1�L�

� � Ored�W; t; s�. r

2.5. Orientations of links of strata of reducible PU(2) monopoles. We shall need
to compute the oriented intersections of codimension-one submanifolds of M�;0

t =S1 with
links Lt; s in M�;0

t =S1 of the strata i�Ms�. These computations (see O4) are performed most
naturally with a ``complex orientation'' of the link Lt; s induced from the complex structure
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on the ®bers of the ``virtual normal bundle'' of Ms. We then compare this orientation with
the ``boundary orientation'' of Lt; s induced from an orientation of M�;0

t =S1 when the link
is oriented as a boundary of an open subspace of M�;0

t =S1. Our orientation conventions for
the link Lw

t;k of the stratum i�M w
k � are explained in O3.4.3. We assume throughout this

subsection that there are no zero-section pairs in Ms.

Suppose that Y is a connected, ®nite-dimensional, orientable manifold with a free
circle action. We give S1 HC its usual orientation. If lS1 is a vector in TyY which is
tangent to an S1 orbit through y A Y , then an orientation lY for det�TyY� and an orien-
tation lY=S1 for det

ÿ
Ty�Y=S1�� determine one another through the convention

lY � lS 1 5 ~lY=S1 ;�2:16�

where ~lY=S1 A Ldim Yÿ1�TyY� satis®es p��~lY=S1� � lY=S1 and p: Y ! Y=S1 is the projec-
tion. In particular, orientations for Mt and Mt=S1 determine one another via convention
(2.16).

Recall from [10], O3.5.3 that the ``thickened moduli space'' Mt�X; s�HC�;0t is a ®nite-
dimensional S1-invariant manifold, de®ned by a choice of ®nite-rank, S1-equivariant,
trivial ``stabilizing'' or ``obstruction'' bundle X over an open neighborhood of i�Ms� in
C0

t . Then Ms ,!Mt�X; s� is a smooth submanifold with S1-equivariant normal bundle
Nt�X; s� !Ms and tubular neighborhood de®ned by the image of the S1-equivariant
smooth embedding,

g: Nt�X; s� ,!Mt�X; s�:

An open neighborhood of i�Ms� in the moduli space Mt is recovered as the zero locus of
an S1-equivariant section j of the S1-equivariant vector bundle g�X! Nt�X; s�:

g
ÿ
jÿ1�0�XNt�X; s�

�
HMt:

The section j vanishes transversely on Nt�X; s� ÿMs. As in [10], De®nition 3.22 we de®ne
the link of the stratum i�Ms� to be

Lt; s � g
ÿ
jÿ1�0�XPNt�X; s�

�
HMt=S1;

where PNt�X; s� is the projectivization of the complex vector bundle Nt�X; s�. Via the
di¨eomorphism,

Lt; s G jÿ1�0�XPNt�X; s�;

we can take the right-hand side as our model for the link, where j is a section of the
complex vector bundle g�X! PNt�X; s�.

We now de®ne the complex orientation for the link Lt; s. The tangent space of
PNt�X; s� is oriented by an orientation on Ms and the complex structure on the ®bers. To
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be precise, at a point �B;C; h� in the ®ber of PNt�X; s� over �B;C� A Ms, the inclusion of the
®ber gives an exact sequence of tangent spaces,

0! T�h�
ÿ
PNt�X; s�j�B;C�

�! T�B;C;h�PNt�X; s� ! T�B;C�Ms ! 0;

and thus an isomorphism of determinant lines,

Lmax
ÿ
T�h�
ÿ
PNt�X; s�j�B;C�

��
nLmax�T�B;C�Ms�GLmax

ÿ
T�B;C;h�PNt�X; s�

�
:�2:17�

According to [10], Lemma 3.23, the section j vanishes transversely at any point �B;C; h�
in an open neighborhood of the zero section Ms of Nt�X; s�, provided �B;C; h� B Ms. Thus,
at �B;C; h� A gÿ1�Lt; s� � jÿ1�0�XPNt�X; s�, for h3 0, the di¨erential of j and the di¨eo-
morphism g induce an exact sequence,

0! Tg�B;C;h�Lt; s ! T�B;C;h�PNt�X; s� ! �g�X��B;C;h� ! 0;

since Tg�B;C;h�Lt; s GKer�Dj��B;C;h� and Ran�Dj��B;C;h� � �g�X��B;C;h�. This exact sequence
and the isomorphism (2.17) induce an isomorphism

Lmax�Tg�B;C;h�Lt; s�GLmax
ÿ
T�B;C;h�PNt�X; s�

�
n
ÿ
Lmax�Xg�B;C;h��

���2:18�
GLmax�T�B;C�Ms�nLmax

ÿ
T�h�
ÿ
PNt�X; s�j�B;C;h�

��
n
ÿ
Lmax�Xg�B;C;h��

��
:

The ®bers of the bundle X!Mt�X; s� are preserved under the S1 action. The complex
structure de®ned by this S1 action gives an orientation for Lmax�Xg�B;C;h��.

De®nition 2.7. The complex orientation of the link Lt; s is de®ned through the iso-
morphism (2.18) with the orientations of the terms on the right-hand-side of (2.18) given by:

. the orientation of Ms de®ned by a choice of homology orientation W,

. the complex orientation of the bundle g�X! PNt�X; s�,

. the complex orientation of the tangent space of a ®ber of PNt�X; s�.

Although the complex orientation given by De®nition 2.7 is the natural orientation
to use when computing intersection numbers with Lt; s, we shall need to orient Lt; s as a
boundary when using M�;0

t =S1 as a cobordism. We describe this procedure next.

Suppose Z HY is a compact submanifold of an oriented, Riemannian manifold Y,
with normal bundle N ! Z. If~r is the outward-pointing radial vector at a point y on the
boundary qN of the tubular neighborhood, also denoted N, then an orientation lY for
det�TyY� and an orientation lqN for det

ÿ
Ty�qN�� determine one another through the

convention

lY � ÿ~r5lqN ;�2:19�

choosing the sign in equation (2.19) so that the link qN is the boundary of Y ÿN.
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For �A;F� A Lt; s, choose an outward-pointing radial vector with respect to the
thickened tubular neighborhood N<e

t �X; s�=S1,

~r A T�A;F�
ÿ
Mt�X; s�=S1

�
GT�A;F�

ÿ
Nt�X; s�=S1

��2:20�
GR �~rlT�A;F�

ÿ
N e

t �X; s�=S1
�
:�2:21�

Because the section j of g�X vanishes transversely on both Nt�X; s�=S1 and its e-sphere
bundle, for generic e, we have isomorphisms

T�A;F�
ÿ
Nt�X; s�=S1

�
GT�A;F��Mt=S1�lX�A;F�;�2:22�

T�A;F�
ÿ
N e

t �X; s�=S1
�
GT�A;F�Lt; s lX�A;F�:�2:23�

Through the isomorphism (2.20), let pM=S1~r be the orthogonal projection of ~r onto the
subspace T�A;F��Mt=S1� in equation (2.22). If pM=S1~r � 0, we would have ~r A X�A;F� and
thus tangent to N e

t �X; s�=S1 at �A;F� by equation (2.23), contradicting our choice of ~r.
Since pM=S 1~r3 0, a comparison of the isomorphisms (2.21), (2.22), and (2.23) yields

T�A;F��Mt=S1�G �pM=S1~r� � RlT�A;F�Lt; s:�2:24�

Hence, we make the

De®nition 2.8. Given an orientation lM=S 1 of Mt=S1 and an outward-pointing radial
vector ~r with respect to the tubular neighborhood N<e

t �X; s�=S1, we de®ne the boundary

orientation lqM=S 1 of Lt; s by

lM=S 1 � ÿpM=S1~r5lqM=S1 :�2:25�

Lemma 2.9. The complex orientation (De®nition 2.7) of the link Lt; s agrees with the

boundary orientation (De®nition 2.8) of Lt; s determined by the orientation Ored�W; t; s� for
Mt=S1.

Proof. The orientation Ored�W; t; s� of Mt is de®ned through the isomorphism
(2.10), using the orientation for detD t

i�B;C� (and thus the tangent space for Ms) given by
the homology orientation W, and the complex orientation for detDn

i�B;C�. From [10],

Equation (3.55) we have an isomorphism det�Dn�G det
ÿ�Nt�X; s�� ÿ �X�

�
and thus, for any

�B;C� A Ms an isomorphism,

detDn
i�B;C�GLmax

ÿ
Nt�X; s�j�B;C�

�
n
ÿ
Lmax�X�B;C��

��
;�2:26�

which preserves the orientations de®ned by the complex structures of both sides. The ori-
entation Ored�W; t; s� of Mt determines one for Mt=S1 through convention (2.16) and a
boundary orientation for Lt; s through convention (2.25).

On the other hand, the complex orientation for Lt; s uses, through equation (2.18),
the complex orientation for the complex projective space given by the ®ber of PNt�X; s�.
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Comparing equation (2.26) with equation (2.18) shows that the di¨erence between the two
orientations lies in how the ®bers of the projections PNt�X; s� !Ms and Nt�X; s� !Ms

are oriented. The boundary orientation lqM=S 1 for Lt; s induced by Ored�W; t; s� on Mt

begins with the complex orientation for the ®ber of the projection Ns�X; s� !Ms, uses
convention (2.16) to de®ne an orientation for the ®ber of Ns�X; s�=S1 !Ms, and then
uses convention (2.19) to de®ne an orientation for the boundary N e

t �X; s�=S1 � PNt�X; s�
of the bundle Nee

t �X; s�=S1. Hence, it is enough to compare these two methods of orienting
the ®bers of PNt�X; s�.

We denote the ®bers of Nt�X; s�, N e
t �X; s�, and PNt�X; s� by Ck, �Ck�e, and

Pkÿ1 � �Ck�e=S1, respectively. If Ck has a complex basis f~r; v1; . . . ; vkÿ1g, then the com-
plex orientation of Ck is de®ned by

lCk �~r5 i~r5v15 iv15 � � �5vkÿ15 ivkÿ1�2:27�
� ÿi~r5~r5v15 iv15 � � �5vkÿ15 ivkÿ1:

If lPkÿ1 is the complex orientation for Pkÿ1 and p: Cknf0g ! Pkÿ1 is the projection, then

p��v15 iv15 � � �5vkÿ15 ivkÿ1� � lPkÿ1 ;

because fv1; . . . ; vkÿ1g is a complex basis for the tangent space to Pkÿ1 at p�~r�, so equation
(2.27) yields the following relation between the complex orientations of Ck and Pkÿ1:

lCk � ÿi~r5~r5lPkÿ1 :�2:28�

On the other hand, if Ck=S1 is oriented through convention (2.19) by ÿ~r5lPkÿ1 , the
boundary orientation of the link Pkÿ1 is equal to its complex orientation, lPkÿ1 . By
convention (2.16), the orientation ÿ~r5lPkÿ1 for Ck=S1 is induced by the orientation
ÿi~r5~r5p�lPkÿ1 for Ck, which is equal to the complex orientation lCk by equation (2.28).
Hence, the complex and boundary orientations of Pkÿ1 agree.

Therefore, the complex orientation agrees with the boundary orientation for Lt; s,
induced by the orientation Ored�W; t; s� through the conventions (2.25) and (2.16). r

3. Cohomology classes on moduli spaces

In this section we introduce cohomology classes on the moduli space M�;0
t (see O3.1)

and construct geometric representatives for these cohomology classes (see O3.2). The PU�2�
monopole program uses the moduli space M�;0

t =S1 as a cobordism between the link Lw
t;k

of the anti-self-dual moduli space stratum, i�M w
k �HMt, and the links Lt; s of the Seiberg-

Witten strata, i�Ms�HMt, giving an equality between the pairings of the cohomology
classes with these links. The following geometric description should help motivate the
constructions of this section.

The intersection of the geometric representatives with M�;0
t is a family of oriented

one-manifolds. The links Lw
t;k and Lt; s of the strata of zero-section and reducible mono-

poles described in [10], De®nitions 3.7 and 3.22 are oriented hypersurfaces in M�;0
t =S1. The
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intersection of these hypersurfaces with the one-dimensional manifolds given by the inter-
section of the geometric representatives is thus an oriented collection of points. We would
like to use the family of oriented one-manifolds to show that the total signed count of the
points in the intersection of the geometric representatives with the links is zero (being an
oriented boundary). This would give an equality between the oriented count of points in the
link of the stratum of zero-section monopoles with the oriented count of points in the links
of the strata of the reducible monopoles. In O3.4 we show that the intersection of the geo-
metric representatives with the link Lw

t;k is a multiple of the Donaldson invariant. In O4
we show that the intersection of the geometric representatives with the links Lt; s can be
expressed in terms of Seiberg-Witten invariants. Hence, the cobordism gives a relation
between these two invariants.

In practice, the above argument does not work in the simple manner just described
because M�;0

t =S1 is non-compact: the non-compactness phenomenon responsible for the dif-
®culty is due to Uhlenbeck bubbling. Geometrically, this means there can be one-manifolds
in the intersection of the geometric representatives with one boundary on a link and the
other end approaching a reducible in a lower level of Mt=S1. Let

M�;0
t HMt�3:1�

be the subspace consisting of points �A;F; x� where �A;F� is neither a zero-section nor a
reducible pair. In O3.3 we describe the intersection of the closure of the geometric represen-
tatives with the lower Uhlenbeck levels of M�;0

t =S1 and show that for appropriate choices
of geometric representatives these intersections are empty. Therefore, the ends of the one-
manifolds in M�;0

t =S1 do not intersect the lower levels of M�;0
t =S1.

However, there may still be one-manifolds in the intersection of the geometric repre-
sentatives with ends approaching reducible monopoles in lower Uhlenbeck levels of Mt=S1.
Theorem 3.33 gives a relationship between the Donaldson and Seiberg-Witten invariants
when there are no reducible monopoles in the lower levels of Mt and thus the ends of
the one-manifolds do not approach the lower levels of Mt=S1. To extend this argument to
the case where there are reducible monopoles in the lower levels of the compacti®cation
requires a description of neighborhoods of the lower strata precise enough to allow the
de®nition of links of these strata of lower-level reducibles. As we show in O4, the geometric
representatives intersect the strata of reducible monopoles in sets of larger than expected
codimension. Thus, in the case of the reducibles, we cannot cut down by geometric repre-
sentatives as we do with the zero-section monopoles and restrict our attention to a generic
point. Rather, we are forced to describe the entire link. When the reducible monopoles lie
in a lower level, these links can be extremely complicated. A description of neighborhoods
the strata of lower-level reducibles, su½cient to de®ne links, will be given in [12], [13].

We work with geometric representatives rather than cohomology classes for two
reasons. First, describing the closure of a geometric representative in a compacti®cation
appears to be simpler than calculating the extension of a cohomology class. Second, the
topology near points in the lower levels of Mt need not be locally ®nite (for example, there
may be in®nitely many path-connected components). Hence, it is not known if Lw

t;k is tri-
angulable and thus it may not have a fundamental class to pair with the cohomology
classes described in O3.1. This problem also leads us to work in the category of smoothly
strati®ed spaces rather than that of piecewise-linear spaces.
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3.1. The cohomology classes. In this subsection, we de®ne the cohomology classes on
the moduli spaces, following the prescriptions of [4], [6], [7], [35]. These classes arise from a
universal SO�3� bundle, just as in Donaldson theory, and a universal line bundle.

Recall that ~C�t denotes the subspace of pairs which are not reducible, ~C0
t denotes the

subspace of pairs which are not zero-section pairs, and ~C�;0t � ~C�t X ~C0
t (see [10], O2.1.5).

We de®ne a universal SO�3� bundle:

Ft � ~C�t =S1 �Gt gt ! C�t =S1 � X :�3:2�

The action of Gt in (3.2) is diagonal so, for u A Gt and �A;F; x� A ~C�;0t � gt, one hasÿ�A;F�; x� 7! ÿ
u�A;F�; ux

�
:

We now de®ne

mp: H��X ; R� ! H 4ÿ��C�t =S1; R�; b 7! ÿ 1

4
p1�Ft�=b:�3:3�

Following [7], De®nition 5.1.11 we can also de®ne a universal SO�3� bundle over the
quotient space of SO�3� connections,

Fw
k �Aw;�

k �Gw
k

F ! Bw;�
k � X ;�3:4�

where F is an SO�3� bundle over X with k � ÿ 1

4
p1�F� and w is an integral lift of

w2�F�, and Gw
k is the group of special unitary automorphisms of the U�2� bundle E with

su�E� � F , so p1�F� � p1

ÿ
su�E��, and c1�E� � w. As in [7], De®nition 5.1.11, we de®ne

cohomology classes on Bw;�
k via

np: H��X ; R� ! H 4ÿ��Bw;�
k ; R�; b 7! ÿ1

4
p1�Fw

k �=b:�3:5�

Comparing (3.3) and (3.5), we see that there must be a simple relation, which we now
describe, between the cohomology classes de®ned by these two SO�3� bundles.

Recall from [10], O2.1.3 that if F � su�E� and V �W nE, then we have an identi-
®cation of automorphism groups, Gw

k GGt, and isomorphisms

Aw
k �X�GAt; Â 7! A; and Bw

k �X�GBt; �Â � 7! �A�:�3:6�

Hence, denoting gt � su�E�, we have an isomorphism of SO�3� bundles

Fw
k GA�

t �Gt gt ! B�t � X :�3:7�

Furthermore, there are natural embeddings

i: At ,! ~Ct; A 7! �A; 0�; and i: Bt ,! Ct; �A� 7! �A; 0�:�3:8�
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Using (3.8) together with the isomorphism (3.7) and the de®nition (3.2) of Ft, we see that

�pB � idX ��Fw
k � Ft and �i� idX ��Ft � Fw

k ;�3:9�

where pB: C�t =S1 ! Bw;�
k is the restriction of the map (2.6) to C�t =S1. Since pB is a defor-

mation retract, we obtain the following relation between the cohomology classes on C�t =S1

and Bw;�
k .

Lemma 3.1. If b A H��X ; R�, then p�Bnp�b� � mp�b� or, equivalently, i�mp�b� � np�b�.

Because �i� idX ��mp � np, we shall henceforth write mp for both mp and np.

Lastly, we de®ne a universal complex line bundle,

Lt � C�;0t ��S1;�ÿ2� C! C�;0t =S1;�3:10�

where the S1 action de®ning Lt is given, for �A;F� A C�;0t , eiy A S1, and z A C, by

��A;F�; z� 7! ��A; eiyF�; e2iyz�:�3:11�

The factor of 2 is necessary in the action (3.11) because ÿ1 A S1 acts on ~Ct as ÿidV A Gt

and thus ÿ1 A S1 acts trivially on C�;0t . The negative sign in the quotient (3.10) indicates
that the S1 action is diagonal, and is chosen to give a more convenient sign in Lemma 3.28.
We then de®ne an additional cohomology class in H 2�C�;0t =S1; R�,

mc � c1�Lt�:�3:12�

In Lemma 3.28 we will show that the class mc is non-trivial on the link of the subspace
i�M w

k �HMt=S1. Thus, mc does not extend over i�B�t �HC�t =S1 as the restriction of an
extension to a contractible neighborhood of point �A; 0� A i�B�t � would have to be trivial,
contradicting Lemma 3.28.

3.2. Geometric representatives. To avoid having to de®ne the link of M w
k in Mt as

a homology class, we work with geometric representatives of these cohomology classes. We
de®ne geometric representatives V�b� and W to represent mp�b� and mc respectively. To
facilitate the description of the intersection of the closures of V�b� and W in Mt with the
lower strata, we construct geometric representatives with certain localization propertiesÐ
they are pulled back from con®guration spaces over proper open subsets U HX . We let
Bw

k �U� and Ct�U� denote the quotient spaces of connections and pairs respectively on

ULX , where k � ÿ 1

4
p1�t� and w is an integral lift of w2�t�.

3.2.1. Strati®ed spaces. We begin by recalling a de®nition of a strati®ed space (see
[48], De®nition 11.0.1) that will be su½cient for the purposes of de®ning our intersection
pairings.

De®nition 3.2 ([26], [42], [48]). A smoothly strati®ed space Z is a topological space
with a smooth strati®cation given by a disjoint union, Z � Z0 WZ1 W � � � WZn, where the
strata Zi are smooth manifolds. There is a partial ordering among the strata, given by
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Zi < Zj if Zi HZj. There is a unique stratum of highest dimension, Z0, such that Z0 � Z,
called the top stratum. If Y, Z are smoothly strati®ed spaces, a map f : Y ! Z is smoothly
strati®ed if f is a continuous map, there are smooth strati®cations of Z and Y such that f

preserves strata and, restricted to each stratum f is a smooth map. A subspace Y HZ is
smoothly strati®ed if the inclusion is a smoothly strati®ed map.

Remark 3.3. If Z is a smoothly strati®ed space and f : Z ! R is a smoothly strat-
i®ed map, that is, f is a continuous map which is smooth on each stratum, then for generic
values of e, the preimage f ÿ1�e� is a smoothly strati®ed subspace of Z.

We shall use the following de®nition of a geometric representative:

De®nition 3.4 ([35], p. 588). Let Z be a smoothly strati®ed space. A geometric rep-

resentative for a real cohomology class m of dimension c on Z is a closed, smoothly strati-
®ed subspace V of Z together with a real coe½cient q, the multiplicity, satisfying:

(1) The intersection Z0 XV of V with the top stratum Z0 of Z has codimension c in
Z0 and has an oriented normal bundle.

(2) The intersection of V with all strata of Z other than the top stratum has codi-
mension 2 or more in V.

(3) The pairing of m with a homology class h of dimension c is obtained by choosing
a smooth singular cycle representing h whose intersection with all strata of V has the
codimension dim Z0 ÿ c in that stratum of V, and then taking q times the count (with signs)
of the intersection points between the cycle and the top stratum of V.

De®nition 3.5. Let V1; . . . ;Vn be geometric representatives on a compact, smoothly
strati®ed space Z with multiplicities q1; . . . ; qn. Assume:

(1) The sum of the codimensions of the Vi is equal to the dimension of the top
stratum Z0 of Z.

(2) For every smooth stratum Zs of Z, the smooth submanifolds Vi XZs intersect
transversely.

Then dimension-counting and the de®nition of a geometric representative imply that the
intersection

T
i

Vi is a ®nite collection of points in the top stratum Z0:

V1 X � � � XVn � fv1; . . . ; vNgHZ0:

Let ej �G1 be the sign of this intersection at vj. Then we de®ne the intersection number of

the Vi in Z by setting

K�V1 X � � � XVn XZ� � Qn
i�1

qi

� �PN
j�1

ej:

A cobordism between two geometric representatives V and V 0 in Z with the same multi-
plicity is a geometric representative WHZ � �0; 1� which is transverse to the boundary and
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with WXZ � f0g �V and WXZ � f1g �V 0, with the obvious orientations of normal
bundles.

The de®nition of intersection number does not change if Vi is replaced by V 0
i and

there is a cobordism between Vi and V 0
i whose intersection with the other geometric rep-

resentatives is transverse in each stratum. One can see this by observing that the intersec-
tion of the cobordism W with the other geometric representatives will be a collection of
one-manifolds contained in Z0 because the lower strata of Z have codimension two. The
boundaries of these one manifolds are the points in the two intersections

V1 X � � � XVn and V1 X � � � XViÿ1 XV 0
i X � � � XVn;

giving the equality of oriented intersection numbers.

Remark 3.6. In De®nition 3.5, it is necessary to assume that the geometric repre-
sentatives have transverse intersection in each stratum because we cannot assume there are
perturbations of the geometric representatives which do intersect transversely. The de®ni-
tion of a smoothly-strati®ed space in De®nition 3.2 does not control the topology of one
strata near another. If there is ``control data'' on a neighborhood of one strata in another
(see [26], p. 42), as is true for Whitney-strati®ed spaces, then such perturbations are con-
structed in [26], O1.3. Instead, we will construct our geometric representatives pulling them
back from a smooth manifold where one can assume that generic choices of the geometric
representatives intersect transversely.

3.2.2. Preliminaries for localization. By construction, our geometric representatives
will be ``determined by restriction to submanifolds'' of X, in the sense that they have the
following localization property:

De®nition 3.7. Let U HX be a submanifold. A geometric representative V in Bw;�
k

or C�;0t =S1 is determined by restriction to U HX if there is a geometric representative VU

in Bw;�
k �U� or C�;0t �U�=S1 such that V � rÿ1

U �VU�, where rU is the map given by restricting
connections or pairs to the submanifold U.

This localization property will allow a partial description of the intersection of the
closures of the geometric representatives in the subspace M�;0

t =S1 with the lower strata in
this compacti®cation. The technical issue which has complicated this localization technique
since its introduction in [6], [7] (see [7], p. 192) is that there can be pairs (connections) which
are irreducible on X but are reducible when restricted to a submanifold Y HX . The bun-
dles over Bw;�

k �Y�, whose sections de®ne the geometric representative, do not extend over
Bw

k �Y�. Therefore, the pullback of these sections do not have good properties (transver-
sality, for example) over the subspace of connections in Bw;�

k �X� which are reducible when
restricted to Y. When working with the moduli space M w

k of anti-self-dual SO�3� connec-
tions, this problem can be overcome, if X is simply connected, by working with a tubular
neighborhood n�Y � of Y HX . The local-to-global reducibility result of [7], Lemma 4.3.21
implies that any anti-self-dual connection which is irreducible on X must be irreducible on
n�Y� if X is simply connected. If X is not simply connected, there can be ``twisted reduc-
ible'' connections (see [10], Lemma 3.5 or [35], Lemma 2.4) which are irreducible on X

but reducible when restricted to a tubular neighborhood. The notion of a ``suitable open
neighborhood'' of Y (see De®nition 3.8) was introduced in [35] to deal with the problem of
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twisted reducibles. Any anti-self-dual connection which is irreducible on X must be irre-
ducible on a suitable open neighborhood. We can then de®ne geometric representatives by
pulling back sections of bundles over Bw;�

k

ÿ
U�Y ��, where U�Y� is a suitable open neigh-

borhood of Y. When points �Âa� in this geometric representative approach a point �Â0; x� in
a lower Uhlenbeck level where the support of x is disjoint from U�Y�, the point �Â0� will
also be in this geometric representative. Thus, either �Â0� is in the geometric representative
or the support of x meets U�Y �. Both of these conditions have high enough codimension
in the lower Uhlenbeck levels of the compacti®cation to ensure, via dimension-counting
arguments (see [35], pp. 592±593), that the intersection of the geometric representatives is
compactly supported in the top level M w

k of the Uhlenbeck compacti®cation M w
k .

We begin by recalling the following de®nition of Kronheimer and Mrowka:

De®nition 3.8 ([35], p. 589). A smooth submanifold-with-boundary or open set
U Oj X is suitable if the induced map H1�U ; Z=2Z� ! H1�X ; Z=2Z� is surjective.

Let Y HX be a submanifold with tubular neighborhood n�Y �. If D is a set of
embedded loops generating H1�X ; Z=2Z�, which are mutually disjoint and transverse to
Y, then a tubular neighborhood n�Y WD� of Y WDHX is a suitable neighborhood Y. By
tubular neighborhood of the possibly singular space Y WD, we mean a smoothing of the
union of the tubular neighborhoods of Y and of D.

Remark 3.9. If �Â � A M w;�
k then the restriction of Â to any suitable open neighbor-

hood is irreducible by unique continuation [7], Lemma 4.3.21. Hence, the only irreducible
anti-self-dual connections which could be reducible when restricted to an open set are the
twisted reducibles (see [10], O3.2 or [35], p. 586). However, the homology condition in
De®nition 3.8 excludes this possibility.

The corresponding local-to-global reducibility result for PU�2� monopoles which are
not zero-section pairs [17], Theorem 5.11 is stronger than that for anti-self-dual connections:

Theorem 3.10 ([17], Theorem 5.11). Suppose �A;F� is a solution to the perturbed
PU�2� monopole equations [10], Equation (2.32) over a connected, oriented, smooth four-

manifold X with smooth Riemannian metric such that �A;F� is reducible on a non-empty

open subset U HX. Then �A;F� is reducible on X if

. F1j 0 on X, or

. F1 0, and M w
k contains no twisted reducibles or U is suitable.

Both suitable and tubular neighborhoods of submanifolds are open subsets of X and
thus have codimension zero. However, a tubular neighborhood admits a retraction onto
the submanifold while a suitable neighborhood admits a retraction onto the union of the
submanifold and a collection of loops. Hence, these neighborhoods may, for the purposes
of counting intersection points, be thought of as having codimension equal to that of
the submanifold or to that of the union of the submanifold and some loops in X. In this
sense, the suitable neighborhood of a point has smaller codimension than a tubular neigh-
borhood of a point. Because the lower strata of Mt do not have codimension as large as
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those of M w
k and because the suitable neighborhoods do not have codimension as large

as tubular neighborhoods, we will require an additional technical condition on the elements
of H��X ; R� to ensure the intersection of the geometric representatives does not intersect
the lower levels away from the reducible pairs.

Let Y HX be a smooth submanifold. If Y is a manifold with boundary, the manifold
structure of the con®guration space Bw

k �Y� is described in, say, [6], p. 262, [7], p. 192, [56],
O2(a); the corresponding slice result for Ct�Y �=S1 can be obtained from the slice result for
manifolds without boundary [17], Proposition 2.8 by taking into account the Neumann
boundary conditions as in [56]. Let rY : Ct=S1 ! Ct�Y�=S1 and rY : Bw

k ! Bw
k �Y� denote

the restriction maps de®ned by �A;F� 7! �AjY ;FjY � and �Â � 7! �ÂjY �, respectively. We will
use the same notation for the restriction map on any domain.

We de®ne C�t �X ;U� to be the quotient space of pairs on X which are irreducible when
restricted to U, let C0

t �X ;U� denote the quotient space of pairs on X which are not zero-
section pairs when restricted to U, and let C�;0t �X ;U� � C�t �X ;U�XC0

t �X ;U�. The space
Bw;�

k �X ;U� is similarly de®ned.

If �A;F� A M�
t , then Theorem 3.10 implies that the restriction of the SO�3� connec-

tion Â to the suitable neighborhood n�Y WD� cannot be reducible; if �A;F� A M�;0
t , so we

further assume F1j 0, then Theorem 3.10 implies that the restriction of the connection Â to
n�Y� cannot be reducible. There is a disjoint decomposition

M�
t �M�;0

t W i�M w;�
k �:

The unique continuation result for reducible anti-self-dual SO�3� connections [7], Lemma
4.3.21 and PU�2� monopoles (Theorem 3.10), and the preceding decomposition and
remarks yield

Lemma 3.11. Let U HX be an open subset and let Y HX be a submanifold. Then

the following inclusions hold:

pB�M�;0
t �HBw;�

k �X ;U� and M w;�
k HBw;�

k

ÿ
X ; n�Y WD��;

where, as in equation (2.6), pB: Ct ! Bw
k is the projection �A;F� 7! �Â �.

We can now proceed to construct geometric representatives for the classes
mp�b� A H��M�

t =S1; R� and mc A H��M�;0
t =S1; R�.

3.2.3. The geometric representatives for mp. Let Y HX be a smooth submanifold
and let b � �Y � A H��X ; R�. Let n�Y WD� be a suitable open neighborhood of Y. In [35],
pp. 588±595, geometric representatives for the classes mp�b� A H��M w;�

k ; R�,

rÿ1
n�YWD�

ÿ
V�b��HBw;�

k

ÿ
X ; n�Y WD��;

are de®ned which have the property that they are determined by

V�b�HBw;�
k

ÿ
n�Y WD��:
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Let �rn�YWD�pB�ÿ1ÿV�b�� be the preimage of this geometric representative with respect to
the map

pB: C�t
ÿ
X ; n�Y WD��=S1 ! Bw;�

k

ÿ
X ; n�Y WD��:

The following result is a clear consequence of the de®nitions and Lemma 3.11.

Lemma 3.12. If Y HX is a smooth submanifold, representing a class b A H��X ; R�,
then �rn�YWD�pB�ÿ1ÿV�b��HM�

t =S1 is a geometric representative for

mp�b� A H 4ÿ��M�
t =S1; R�

and is determined by restriction to n�Y WD�HX .

Henceforth, we shall abuse notation slightly and write V�b� for

V�b�HBw;�
k

ÿ
n�Y WD��;

for its preimage rÿ1
n�YWD�

ÿ
V�b��HBw;�

k

ÿ
X ; n�Y WD��, and for

�rn�YWD�pB�ÿ1ÿV�b��HC�t
ÿ
X ; n�Y WD��=S1:

3.2.4. A representative for the determinant class. Recall that C�;0t is an S1 bundle
over C�;0t =S1. Let n�x� be a tubular neighborhood of x and let s be a generic, smooth, C0

bounded section of the line bundle

Lt

ÿ
n�x�� � C�;0t

ÿ
n�x����S1;�ÿ2� C! C�;0t

ÿ
n�x��:�3:13�

The action of S1 in the above is the same as that in (3.11), for the de®nition (3.10) of
the universal line bundle Lt ! C�;0t . The pullback r�n�x�Lt

ÿ
n�x�� is thus isomorphic to the

restriction of Lt to C�;0t

ÿ
X ; n�x��. We de®ne a geometric representative by

W � �r�n�x�s�ÿ1�0�HC�;0t

ÿ
X ; n�x��:�3:14�

Since M�;0
t HC�;0t

ÿ
X ; n�x�� by Theorem 3.10 and the unique continuation theorem for the

Dirac operator, [17], Lemma 5.12, the proof of the next lemma is then clear.

Lemma 3.13. For a generic choice of section s, the zero locus W of the section r�n�x�s is

a geometric representative for mc A H 2�M�;0
t =S1; R� and is determined by restriction to n�x�.

Let 1 A A�X� be the element of degree zero. If z � b1 � � � br A A�X �, we write

di �
P

fpjbp AHi�X ; R�g
1 and deg�z� �P4

i�0

�4ÿ i� di:�3:15�

For monomials z � b1 � � � br, we set

mp�z� � mp�b1�^ � � �^ mp�br�;�3:16�
V�z� �V�b1�X � � � XV�br�;
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and de®ne mp�z� and V�z� for arbitrary elements z A A�X� by R-linearity ([35], p. 595). We
write

mm
c � mc ^ � � �^ mc|�����������{z�����������}

m times

and Wm �WX � � � XW|�����������{z�����������}
m times

;�3:17�

for products of the class mc and its dual W (with the understanding that the copies of W
in the above representative are de®ned with di¨erent points x and di¨erent transversely
intersecting sections s in Lemma 3.13).

3.3. Extension of the geometric representatives. The Uhlenbeck closure Mt of the
PU�2� monopole moduli space Mt is described in [10], O2.2. The space Mt is compact
([10], Theorem 2.12, [17], Theorem 1.1). We shall need to consider the following subspaces
of Mt:

M�
t � f�A;F; x� A Mt : A is irreducibleg;�3:18�

M0
t � f�A;F; x� A Mt : F1j 0g;

and so, as de®ned in (3.1), M�;0
t �M�

t XM0
t . We also de®ne

Mfe
t � f�A;F� A Mt : kFk2

L2 f egHM0
t ;�3:19�

and the subspace M�;fe
t HM�;0

t is de®ned analogously. By [10], Theorem 2.13, the dimen-
sion of the highest stratum M�;0

t of Mt is given by

dimM�;0
t � da�t� � 2na�t�;�3:20�

where

da�t� � ÿ2p1�t� ÿ
3

2
�w� 2s�;�3:21�

na�t� � 1

4

ÿ
p1�t� � c1�t�2 ÿ s

�
:

Recall that the spinu structure tl de®ned in [10], Equation (2.44) has p1�tl� � p1�t� � 4l
and so equation (3.20) implies dimMtl � dimMt ÿ 6l. The strata of Mtl=S1 � Syml�X �
then have codimension at least 2l relative to the top stratum. Thus we can calculate the
intersection of geometric representatives whose intersections with the lower strata have
the expected codimensions because this ensures that (by the usual dimension-counting
argument) the intersection of the geometric representatives will be in the top stratum.

De®nition 3.14. The closures of the geometric representatives, V�b�, W, in Mt=S1

are denoted by V�b�, W, respectively. For z � b1 � � � br A A�X � and an integer mf 0, we
denote

V�z� �V�b1�X � � � XV�br� and Wm �W X � � � XW|�����������{z�����������}
m times

:�3:22�
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We shall see in Lemma 3.15 that these closures intersect the lower strata of M�
t =S1 in

sets of the appropriate codimension, except for V�x� where x A H0�X ; Z� (see the remarks
following the proof of Lemma 3.15), and thus are geometric representatives on the com-
pacti®cation, away from the zero-section and reducible monopoles. The description of the
intersection of V�b� and W with the lower strata given in this section is incomplete, as it
does not give the multiplicities of all components of these intersections. A more complete
description will be given in [15] using information about neighborhoods of the lower strata
in M�

t obtained from gluing maps.

Recall that Syml�X � is a smoothly strati®ed space, the strata being enumerated by
partitions of l A N. For i � 1; . . . ; l, let pi: X � � � � � X ! X be projection onto the ith
factor. For any subset Y HX , let S l�Y � be the image of pÿ1

1 �Y�W � � � W pÿ1
l �Y� in

Syml�X � under the projection X l ! Syml�Y�. If SH Syml�X� is a smooth stratum, we
de®ne SS�Y� � S l�Y�XS. Let pS: Mtl � S! S be the projection.

On each space M�
tl
=S1 and M�;0

tl
=S1 there are geometric representatives Vl�b� and

Wl de®ned by the same construction as V�b� and W, except using the bundles gtl instead
of gt. We write Vl�b� and Wl for the pullbacks of these geometric representatives to
Mtl � Syml�X�.

Lemma 3.15. Let lf 0 be an integer, let SH Syml�X � be a smooth stratum, and let

b A H��X ; R�.

(1) If b has a smoothly embedded representative Y HX with a suitable neighborhood
n�DWY� and x A X has a tubular neighborhood n�x�, then

(a) V�b�X �M �
tl
=S1 � S�HVl�b�W pÿ1

S

ÿ
SS

ÿ
n�Y WD���,

(b) WX �M �;0
tl
=S1 � S�HWl W pÿ1

S

ÿ
SS

ÿ
n�x���.

(2) If i�Ms�HMt and b A H2�X ; R� is a two-dimensional class with

hc1�t� ÿ c1�s�; bi3 0;

and g A H1�X ; R�, then we have the following reverse inclusions:

(a) i�Ms�HV�b�,

(b) i�Ms�HV�g�,

(c) i�Ms�HV�x�,

(d) i�M w
k �W i�Ms�HW.

Remark 3.16. From the expression for mp�b� in Corollary 4.7, when b A H3�X ; R�,
one can see that mp�b� extends across i�Ms�. Thus, V�b� should be transverse to i�Ms� and
so V�b�X i�Ms� would be a codimension-one subset of i�Ms� in this case.
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Proof. Here we only prove assertion (1). Assertions (2)(a), (2)(b), and (2)(c) will be
shown in Corollary 4.7, while assertion (2)(d) will follow from Lemma 3.28.

We prove assertion (1)(a) about V�b� by restricting pairs to the complement of the
set pÿ1

S

ÿ
SS

ÿ
n�Y WD���. We assume that �Aa;Fa� A V�b� is a sequence of points in M�

t =S1

converging to the point

�Ay;Fy; y� A �M �
tl
=S1 � S� ÿ pÿ1

S

ÿ
SS

ÿ
n�Y WD���:

Given a suitable neighborhood U � n�Y WD� of Y HX ÿ y, we may choose a positive
constant r such that

U HX ÿ S
y A y

B�y; r�:

By the de®nition of Uhlenbeck convergence, �Aa;Fa� converges in the Cy topology to
�Ay;Fy� on X ÿ S

y A y
B�y; r�, modulo gauge transformations, and thus

lim
a!y
�AajU ;FajU � � �AyjU ;FyjU �:�3:23�

Let VY �b�HBw;�
k

ÿ
n�Y WD�� be the geometric representative whose pullback de®nes V�b�.

By Lemma 3.12, if �Aa;Fa� A V�b�, then ��Aa;Fa�jU � A VY �b�. Because VY �b� is closed (see
the de®nition in [35], pp. 588±592), equation (3.23) implies that ��Ay;Fy�jU � A VY �b� and
thus �Ay;Fy� A Vl�b�.

The same argument proves assertion (1)(b) concerning W, except one observes that
one can replace a suitable neighborhood U of x with a tubular neighborhood n�x�. r

Lemma 3.15 shows that the intersection of V�b� with the lower levels of M�
t =S1

has the same codimension as that of V�b� in M�
t =S1, unless b A H0�X ; Z�. This is only

signi®cant if z � b1 � � � br contains both a three-dimensional and a four-dimensional homo-
logy class. Then the loops in the suitable neighborhood n�DW x� may intersect the three-
manifold Y. In general, if Ui is a suitable neighborhood of a smooth representative of bi,
then for any x A X , the inequality P

fi: x AUig
�4ÿ dim bi�e 5;�3:24�

holds ([35], Equation (2.7)). If there are either no three-dimensional classes among the bi or
no four-dimensional classes among the bi, the inequality (3.24) can be improved toP

fi: x AUig
�4ÿ dim bi�e 4:�3:25�

If z � b1 � � � br A A�X � and there is a collection of suitable neighborhoods Ui of smooth
representatives of bi satisfying (3.25), then we call z intersection-suitable.

Lemma 3.17. If z � b1 � � � br A A�X � and either bi B H0�X ; Z� for i � 1; . . . ; r or

bi B H3�X ; R� for i � 1; . . . ; r then z is intersection-suitable.
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Let z A A�X � and dc be a non-negative integer which satisfy

deg�z� � 2dc � da � 2na ÿ 2;�3:26�

so for generic choices of the geometric representatives, V�z�XWdc XM�;0
t =S1 is a collec-

tion of one-manifolds. If

�A0;F0; y� A V�z�XWdc XM�;0
t =S1;

where y A Syml�X �, then by equation (3.24) and Lemma 3.15 we have

�A0;F0� A Vl�z 0�XWdcÿ j
l ;

for some z 0 � bi1
� � � biq

and 1e i1 < � � � < iq e r, where 0e j e dc. The preceding inter-
section has codimension greater than or equal to

deg�z� � 2dc ÿ 5l � da � 2na ÿ 2ÿ 5l:

Then, because dim�Mtl=S1� � da � 2na ÿ 1ÿ 6l, the intersection

Vl�z 0�XW
dcÿ j

l XMtl=S1�3:27�

has dimension less than or equal to

dim�Mtl=S1� ÿ ÿdeg�z� � 2dc ÿ 5l
� � 1ÿ l:

Hence, there could be a point in V�z�XWdc XM�;0
t =S1 contained in the level

X �M�;0
t1
=S1, where l � 1. However, if z is intersection-suitable, the dimension of the

intersection (3.27) is 1ÿ 2l, using equation (3.25), so the intersection will be empty if l > 0.
Thus, we have the following corollary to Lemma 3.15.

Corollary 3.18. Let z A A�X � be intersection-suitable and let dc be a non-negative

integer satisfying

deg�z� � 2dc � dim�M�;0
t =S1� ÿ 1 � da � 2na ÿ 2:

Then for generic choices of geometric representatives, the intersection

V�z�XWdc XM�;0
t =S1;

is a collection of one-dimensional manifolds, disjoint from the lower strata of M�
t =S1.

Remark 3.19. The restriction that z A A�X� be intersection-suitable is a technical
one and it should be possible to remove it; we plan to address this point in a subsequent
paper.

3.4. Geometric representatives and zero-section monopoles. Our goal in this sub-
section is to show that the signed count of the points in the intersection of the geometric
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representatives with the link of Donaldson moduli space, K
ÿ
V�z�XWnaÿ1 XLw

t;k

�
, can be

expressed in terms of the intersection number K
ÿ
V�z�XM w

k

�
, which de®nes a Donaldson

invariant (at least when w is chosen so that no SO�3� bundle with second Stiefel-Whitney
class w �mod 2� admits a ¯at connection); the conclusion is stated as Proposition 3.29.

3.4.1. Geometric representatives on the stratum of zero-section monopoles. From the
construction of the Uhlenbeck compacti®cations for M w

k and Mt, the smoothly strati®ed
embedding ([10], Equation (3.5)),

i: M w
k ,!Mt; �Â � 7! �A; 0�;

extends (see [10], O2.2, [17], O4, [7], O4.4) to a smoothly strati®ed embedding

i: M w
k ,!Mt; �Â; x� 7! �A; 0; x�;

where k � ÿ 1

4
p1�t� and w is any integral lift of w2�t�. De®ne

M asd
t � f�A;F; x� A Mt : F � 0gHMt:�3:28�

The space Lw
t;k de®ned in [10], De®nition 3.7 serves as a link for M asd

t . Although the de®-
nitions imply that

i�M w
k �HM asd

t ;

the reverse inclusion might not be true. For example, suppose �Â0� is the gauge-equivalence
class of a ¯at connection on an SO�3� bundle F over X with w2�F� � w �mod 2� and

ÿ 1

4
p1�F� � 0. The Uhlenbeck compacti®cation M w

k might not contain all points

�Â0; x� A M w
0 � Syml�X� because there can be obstructions to gluing [54] onto ¯at con-

nections, as the Freed-Uhlenbeck generic metrics theorem does not guarantee they are
smooth points of their moduli spaces [7], [21]. However, there could be a sequence of
points �Aa;Fa� A Mt converging to �A0; 0; x� in the Uhlenbeck topology but no sequence

�Â 0a� A M w
k also converging to �Â0; x�.

De®nition 3.20. A class v A H 2�X ; Z=2Z� is good if no integral lift of v is torsion.

Observe that a class v A H 2�X ; Z=2Z� is good if and only if no line bundle L over X

with ®rst Chern class c1�L�1 v �mod 2� admits a ¯at connection or if and only if no SO�3�
bundle over X with second Stiefel-Whitney class v admits a ¯at connection. Thus, Lemma
3.2 in [10] gives a criterion for v to be good.

Hence, if w2�t� is good, there are no ¯at SO�3� connections in Mt and, when there are
no obstructions to gluing (for example, when the metric on X is generic in the sense of [7],
[21]), it follows from Taubes' gluing theorem for anti-self-dual SO�3� connections [53], [55]
that

M asd
t H i�M w

k �:

The preceding discussion yields
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Lemma 3.21. Let t be a spinu structure on a closed, oriented four-manifold X with

generic metric, b�2 �X � > 0 and w2�t�1w �mod 2�, for w A H 2�X ; Z�. If w �mod 2� is good,
then

M asd
t � i�M w

k �:�3:29�

The constraint that w �mod 2� is good is also used to separate the strata of zero-
section PU�2� monopoles from the strata of reducible monopoles, so that the moduli space
of PU�2� monopoles gives a smooth cobordism between their links. Therefore, when
w �mod 2� is good, equation (3.29) holds, we have a disjoint union

Mt �M0
t W i�M w

k �;

and Lw
t;k is a link of i�M w

k �HMt=S1.

3.4.2. A de®nition of the Donaldson invariants. Fix w A H 2�X ; Z� and let z A A�X �
be a monomial whose degree deg�z� satis®es equation (1.4). Then let k A

1

4
Z be de®ned by

deg�z� � 8kÿ 3

2
�w� s�:�3:30�

Let ~X � XKCP2 denote the blow-up of X and let e A H2� ~X ; Z� be the exceptional class
and let PD�e� be its PoincareÂ dual. Since ÿ4k � w2 �mod 4� by equations (1.4) and (3.30)
and thus ÿ4�k� 1=4� � �w� PD�e��2 �mod 4�, we can ®nd an SO�3� bundle ~F ! ~X with
p1� ~F� � ÿ4�k� 1=4� and w2� ~F� � �w� PD�e�� �mod 2� ([25], Theorem 1.4.20). We can

therefore de®ne M
w�PD�e�
k�1=4 � ~X�, the moduli space of anti-self-dual SO�3� connections on ~F .

Then the Donaldson invariant is de®ned by ([35], p. 594)

Dw
X �z� �K

ÿ
V�ze�XM

w�PD�e�
k�1=4 � ~X��;�3:31�

where the moduli space M
w�PD�e�
k�1=4 � ~X� is given the orientation o�W;w� PD�e�� and on the

right-hand side, we consider z to be a monomial in A� ~X � via the inclusion

H2�X ; R�HH2� ~X ; R� � H2�X ; R�lR�e� and A�X�HA� ~X�:

The Donaldson invariant is independent of the choice of generic geometric representatives
and, when b�2 �X� > 1, independent of the metric.

If M w
k �X� is given the orientation o�W;w�, a well-known special case of the blow-up

formula [18], Lemma 3.13, [31], Theorem 6.9 implies that

K
ÿ
V�z�XM

w

k �X�
� �K

ÿ
V�ze�XM

w�PD�e�
k�1=4 � ~X��;�3:32�

when the intersection number on the left is well-de®ned, for example, when w is good in
the sense of De®nition 3.20. However, the blow-up trick [47] ensures that the intersection
number on the right is well-de®ned for arbitrary w A H 2�X ; Z�, since w� PD�e� A H 2� ~X ; Z�
is good.
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In [35], p. 585, Kronheimer and Mrowka require that b�2 �X� ÿ b1�X � be odd.
However, for the purpose of de®ning the Donaldson invariants for a closed four-
manifold, with b1�X� possibly non-zero, one can have non-trivial Donaldson invariants
when b�2 �X� ÿ b1�X � is even as they point out in [35], p. 595. The reason for the constraint
is that their structure theorem is only stated for the case b1�X� � 0; the invariants become
more di½cult to compute when b1�X� > 0. If b1�X� � 0, then the Donaldson invariants are
necessarily trivial unless b�2 �X � is odd (and the moduli spaces of anti-self-dual connections
are even dimensional).

When b�2 �X� � 1, the Donaldson invariant (3.31) depends on the ``chamber'' in
H 2� ~X ; R� de®ned by metric ~g on ~X . Speci®cally, if o�~g� is the unique unit-length harmonic
two-form which is self-dual with respect to ~gÐthe period point for ~gÐand lies in the posi-
tive cone (determined by the homology orientation) of H 2� ~X ; R�, then the intersection
number on the right-hand-side of equation (3.31) changes whenever the sign of o�~g�^ a
changes for some a A H 2� ~X ; Z� satisfying

a1w� PD�e� �mod 2� and a2 � ÿ4�k� 1=4� � 4l; for some l A N:�3:33�

(The classes a correspond to split SO�3� bundles over ~X , namely RlL with c1�L� � a, so
they have ®rst Pontrjagin number a2 and second Stiefel-Whitney class a �mod 2�; see [31],
[32] for further explanation.) For any a A H 2� ~X ; R� which is not torsion, the subset

fh A H 2� ~X ; R� : h ^ h > 0 and h ^ a � 0g

of the positive cone of H 2� ~X ; R� is an a-wall. If a obeys condition (3.33), then a is non-
torsion since w� PD�e� �mod 2� is good and the resulting a-wall is called a

�w� PD�e�;ÿ4kÿ 1�-wall:

The connected components of the complement in the positive cone of H 2� ~X ; R� of the
union of �w� PD�e�;ÿ4kÿ 1�-walls are called �w� PD�e�;ÿ4kÿ 1�-chambers. Hence,
the intersection pairing in de®nition (3.31) changes if the period point o�~g� moves from
one �w� PD�e�;ÿ4kÿ 1�-chamber to another.

We now discuss how a choice of a metric g on X determines a chamber in the positive
cone of H 2� ~X ; R�GR�e�lH 2�X ; R�. Assume ®rst that w �mod 2� is good in the sense of
De®nition 3.20. Therefore, if b A H 2�X ; Z� satis®es

b 1w �mod 2� and b2 � ÿ4k� 4l; for some l A N;�3:34�

then b is non-torsion and thus de®nes a �w;ÿ4k�-wall in H 2�X ; R�. Moreover,
a � b � PD�e� satis®es condition (3.33) and de®nes a �w� PD�e�;ÿ4kÿ 1�-wall in
H 2� ~X ; R�. This establishes an inclusion of �w;ÿ4k�-chambers in H 2�X ; R� into related

�w� PD�e�;ÿ4kÿ 1�-chambers in H 2� ~X ; R�.

If g is a generic metric on X, then the period point o�g� A H 2�X ; R� does not lie on
any wall and there is a unique chamber in the positive cone of H 2�X ; R� which contains
o�g� ([7], Corollary 4.3.15).
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If the metric ~g on ~X is constructed by splicing together a generic metric g on X and
the Fubini-Study metric on CP2 along a ``long neck'', then o�~g� converges to o�g� in L2

as the length of the neck tends to in®nity, viewing both o�~g� and o�g� as elements of

H 2� ~X ; R�. Thus, o�~g� will lie in the chamber in the positive cone of H 2� ~X ; R� related to the
chamber in the positive cone of H 2�X ; R� containing o�g�. Thus, when w �mod 2� is good,
the intersection pairing (3.31) de®ning the invariant Dw

X �z� is de®ned with respect to the
chamber in H 2� ~X ; R� related to the chamber in H 2�X ; R� determined by the period point
o�g�.

If w �mod 2� is not good, one can have torsion classes b A H 2�X ; Z� satisfying con-
dition (3.34) and thus a � b � PD�e� A H 2� ~X ; Z� satisfying (3.33). The corresponding
�w� PD�e�;ÿ4kÿ 1�-wall is given by

fh A H 2� ~X ; R� : h ^ h > 0 and h ^ PD�e� � 0g:

Hence, the period point o�g� A H 2�X ; R� for any metric g on X lies in this PD�e�-wall, since
H 2� ~X ; R�GR�e�lH 2�X ; R�, and the fact that o�~g� converges to o�g� as the length of the
neck tends to in®nity does not determine the chamber of o�~g� without a delicate analysis of
the sign of o�~g�^ PD�e� (see [59]). We plan to address the case b�2 �X� � 1 elsewhere and
so in the present article, if b�2 �X� � 1, we only consider the dependence of the invariants
Dw

X �z� on the chamber in H 2�X ; R� when w is good.

3.4.3. Geometric representatives on the link of the stratum of zero-section monopoles.
We now turn to the arguments leading to a proof of Proposition 3.29, which expresses the
intersection number

K
ÿ
V�z�XWnaÿ1 XLw

t;k

��3:35�

in terms of

K
ÿ
V�z�X i�M w

k �
� �K

ÿ
V�z�XM

w

k

�
;

which is equal to the Donaldson invariant Dw
X �z� when w is good.

Note that by the construction of the geometric representatives and de®nition of the
Donaldson invariants [7], [35], O2, one has

V�z�XM w
k �V�z�XM w

k :

That is, the intersection is contained in the top stratum M w
k of the compacti®cation M w

k .
Therefore, to calculate the intersection number (3.35) it will be enough to examine small
neighborhoods of the points in the intersection V�z�X i�M w

k �. Such neighborhoods are
described by Kuranishi models, which we now describe.

Suppose �A; 0� A V�z�X i�M w
k �. Applying the Kuranishi method to describe the

zero locus of the PU�2� monopole equations using [10], Corollary 3.6, we obtain a smooth
S1-equivariant embedding

gA: OA HT�Â �M
w
k lKer DA;Q ! �A; 0� �Ker d �A;0 H ~Ct;�3:36�
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of a precompact, open S1-invariant neighborhood OA of the origin with image
gA�OA=S1�HCt=S1, where S1 acts on the domain by scalar multiplication on Ker DA;Q,
and a smooth S1-equivariant map

jA: OA HT�Â�M
w
k lKer DA;Q ! Coker DA;Q;�3:37�

such that

gA
ÿÿ

jÿ1
A �0�XOA

�
=S1

� �Mt=S1 X gA�OA=S1�;�3:38�

gA
ÿ�T�Â �M w

k l f0g�XOA

� � i�M w
k �X gA�OA�;�3:39�

are open neighborhoods of the point �A; 0� in Mt=S1 and i�M w
k �, respectively. Because

points in M�;0
t are regular, the map jA vanishes transversely on

OA ÿ �T�Â �M w
k l f0g�:

Compare the proof of assertion (4) in [10], Theorem 3.21. For convenience, we set

ZA � jÿ1
A �0�XOA:�3:40�

Equation (3.38) implies that the S1-equivariant embedding gA descends to a homeomor-
phism from a neighborhood of the origin onto a neighborhood of �A; 0�,

gA:
ÿ
jÿ1

A �0�XOA

�
=S1 GMt=S1 X gA�OA=S1�;�3:41�

which restricts to a di¨eomorphism on each smooth stratum.

In [10], O3.2, we constructed the link Lw
t;k using the S1-invariant ``distance function'',

l: Ct ! �0;y�; �A;F� 7! kFk2
L2 :�3:42�

The function l extends continuously over Mt if we set l��A;F; x�� � kFk2
L2 . For generic,

positive, small e we have ([10], De®nition 3.7)

Lw; e
t;k � lÿ1�e�XMt=S1;�3:43�

and denote Lw; e
t;k by Lw

t;k when the value of e is not relevant. To compute the pairing (3.35)
with Lw; e

t;k , we must ®rst describe V�z� in a neighborhood of i�M w
k � in Mt.

Lemma 3.22. Let t be a spinu structure over a four-manifold X with

w2�t�1w �mod 2�;

where w A H 2�X ; Z� and w �mod 2� is good. Suppose that deg�z�f dim M w
k and z is

intersection-suitable, as de®ned before Lemma 3.17. Denote V�z�XM w
k � f�Âi�Ni�1g. Then

for each �Â � A V�z�XM w
k , there is an open neighborhood O 0A HOA of the origin in

T�Â �M
w
k lKer DA;Q, where OA is the open neighborhood de®ning the Kuranishi model

(3.36), such that:
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(1) There is a smooth, S1-invariant map,

fA: O 0A X �f0glKer DA;Q� ! T�Â �M
w
k ;

with fA�0� � 0 and �D fA�0 � 0 such that

gÿ1
A

ÿ
V�z��XO 0A � f

ÿ
fA�f�; f

�
: f A O 0A X �f0glKer DA;Q�g:

(2) There is a positive constant e0 such that for all e < e0,

V�z�XLw; e
t;k H

SN
i�1

gAi
�O 0Ai
�=S1;

where the union on the right above is disjoint.

(3) For each e A �0; e0� with e0 as in (2), there is a positive constant d such that all

�a; f� A gÿ1
A

ÿ
V�z�XLw; e

t;k

�
XO 0A satisfy kfk2

L2 > d.

Proof. Consider V�z� as a smooth submanifold of Bw;�
k . If pB: C�t ! Bw;�

k is the
projection, then the composition pB � gA is a smooth map from OA to Bw;�

k . The manifolds
M w

k and V�z� intersect transversely in Bw;�
k at �Â � � pB � gA�0; 0�. The restriction of gA to

OA X �T�Â �M w
k l f0g�

is an embedding onto an open neighborhood of �Â � in M w
k , so the composition pB � gA is

transverse to V�z� at the origin. Thus, restricted to a su½ciently small open neighborhood
O 00A HOA of the origin (0, 0) in T�Â �M

w
k lKer DA;Q, the map pB � gA is transverse to V�z�

in Bw;�
k . Hence gÿ1

A

ÿ
V�z��XO 00A is a smooth manifold. By shrinking the neighborhood O 00A

we can assume that gÿ1
A

ÿ
V�z��XO 00A and T�Â �M

w
k l f0g intersect only at the origin, since

V�z�XM w
k � �Â � � pB � gA�0; 0�. We now prove that

T�0;0�
ÿ
gÿ1
A

ÿ
V�z��XO 00A

� � f0glKer DA;Q:�3:44�

First, note that because the derivative of gA at the origin is the inclusion of
T�Â �M

w
k lKer DA;Q into Ker d 0;�

A;0 by construction of the Kuranishi model, we have the

inclusion:

f0glKer DA;Q HKer
ÿ
D�pB � gA�

�
�0;0�HT�0;0�

ÿ
gÿ1
A

ÿ
V�z��XO 00A

�
:

Because
ÿ
D�pB � gA�

�
�0;0� maps T�Â �M

w;�
k l f0g onto the normal bundle of V�z� in Bw;�

k ,

the above inclusion is an equality. Equation (3.44) implies that if

pK;A: T�Â �M
w
k lKer DA;Q ! Ker DA;Q

is the projection onto Ker DA;Q then the derivative of the restriction of pK ;A,

pK;A: gÿ1
A

ÿ
V�z��XO 00A ! Ker DA;Q�3:45�
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at the origin is an isomorphism. Therefore, for small enough O 00A the map (3.45) is a di¨eo-
morphism onto a neighborhood OK;A of the origin in Ker DA;Q. If

O 0A � O 00A X pÿ1
K;A�OK;A�;

then O 0A X �f0glKer DA;Q�HOK;A and pK;A restricted to gÿ1
A

ÿ
V�z��XO 0A is still a di¨eo-

morphism onto OK;A with inverse as described.

By shrinking the sets O 0A, we can assume the images gA�O 0A� are disjoint, proving the
®nal statement in assertion (2). Suppose ea is a sequence of positive numbers converging
to zero. If assertion (2) were not true, there would be a sequence

f�Aa;Fa; xa�gya�1 HV�z�XMt;

satisfying l��Aa;Fa; xa�� � ea and �Aa;Fa; xa� not in any gAi
�O 0Ai
�. Since V�z�XMt is com-

pact, there would be a convergent subsequence, also denoted f�Aa;Fa; xa�gya�1, converging
to �Ay;Fy; xy�. Because l is continuous on Mt, we would have l��Ay;Fy; xy�� � 0, so
�Ay;Fy; xy� A i�M w

k � by Lemma 3.21, with Fy � 0. Then,

�Ay; 0; xy� A V�z�X i�M w
k � �V�z�X i�M w

k �;

and thus x � j and �Ây� A f�Â1; . . . ; ÂN �g. The images gAi
�O 0Ai
� contain open neighborhoods

of the points f�Â1�; . . . ; �ÂN �g in Mt, so for large enough a the sequence must lie in the
union of these images, contradicting the assumption that �Aa;Fa; xa� is not in any gAi

�O 0Ai
�.

This proves assertion (2).

We use contradiction to prove assertion (3): if it were not true, then there would
be a sequence f�aa; fa�gya�1 in gÿ1

A

ÿ
V�z��XO 0A with l

ÿ
gA�aa; fa�

� � e and fa A OK ;A with
lim

a!y
kfak2

L2 � 0. By assertion (1) this sequence could be written �aa; fa� �
ÿ

fA�fa�; fa

�
.

Because the sequence ffagHKer DA;Q converged to zero in L2 and DA;Q is elliptic, it would
converge to zero in L2

l (for lf 2). Since fA is continuous on OK;A, we would have
lim

a!y
aa � lim

a!y
fA�fa� � 0 and, as l � gA is continuous on OK;A,

lim
a!y

l
ÿ
gA�aa; fa�

� � l
ÿ
gA�0; 0�

� � l�0� � 0;

contradicting our assumption that for all a we have l
ÿ
gA�aa; fa�

� � e. This proves assertion
(3) and completes the proof of the lemma. r

Because the spaces gA�O 0A� su½ce to cover the intersection V�z�XLw; e
t;k for e su½-

ciently small by Lemma 3.22, we shall henceforth restrict the domain of gA to O 0A.

We de®ne a link of the submanifold T�Â �M
w
k l f0gHT�Â �M

w
k lKer DA;Q by setting

KA; d � f�a; f� A T�Â �M
w
k lKer DA;Q : kfk2

L2 � dg:�3:46�

The link KA; d=S1 is more convenient to work with than the level sets of l � gA de®ning
gÿ1
A �Lw; e

t;k �. We will see in Lemma 3.26 that the two links are related by an oriented
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cobordism. Therefore, prior to showing this equivalence, we ®rst discuss the orientation of
the spaces.

An orientation O for M�;0
t determines an orientation

o�L; qO��3:47�

for Lw; e
t;k by considering Lw; e

t;k as the boundary of the subspace lÿ1
ÿ�e;y��HMt=S1 and

using the convention (2.19).

An orientation o of T�Â �M
w
k determines an orientation of KA; d=S1 by identifying

KA; d=S1 with T�Â �M
w
k � CPkÿ1, where k � dimC Ker DA;Q and taking the complex orien-

tation of CPkÿ1, denoted by

o�K; o�:�3:48�

We now describe a convention for orienting smooth submanifolds.

Convention 3.23. Suppose Z and M are manifolds which intersect transversely. Then
an orientation O for M and an orientation o�Z� for the normal bundle of Z determine an
orientation for M XZ, which we write as O=o�Z�.

From equation (3.37) and the fact that jA vanishes transversely on

ÿ
O 0A ÿ �T�Â �M w

k l f0g��=S1;

the ®bers of the normal bundle of ZA=S1 in
ÿ
O 0A ÿ �T�Â �M w

k l f0g��=S1 are naturally

identi®ed with Coker DA;Q. Let o�Z� be the orientation of this normal bundle of ZA=S1

obtained by giving Coker DA;Q the complex orientation.

By Convention 3.23, the orientation o�K; o� of KA; d=S1 and orientation o�Z� of the
normal bundle of ZA=S1 determine a ``complex orientation'' of ZA XKA; d=S1,

o�K; o�=o�Z�;�3:49�

where o is the orientation for T�Â �M
w
k , by analogy with De®nition 2.7 which this construc-

tion matches.

However, to compare the orientations of Lw; e
t;k and ZA XKA; d=S1 with those of other

links in a cobordism formula such as equation (3.70), it is natural to orient ZA XKA; d=S1 as
a boundary of the cobordism. If O is an orientation of M�;0

t =S1, we obtain an orientation

o�ZXK; qO��3:50�

for ZA XKA; d=S1 by identifying this manifold, via the map gA, with the boundary of

MtngA
ÿ
T�Â �M

w
k � BA�0; d�

�
XO 0A;
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where BA�0; d�HKer DA;Q is the ball of radius d, and using convention (2.19). The proof of
the following lemma is the same as that of Lemma 2.9.

Lemma 3.24. Let w be an integral lift of w2�t�. Fix an orientation o � o�W;w� of M w
k .

Let O � Oasd�W;w� be the orientation for M�;0=S1 in De®nition 2.3. Then, the orientations
(3.49) and (3.50) for ZA XKA; d=S1 agree, that is

o�K; o�=o�Z� � o�ZXK; qO�:

By the de®nition of a geometric representative (De®nition 3.4), the normal bundle of
V�z� in Bw;�

k has an orientation, which we denote by o�V�. Because V�z� intersects

pB � gA�KA; d=S1�; pB � gA�ZA XKA; d=S1�; and pB�Lw; e
t;k �

transversely, the orientations o�V�, o�K; o�, o�Z�, o�ZXK; qO� and o�L; qO� determine
orientations

o�K; o�=o�V� for gÿ1
A

ÿ
V�z��XKA; d=S1;�3:51� ÿ

o�K; o�=o�Z��=o�V�
o�ZXK; qO�=o�V�

�
for gÿ1

A

ÿ
V�z��XZA XKA; d=S1;

o�L; qO�=o�V� for V�z�XLw; e
t; e :

Observe that Lemma 3.24 implies thatÿ
o�K; o�=o�Z��=o�V� � o�ZXK; qO�=o�V�;�3:52�

if o � o�W;w� and O � Wasd�W;w�.

Lemma 3.25. Let w be an integral lift of w2�t�. Let e�A� �G1 be the signed inter-

section number of V�z� and M w
k at �Â �, where M w

k is given the orientation o�W;w�. Then the
following map is a di¨eomorphism:

gA � � fA � idKer DA; Q
� � iD: CPkÿ1 ! gÿ1

A

ÿ
V�z��XKA; d=S1;�3:53�

where CPkÿ1 � P�Ker DA;Q�, fA is de®ned in assertion (1) of Lemma 3.22, and

iD: CPkÿ1 ! CPkÿ1 � CPkÿ1

is the diagonal inclusion. If CPkÿ1 has the complex orientation and gÿ1
A

ÿ
V�z��XKA; d=S1 has

the orientation o�K; o�=o�V� of (3.51) for o � o�W;w�, then gA preserves orientation if and
only if e�A� � 1.

Proof. By assertion (1) of Lemma 3.22, the intersection gÿ1
A

ÿ
V�z��XKA; d=S1 is

given by the S1 quotient of the graph of fA restricted to S2kÿ1 HKer DA;Q. Thus, gA gives
the desired di¨eomorphism. Because V�z� and M w

k intersect transversely in Bw;�
k at �Â �, the

normal bundle of V�z� in Bw;�
k is identi®ed with T�Â �M

w
k but their orientations agree if

and only if e�A� � 1. The result then follows from the de®nition (3.48) of the orientation
o�K; o� of KA; d=S1 determined by the orientation o�W;w� of T�Â �M

w
k . r
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Lemma 3.26. Continue the assumptions and notation of Lemma 3.22. For e su½-

ciently small and d as in assertion (3) of Lemma 3.22 and generic, there is a smooth, compact,
and oriented cobordism between

gÿ1
A

ÿ
V�z�XLw; e

t;k

�
;�3:54�

with the orientation o�L; qO�=o�V� of (3.51) for O � Oasd�W;w�, and the manifold

ZA X gÿ1
A

ÿ
V�z��XKA; d=S1;�3:55�

with the orientation
ÿ
o�K; o�=o�Z��=o�V� of (3.51), where o � o�W;w�.

Proof. As before, we let BA�0; d�HKer DA;Q be the open ball of radius d. Assertion
(3) of Lemma 3.22 yields the inclusion

gA
ÿÿ

T�Â �M
w
k � BA�0; d�

�
XO 0A=S1

�
XV�z�XMt=S1 H lÿ1

ÿ�0; e��:
Then for generic values of e and d,

Mt=S1 XV�z�Xlÿ1��0; e��X gA�O 0A� ÿ gA
ÿÿ

T�Â �M
w
k � BA�0; d�

�
XO 0A=S1

��3:56�

is a smooth manifold with boundaries given by the manifold (3.54) and by

M0
t XV�z�X gA

ÿÿ
T�Â �M

w
k � qBA�0; d�

�
XO 0A=S1

�
;�3:57�

which is di¨eomorphic, via gA, to the manifold (3.55).

By assertion (2) of Lemma 3.22, the compact set V�z�XMt X lÿ1��0; e�� is con-

tained in a ®nite, disjoint union
SN
i�1

gAi
�O 0Ai

=S1�, where V�z�XM w
k � f�Âi�gN

i�1. Thus, each
component

V�z�XMt X lÿ1��0; e��X gA�O 0A=S1�;

of this disjoint union is compact. Therefore, the space (3.56) is a compact and smooth
cobordism between the manifold (3.54) and the manifold (3.57) which, as previously noted,
is di¨eomorphic to the manifold (3.55).

Let M�;0
t =S1 XV�z� have the orientation determined by the orientation Oasd�W;w�

of Mt=S1 and the orientation o�V� of the normal bundle of V�z�. The manifold
(3.56) has codimension zero in M�;0

t =S1 XV�z� and thus inherits an orientation from
M�;0

t =S1 XV�z�. Hence, the manifold (3.56) de®nes an oriented cobordism. The orienta-
tion of the manifold (3.54) given by viewing it as a component of the boundary of
the oriented manifold (3.56) is then equal to ÿo�L; qO�=o�V� (as de®ned in (3.51)) for
O � Oasd�W;w�. The negative sign arises because the orientation o�L; qO� of (3.47) is
de®ned by viewing Lw; e

t;k as the boundary of lÿ1
ÿ�e;y��.
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The orientation of the manifold (3.55) given by considering it as a component of the
boundary of the oriented manifold (3.56) is then equal to o�ZXK; qO�=o�V� (as de®ned
in (3.51)) for O � Oasd�W;w� which, by equation (3.52) is equal to

ÿ
o�K; o�=o�Z��=o�V�

for o � o�W;w�.

Recall that two oriented manifolds �Mi;oi� for i � 0; 1 are cobordant if there is
an oriented manifold W whose oriented boundary is �M0;ÿo0�W �M1;o1� ([30], p. 170).
Therefore, the manifold (3.56) gives the desired cobordism. r

We now give a cohomological description of the zero locus ZA of the obstruction
map:

Lemma 3.27. Continue the hypotheses and notation of Lemmas 3.22 and 3.25.

Assume that na�t� � IndexC DA;Q is positive and let c � dimC Coker DA;Q. If

CPkÿ1 GP�Ker DA;Q�

has the complex orientation and h A H 2�CPkÿ1; Z� is the positive generator, then for generic
d > 0, there is a smooth submanifold T of CPkÿ1 which is PoincareÂ dual to hc such that the

restriction of the map gA of de®nition (3.53) to T gives a di¨eomorphism,

gA: T FZA X gÿ1
A

ÿ
V�z��XKA; d=S1:

If T is oriented as the PoincareÂ dual of hc and ZA X gÿ1
A

ÿ
V�z��XKA; d=S1 is oriented by

o�ZXK; o�=o�V� from (3.51) where o � o�W;w�, then the restriction of gA to T is orien-

tation preserving if and only if e�A� � 1, where e�A� is de®ned in Lemma 3.25.

Proof. As noted before Lemma 3.22, the Kuranishi map jA in (3.37) vanishes
transversely on O 0A ÿ �T�Â �M w

k l f0g�. For generic d, the map jA vanishes transversely on
gÿ1
A

ÿ
V�z��XKA; d=S1 because V�z� is transverse to M�;0

t =S1 by construction. This implies
that the zero locus of jA is PoincareÂ dual to the Euler class of the vector bundle (3.58) of
which jA is a section. We de®ne a smooth submanifold,

T � gÿ1
A

ÿ
jÿ1

A �0�
�
HCPkÿ1;

and observe that the di¨eomorphism gA in equation (3.53) restricts to the desired di¨eo-
morphism of T.

From the de®nition of jA in equation (3.37) and of gA in equation (3.53), we see that
the composition jA � gA can be viewed as an S1-equivariant map

jA � gA: S2kÿ1 ! Cc;

where Cc GCoker DA;Q, and thus a section of the vector bundle

S2kÿ1 �S1 Cc ! CPkÿ1;�3:58�
where the S1 action is diagonal since �jA � gA��eiyz� � eiy�jA � gA��z�, for z A S2kÿ1 and
eiy A S1. Because the action is diagonal, the Euler class of this bundle is hc (see [10], Lemma
3.27 for a further explanation of the sign).
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By Lemma 3.25, the di¨eomorphism gA de®nes an orientation-preserving di¨eomor-
phism from CPkÿ1 to gÿ1

A

ÿ
V�z��XKA; d=S1 (with the orientation o�K; o�=o�V� of (3.51))

if and only if e�A� � 1. Recall that the orientation
ÿ
o�K; o�=o�Z��=o�V� from (3.51) of

ZA X gÿ1
A

ÿ
V�z��XKA; d=S1 is given by the orientation o�K; o�=o�V� of

gÿ1
A

ÿ
V�z��XKA; d=S1

and the orientation o�Z� of the normal bundle of ZA=S1. Thus, if T is oriented as the
PoincareÂ dual of hc and thus has the orientation determined by the complex orientation of
CPkÿ1 and the complex orientation of the normal bundle of T, then the restriction of gA to
T is orientation preserving if and only if e�A� � 1. r

The ®nal tool needed to compute intersection numbers with Lw
t;k in equation (3.60) is

the following description of gÿ1
A �W�:

Lemma 3.28. Continue the notation and assumptions of Lemmas 3.22, 3.25, and 3.27.
Then �gA � gA��mc � 2h, where mc is the cohomology class (3.12).

Proof. Recall that mc is the ®rst Chern class of the line bundle Lt in de®nition (3.10).
The embedding gA and the map gA are S1-equivariant so, noting that Lt is de®ned by the S1

action in equation (3.11), we have

�gA � gA��Lt GS2kÿ1 ��S1;�ÿ2� C! S2kÿ1=S1:�3:59�

The bundle (3.59) has ®rst Chern class 2h, the sign being positive because the S1 action is
diagonal (see [10], Lemma 3.27). r

Using Lemma 3.28 we can prove the assertion of Lemma 3.15 that i�M w
k �HW:

Proof of assertion (2)(d) in Lemma 3.15. Lemma 3.28 shows that W will have non-
trivial intersection with the normal cone of any point in i�M w

k �HMt, where by ``normal
cone'' we mean gA

ÿ
ZA X �f0glKer DA;Q�

�
=S1. Therefore, the closure of W will contain all

points in i�M w
k � and thus i�M w

k �HW. r

We can now compute the intersection with the link.

Proposition 3.29. Let t be a spinu structure on a four-manifold X, with w an integral

lift of w2�t� and w �mod 2� is good. We further assume that da�t� � dim M w
k f 0 and that

na�t� � IndexC DA > 0. Let dc be a non-negative integer such that

deg�z� � 2dc � da � 2na ÿ 2 � dim�M�;0
t =S1� ÿ 1:

Suppose z A A�X� has degree deg�z�f da and is intersection-suitable. If Lw; e
t;k X i�M w

k � is

oriented as the boundary of M�;fe
t =S1, where M�;0

t =S1 is given the orientation Oasd�W;w�,
then there is a positive constant e0 such that for generic e A �0; e0�,

K
ÿ
V�z�XWdc XLw; e

t;k

� � 2naÿ1K
ÿ
V�z�XM w

k

�
; if deg�z� � da;

0; if deg�z� > da:

�
�3:60�

Moreover, these intersection numbers are independent of the choice of generic e < e0.
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Proof. By assertion (2) of Lemma 3.22, the pairing (3.60) is a sum of local terms,

K
ÿ
V�z�XWdc XLw; e

t;k

��3:61�

� P
�A� AV�z�XMw

k

K
ÿ
V�z�XW

dc XLw; e
t;k X gA�O 0A�

�
;

where O 0A is the neighborhood de®ned in Lemma 3.22. If deg�z� > dim M w
k , the intersection

V�z�XM w
k is empty and so the sum is trivial. Hence, we can assume deg�z� � dim M w

k , so
dc � na�t� ÿ 1. Let c � dimC Coker DA;Q, so k � dim Ker DA;Q � na � c. If V�z� has multi-
plicity q (in the sense of De®nition 3.4), then we can evaluate the terms in the sum in
equation (3.61) as

K
ÿ
V�z�XWnaÿ1 XLw; e

t;k X gA�O 0A�
�

�K
ÿ
gÿ1
A

ÿ
V�z�XWnaÿ1 X lÿ1�e��XZA=S1

� �equations �3:41� and �3:43��
�K

ÿ
gÿ1
A �Wnaÿ1�X gÿ1

A

ÿ
sV�z��XKA; d XZA=S1

� �Lemma 3:26�

� qK
ÿ�gA � gA�ÿ1�Wnaÿ1�X gÿ1

A �ZA=S1�XCPna�cÿ1
� �Lemma 3:25�

� qe�A�h�2h�naÿ1 ^ hc; �CPna�cÿ1�i �Lemmas 3:27 and 3:28�
� qe�A�2naÿ1:

Hence, equation (3.61) simpli®es to give

K
ÿ
V�z�XWdc XLw; e

t;k

� � q2naÿ1 P
�A� AV�z�XM w

k

e�A� � 2naÿ1K
ÿ
V�z�XM w

k

�
;

completing the proof of the proposition. r

As an application of Lemma 3.27, we explain why the moduli space Mt contains solu-
tions to the PU�2� monopole equations [10], Equation (2.32) which are distinct from the
anti-self-dual or reducible solutions. Lemma 3.27 yields the following analogue of Taubes'
existence theorem for solutions to the anti-self-dual equation for SO�3� connections:

Proposition 3.30. Let t be a spinu structure on a four-manifold X, where we allow

b�2 �X�f 0, and suppose w2�t�1w �mod 2�, for w A H 2�X ; Z�. Assume that w �mod 2� is

good. If na�t� > 0, then for a generic, Cy pair �g; r�, consisting of a Riemannian metric
and Cli¨ord map, and generic, Cy parameters �t; Q�, the moduli space M�;0

t �g; r; t; Q� of

irreducible, non-zero-section PU�2� monopoles is non-empty if the moduli space M w;�
k of

irreducible, anti-self-dual SO�3� connections on gt is non-empty.

Proof. This follows from the fact that the Euler class of the obstruction bundle in
the Kuranishi model of �A; 0� A Mt is non-trivial by Lemma 3.27. r

3.5. The cobordism formula. If z A A�X � is intersection-suitable and

deg�z� � 2dc � dim�M�;0
t =S1� ÿ 1 � da � 2na ÿ 2;
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then Corollary 3.18 tells us that the intersection

V�z�XWdc XM�;fe
t =S1�3:62�

is a union of smooth one-dimensional manifolds in M�;fe
t =S1. The boundaries of these

one-manifolds will lie either on Lw
t;k or in a neighborhood of some reducible monopole,

possibly in a lower level. Proposition 3.29 describes the intersection of this family of one-
manifolds with the component Lw

t;k of the boundary of M�;fe
t =S1. In particular, we see

there are ®nitely many points in this boundary.

If w2�t� is good then (noting that we always assume b�2 �X� > 0), for any splitting
t � sl snL, the space Ms contains no zero-section monopoles ([10], Corollary 3.3). In
[10], De®nition 3.22 we constructed a homology class �Lt; s� of the link of the family of
reducibles Ms contained in the top level M0

t =S1. By Lemma 2.6, the orientations Oasd�W;w�
and Ored�W; t; s� di¨er by

1

4

ÿ
wÿ c1�L�

�2
. From the de®nition of the geometric representa-

tives and Lemma 2.9, we have:

Lemma 3.31. Let t be a spinu structure over a four-manifold X, with w an integral

lift of w2�t�. Assume that w �mod 2� is good. If z A A�X� is intersection-suitable and
deg�z� � 2dc � da � 2na ÿ 2, then

K
ÿ
V�z�XWdc XLt; s

� � �ÿ1�1
4�wÿc1�L��2hmp�z�^ mdc

c ; �Lt; s�i;

where Lt; s is given the boundary orientation determined by Oasd�W;w� on the left hand side
and the complex orientation of De®nition 2.7 on the right hand side of the above identity.

We now characterize the spinc structures, s, for which t � sl s 0.

Lemma 3.32. A spinu structure t on X admits a splitting, t � sl s 0, if and only if

ÿ
c1�t� ÿ c1�s�

�2 � p1�t�:�3:63�

Proof. Assume t � sl s 0. We may write s 0 � snL for some line bundle L, with
t � �r;V� and s � �r;W �. Then V �W nE, where E � ClL, and gt G iRlL. Thus,
c1�L� � c1�t� ÿ c1�s� obeys c1�L�2 � p1�gt� � p1�t�, as desired.

Conversely, suppose c1�t� ÿ c1�s� obeys condition (3.63). Let L be a complex line
bundle with c1�L� � c1�t� ÿ c1�s�. From Lemma 2.3 in [10] we know that V GW nE for
a complex rank-two bundle E determined up to isomorphism by s and t. Then

c1�E� � 1

2
c1�V�� ÿ c1�W�� � c1�t� ÿ c1�s� � c1�L�;

while

c2�E� � ÿ 1

4

ÿ
p1

ÿ
su�E��ÿ c1�E�2

� � ÿ 1

4

ÿ
p1�t� ÿ c1�L�2

� � 0;
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where the ®nal equality follows from the fact that p1�t� � c1�L�2 by hypothesis. Hence,
E GClL and so V GW lW nL, as desired. r

If s is a spinc structure with c1�s� obeying condition (3.63), there is a topological
embedding Ms ,!Mt of Ms into the top level of Mt ([10], Lemma 3.13). More generally, if
c1�s� obeys ÿ

c1�t� ÿ c1�s�
�2 � p1�t� � 4l;�3:64�

for some non-negative integer l, then there is a topological embedding of Ms into the
lower-level PU�2�-monopole moduli space Mtl � Syml�X�, where tl is a spinu structure
with p1�tl� � p1�t� � 4l ([10], Equation (2.45)).

If the reducibles in Mt appear only in the top Uhlenbeck level Mt, then M�;fe
t =S1 is

a cobordism between the link Lw; e
t;k of the stratum de®ned by the anti-self-dual moduli

space, i�M w
k �, and the links Lt; s of the strata of reducibles, i�Ms�. Counting the points in

the boundary of the oriented, one-dimensional manifold (3.62) then gives the identity:

K
ÿ
V�z�XW

dc XLw
t;k

� � ÿ P
fs: sls 0�tg

K
ÿ
V�z�XW

dc XLt; s

�
:�3:65�

Let w be an integral lift of w2�t� de®ning the orientation Oasd�W;w� of M�;0
t =S1. Lemmas

2.6 and 2.9 imply that the orientation Oasd�W;w� and the complex orientation for the link
Lt; s di¨er by

�ÿ1�ot�w; s�; where we define ot�w; s� � 1

4

ÿ
wÿ c1�L�

�2�3:66�

� 1

4

ÿ
wÿ c1�t� � c1�s�

�2
:

Equation (3.65), Proposition 3.29 and Lemma 3.31 then yield the following result.

Theorem 3.33. Let t be a spinu structure on an oriented, smooth four-manifold X

with b�2 �X� > 0 and w2�t�1w �mod 2�, for w A H 2�X ; Z�. Assume that w �mod 2� is good.

Suppose z A A�X � has degree

da�t�e deg�z�e da�t� � 2na�t� ÿ 2;�3:67�

and is intersection-suitable. Assume that the set of isomorphism classes of spinc structures,

s A Spinc�X�, de®ning reducible PU�2� monopoles in Mt all obey condition (3.63), and so
non-empty Seiberg-Witten moduli strata i�Ms� appear only in the top level, Mt.

(a) If for all s A Spinc�X� with Ms non-empty we haveÿ
c1�t� ÿ c1�s�

�2
< p1�t�;�3:68�

so Mt contains no reducible monopoles, then

K
ÿ
V�z�XM w

k �X�
� � 0:�3:69�
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(b) If deg�z� � da and ot�w; s� is as de®ned in equation (3.66), then

K
ÿ
V�z�XM w

k �X�
� � ÿ21ÿna

P
fs: sls 0�tg

�ÿ1�ot�w; s�hmp�z�^ mnaÿ1
c ; �Lt; s�i;�3:70�

where the class �Lt; s� is de®ned by the complex orientation of De®nition 2.7 on Lt; s.

(c) If da < deg�z�e da � 2na ÿ 2 and dc A N is de®ned by

deg�z� � dc � da � 2na ÿ 2;

then

P
fs: sls 0�tg

�ÿ1�ot�w;s�hmp�z�^ mdc
c ; �Lt; s�i � 0:�3:71�

The sums in equations (3.70) and (3.71) are necessarily ®nite, because there are only
®nitely many spinc structures s with Ms non-empty and thus Lt; s non-empty. Theorem 3.33
can be strengthened to a more useful form if we assume

Conjecture 3.34 ([8], Conjecture 3.1). Continue the notation of Theorem 3.33.
Suppose that tl � sl s 0, where p1�tl� � p1�t� � 4l and i�Ms� is contained in the level
Mtl � Syml�X�, for some natural number lf 0. Then the pairing K

ÿ
V�z�XWdc XLt; s

�
is a multiple of SWX ; s and thus vanishes if the Seiberg-Witten function SWX ; s is trivial.

See O4.1 for a de®nition of the Seiberg-Witten invariants. The motivation for this
conjecture is discussed in [16] and almost certainly does hold, one of our current goals
being to provide a complete proof in the near future. The di½culty lies in the construction
of the link Lt; s of a Seiberg-Witten moduli space when l � l�t; s� > 0. We show that
Conjecture 3.34 holds when l � 0 in Theorem 4.13 and when l � 1 in [14]. By adapting
Leness's proof of the wall-crossing formula in [36], we can also see that the conjecture holds
when l � 2.

Corollary 3.35. Given Conjecture 3.34, we can relax the hypothesis of Theorem

3.33Ðthat non-empty Seiberg-Witten moduli spaces Ms appear only in the top level
MtÐto the weaker requirement that Seiberg-Witten moduli spaces Ms with non- t r i v ia l

Se iberg -Wi t ten functions SWX ; s appear only in the top level Mt. Then the conclusions

of Theorem 3.33 hold without change.

Remark 3.36. The Seiberg-Witten stratum i�Ms� corresponding to a splitting
tl � sl s 0 lies in level

l�t; s� � 1

8

ÿ
da ÿ 2r�L; s��

of the space of ideal PU�2� monopoles containing Mt, from the de®nition (1.12) of r�L; s�,
where da is the dimension of the anti-self-dual moduli space M w

k ,!Mt. Then, by de®nition
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(1.12) of r�L�, the Seiberg-Witten strata with non-trivial invariants are contained only in
levels l of this space of ideal PU�2� monopoles, where

0e le
1

8

ÿ
da ÿ 2r�L��:

See the proof of Theorem 1.2 in O4.6.

4. Intersection with the link of a stratum of top-level reducibles

In this section we calculate the pairings appearing on the right-hand-side of equation
(3.70) in Theorem 3.33 under the additional assumption that for all a; a 0 A H 1�X ; Z� one
has a ^ a 0 � 0. We begin by giving a de®nition of the Seiberg-Witten invariants which is
appropriate for the perturbations we use in our version of the Seiberg-Witten equations
[10], O2.3. Recall that the link Lt; s constructed in [10], O3.5 is di¨eomorphic via a map g

to the zero-locus of a section of an obstruction bundle g�X=S1 over the complex projec-
tivization of a bundle Nt�X; s� !Ms. Thus, in O4.2, we calculate pullbacks of the classes
mp and mc by g to PNt�X; s�. In O4.3 we compute the total Segre classÐthe formal inverse
of the total Chern class as de®ned in Lemma 4.10Ðof the virtual normal bundle Nt�X; s� of
Ms and the Euler class of the obstruction bundle g�X=S1. Finally, in O4.4 we perform the
actual computation and complete the proofs of Theorems 1.1, 1.2, 1.4, and Corollary 1.5.

4.1. A de®nition of the Seiberg-Witten invariants. In this subsection we give a de®-
nition of the Seiberg-Witten invariants for a closed, smooth four-manifold X; we allow
b1�X�f 0 and b�2 �X �f 1.

Recall that X is equipped with an orientation for which b�2 �X� > 0 and that we
have ®xed an orientation for H 1�X ; R�lH��X ; R�: the Seiberg-Witten moduli spaces are
then oriented according to the conventions of [46], O6.6 (or see our O2.3). In [10], O2.4.2 we
de®ned a universal complex line bundle,

Ls � ~C0
s �Gs C! C0

s � X ;�4:1�
where C � X � C and the action of Gs is given for s A Gs, x A X and z A C byÿ

s; �B;C�; �x; z�� 7! ÿ
s�B;C�; ÿx; s�x�ÿ1z

��
:�4:2�

We then de®ned cohomology classes on C0
s by

ms: H��X ; R� ! H 2ÿ��C0
s ; R�; ms�a� � c1�Ls�=a;�4:3�

where a is either the positive generator x A H0�X ; Z� or a class g A H1�X ; R�.

If z A B�X� is a monomial a1 � � � ap with ai A H0�X ; Z� or H1�X ; R�, then it has total

degree deg�z� �Pp
i�1

deg�ai� (see de®nition (1.8)). If z � xmg1 � � � gn A B�X �, we set

ms�z� � ms�x�^ � � �^ ms�x�|�����������������{z�����������������}
m times

^ ms�g1�^ � � �^ ms�gn�;�4:4�

and de®ne ms�z� for arbitrary elements z A B�X� by R-linearity.
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Let ~X � XKCP2 be the blow-up of X with exceptional class e A H2� ~X ; Z� and
denote its PoincareÂ dual by PD�e� A H 2� ~X ; Z�. Let sG � � ~r; ~W� denote the spinc structure
on ~X with c1�sG� � c1�s�GPD�e� obtained by splicing the spinc structure s � �r;W� on
X with the spinc structure on CP2 with ®rst Chern class GPD�e�. (See O4.5 for a more
detailed explanation of the relation between spinc and spinu structures on X and ~X , as well
as the blow-up formula for Seiberg-Witten invariants, which we shall invoke below.) One
easily checks that dim MsG� ~X� � dim Ms�X �, where the Seiberg-Witten moduli spaces
Ms�X� and MsG� ~X� are de®ned in [10], Equation (2.57) and Lemma 3.12 with perturbation
h � F��AL�. Here, 2AL is the ®xed connection on det�V��G det� ~V�� and ~t � � ~r; ~V� is
the spinu structure on ~X de®ned in Lemma 4.19, with c1�~t� � c1�t�, p1�~t� � p1�t� ÿ 1, and
w2�~t� � w2�t� � PD�e� �mod 2�. Now

c1�sG� ÿ c1�~t� � c1�s�GPD�e� ÿL A H 2� ~X ; Z�

is not a torsion class and soÐfor b�2 �X � > 0, generic Riemannian metrics g on X and related
metrics on the connected sum ~X Ðthe moduli spaces MsG� ~X� contain no zero-section pairs
([46], Proposition 6.3.1). Thus, for our choice of generic perturbations, the moduli spaces
MsG� ~X � are compact, oriented, smooth manifolds.

Noting that B�X�GB� ~X �, we de®ne the Seiberg-Witten invariants for �X ; s� as an
R-linear function (1.7) by setting

SWX ; s�z� � hms��z�; �Ms�� ~X��i;�4:5�

with SWX ; s�z� � 0 when deg�z�3 dim Ms�X�. The blow-up formula for Seiberg-Witten
invariants (Theorem 4.20) implies that

hms�z�; �Ms�X��i � hmsG�z�; �MsG� ~X��i;�4:6�

when the pairing on the left is well-de®ned, that is, when Ms�X� contains no zero-section
monopoles. For example, with our version of the Seiberg-Witten equations [10], Equation
(2.55), this situation arises when c1�s� ÿL A H 2�X ; Z� is not a torsion class and thus
Ms�X� contains no zero-section pairs if the metric g is generic and b�2 �X � > 0 ([46], Prop-
osition 6.3.1). Therefore, our de®nition of the Seiberg-Witten invariants coincides with the
usual one [46] in this case, but has the advantage that it is valid even when c1�s� ÿL is
torsion and one cannot perturb the Seiberg-Witten equations by a generic two-form h (see
Remark 2.14 in [10]). When b�2 �X� > 1, the pairing on the right-hand-side of equation (4.5)
is independent of the metric ([46], Lemma 6.7.1).

When b�2 �X � � 1, however, the pairing on the right-hand-side of de®nition (4.5)
depends on the period point o�~g� of the metric ~g on ~X , as in the case of the Donaldson
invariants (see O3.4.2). To explain this dependence when the Seiberg-Witten moduli spaces
are de®ned as in [10], O2.3 with the perturbation parameters h � F��AL� described above,
we note that the moduli space Ms��~g� contains zero-section pairs if and only if the period
point o�~g� lies on the

ÿ
c1�s�� ÿL

�
-wall in the positive cone of H 2� ~X ; R�, that is

o�~g�^ ÿ
c1�s�� ÿL

� � 0:�4:7�

Feehan and Leness, PU(2) monopoles. II186



When o�~g� does not lie on the wall, the pairing in de®nition (4.5) may depend on the sign
of o�~g�^ ÿ

c1�s�� ÿL
�
. The chambers for the Seiberg-Witten invariants of Ms� are thus

connected components of the complement of the
ÿ
c1�s�� ÿL

�
-wall in the positive cone of

H 2� ~X ; R�, which we call
ÿ
c1�s�� ÿL

�
-chambers.

By an argument which is the same as the one we gave for the Donaldson invari-
ants in O3.4.2, if c1�s� ÿL is not torsion then each

ÿ
c1�s� ÿL

�
-chamber in the positive

cone of H 2�X ; R� is contained in a unique
ÿ
c1�s�� ÿL

�
-chamber in the positive cone of

H 2� ~X ; R�GR�e�lH 2�X ; R�, the related chamber. The Seiberg-Witten invariant asso-
ciated to a

ÿ
c1�s� ÿL

�
-chamber is then de®ned by evaluating the pairing in equation (4.5)

with a metric whose period point lies in the related
ÿ
c1�s�� ÿL

�
-chamber.

Suppose w2�X� ÿL �mod 2� is good, in the sense of De®nition 3.20. For any spinc

structure s over X, we have c1�s�1w2�X� �mod 2� and so c1�s� ÿL �mod 2� is good. Then
c1�s� ÿL is not torsion and the Seiberg-Witten invariants for Ms depend only on the
metric g through the

ÿ
c1�s� ÿL

�
-chamber for o�g�.

If w2�X� ÿL �mod 2� is not good, then c1�s� ÿL may be torsion and in this situation

o�~g�^ ÿ
c1�s�� ÿL

� � o�~g�^ PD�e�;

so the sign of the cup-product would depend on the sign of o�~g�^ PD�e�, which converges
to zero as the neck is stretched. Hence, the de®nition (4.5) of the Seiberg-Witten invariant
in this case requires a more delicate analysis of the sign of o�~g�^ PD�e� as the length of
the neck converges to in®nity [59], which we shall not consider here.

Thus, when b�2 �X� � 1, we shall assume that w2�X� ÿL �mod 2� is good. Since

w1w2�X � ÿL �mod 2�;

this coincides with the constraint we used to de®ne the Donaldson invariants in O3.4.2.

We now compare the Donaldson and Seiberg-Witten chamber structures:

Lemma 4.1. Let t be a spinu structure on a four-manifold X with b�2 �X � � 1, where w
is an integral lift of w2�t� and w �mod 2� is good, and c1�t� � L. Then there is a one-to-one

correspondence between the set of
ÿ
w; p1�t�

�
-walls and the set of

ÿ
c1�s� ÿL

�
-walls, where Ms

is contained in the space of ideal PU�2� monopoles,
Sy
l�0

ÿ
Mtl � Syml�X��.

Proof. A
ÿ
w; p1�t�

�
-wall is de®ned by class a A H 2�X ; Z� with a1w �mod 2� and

a2 � p1�t� � 4l for lf 0 (see equation (3.33)). Because a is an integral lift of w2�t�, the
class Lÿ a is characteristic. Hence, there is a spinc structure s with c1�s� � Lÿ a. By
Lemma 3.32 and the identity a2 � p1�t� � 4l, a spinu structure tl with c1�tl� � L and
p1�tl� � p1�t� � 4l admits a splitting tl � sl s 0 for any such spinc structures. Conversely,
given a spinc structure s with Ms contained in the space of ideal monopoles, Lemma 3.32
implies that

ÿ
c1�s� ÿL

�2 � p1�t� � 4l and c1�s� ÿL1w2�t� �mod 2�, so the
ÿ
c1�s� ÿL

�
-

wall is a
ÿ
w; p1�t�

�
-wall. r
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Remark 4.2. Lemma 4.1 implies that in formulas such as (1.20) and (1.21) derived
using the cobordism M�;0

t =S1 to compare Donaldson and Seiberg-Witten invariants, if a
period point o�g� crosses a wall for the Donaldson invariant, it will also cross a wall for
one of the Seiberg-Witten invariants in the formula; thus both sides of the identity will
change.

4.2. Pullbacks of cohomology classes to the link of a stratum of reducibles. We now
compute the pullbacks of the cohomology classes mp�z� and mc by g: N e

t �X; s�=S1 ! Ct=S1,
the restriction of the S1-equivariant embedding de®ned in [10], Equation (3.44) to the
e-sphere of the bundle Nt�X; s�. The result will be expressed in terms of the Seiberg-Witten
ms-classes and one additional cohomology class:

De®nition 4.3. Let n A H 2
ÿ
PNt�X; s�; Z

�
be the negative of the ®rst Chern class of

the S1 bundle N e
t �X; s� ! PNt�X; s�. Restricted to each ®ber of PNt�X; s�, the class n is the

positive generator of the cohomology. With the conventions of [24], O3.1, the class n is
the ®rst Chern class of the line bundle OPNt�X;s��1�, the dual of the tautological bundle.

Let ~Nt�X; s� ! ~Ms be the pullback of Nt�X; s� by the projection ~Ms !Ms. To com-
pute the pullbacks by g of the cohomology classes mp�b� to PNt�X; s�, we ®rst compute the
pullback of the universal bundle Ft de®ned in equation (3.2).

Lemma 4.4. Let t be a spinu structure which admits a splitting t � sl snL. Assume

Ms contains no zero-section pairs. Let g: N e
t �X; s� ,! Ct be the embedding constructed in [10],

O3.5.3, and let ~N e
t �X; s� denote the e-sphere bundle of ~Nt�X; s�. Then, we have an isomorphism

of SO�3� bundles over PNt�X; s� � X ,

�g� idX ��Ft G ~N e
t �X; s� �Gs�S1 �iRlL�;�4:8�

where s A Gs and eiy A S1 act on ~N e
t �X; s� � �iRlL� by

ÿ�B;C; h�; f l z
� 7! ÿ

s�B;C; eiyh�; f l sÿ2eiyz
�
;�4:9�

where �B;C; h� A ~Nt�X; s�, �B;C� A ~Ms, and f l z A iRlL.

Proof. Since V �W lW nL, where s � �r;W� and t � �r;V�, we have an iso-
morphism of SO�3� bundles gt G iRlL and the de®nition (3.2) of Ft yields an isomor-
phism of SO�3� bundles over C�t � X ,

Ft G ~C�t �Gt�S1 �iRlL�:

From [10], O3.5.4 we recall that the embedding g: Nt�X; s� ! Ct lifts to a map

~g: ~Nt�X; s� ! ~Ct;

which is Gs equivariant when s A Gs acts on ~Ct via the embedding

%: Gs ,! Gt; s 7! %�s� � s idW l sÿ1 idWnL;�4:10�
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while s acts on the base ~Ms by the usual action of Gs and on the ®bers of ~Nt�X; s� ! ~Ms by
the action on L2

k�L1 nL�lL2
k�W�nL� induced by the isomorphisms gt G iRlL and

V �W lW nL and the action of %�s� on V.

We also recall from [10], O3.5.4 that the map ~g is S1 equivariant with respect to the
action on the complex ®bers of ~Nt�X; s� by scalar multiplication and the trivial action on
the base ~Ms, while S1 acts on ~Ct through

%L: S1 � V ! V ; where %L�eiy� � idW l eiy idWnL:�4:11�

Therefore, we have an isomorphism of SO�3� bundles:

�~g� idX ��
ÿ

~C�t �Gt �iRlL��G ~Nt�X; s� �Gs �iRlL�:

We obtain �~g� idX ��Ft on the left above after we take the S1 quotient, with S1 acting on ~Ct

through complex multiplication on V and trivially on gt. Given

�A;F; f ; z� � �~g�B;C; h�; f ; z� A ~C�t �Gt �iRlL�;

and noting that

eiy idV � %�eiy�%L�e2iy�; eiy A S1;�4:12�

then we can identify the pull-back of the S1 action:

�eiy�A;F�; f ; z� � �eiy~g�B;C; h�; f ; z�
� �%�eiy�%L�e2iy�~g�B;C; h�; f ; z� �equation �4:12��
� �%�eiy�~g�B;C; e2iyh�; f ; z� �see �10�; O3:5:4�
� �~g�B;C; e2iyh�; %�eÿiy�� f ; z��
� �~g�B;C; ei2yh�; f ; e2iyz� �see �10�; Equation �3:23��:

The ®nal equality follows from the observation that the action of s A Gs induced by
the embedding %: Gs ! Gt, the homomorphism Ad: Aut�V� ! su�V�, the projection
su�V� ! gt, and the isomorphism gt G iRlL, is given by � f ; z� 7! � f ; sÿ2z�; see [10],
O3.4.2 for details. r

Lemma 4.4 shows that we can compute g�p1�Ft� A H 4
ÿ
PNt�X; s� � X ; R

�
once we

know the Chern class of the line-bundle component of the SO�3� bundle (4.8):

Lemma 4.5. Continue the hypotheses of Lemma 4.4 and let n be the cohomology class

in De®nition 4.3. Then the complex line bundle,

~N e
t �X; s� �Gs�S1 L! PNt�X; s� � X ;�4:13�
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has ®rst Chern class

p�PNn� 2�ps � idX ��c1�Ls� � p�X c1�L� A H 2
ÿ
PNt�X; s� � X ; Z

�
;

where pPN, ps and pX are the projections from PNt�X; s� � X to PNt�X; s�, Ms, and X,

respectively, and Ls is the universal Seiberg-Witten line bundle (4.1).

Proof. The projection ~N e
t �X; s� ! PNt�X; s� is a principal Gs � S1 bundle, where S1

acts by scalar multiplication on the ®bers of ~Nt�X; s�. One has an isomorphism of Gs � S1

bundles

~N e
t �X; s�GN e

t �X; s� �Ms
~Ms;�4:14�

de®ned, for �B;C� A ~Ms and �B;C; h� A ~N e
t �X; s�, by the map

�B;C; h� 7! ÿ�B;C; h�; �B;C��;
where the square brackets indicate equivalence modulo Gs. Applying the isomorphism
(4.14) to the Gs � S1 bundle (4.13) yields an isomorphism of complex line bundles,

~N e
t �X; s� �Gs�S1 LG

ÿ
N e

t �X; s� �Ms � ~Ms �Gs L��=S1�4:15�

where, as in de®nition (4.9), an element s A Gs acts on ~Ms � L by

�B;C; z� 7! ÿ
s�B;C�; sÿ2z

�
and S1 acts diagonally on N e

t �X; s� � L.

The isomorphism in [10], Equation (3.68) gives

~Ms �Gs LG Ln2
s n p�X L:�4:16�

Substituting the isomorphism (4.16) into equation (4.15) yields an isomorphism of complex
line bundles,

~N e
t �X; s� �Gs�S1 LG

ÿ
N e

t �X; s� �Ms Ln2
s n p�X L

�
=S1:�4:17�

The proof is completed by applying Lemma 3.27 in [10] to compute the ®rst Chern class of
a ®ber product with an S1 action, the observation that the S1 action in (4.17) is diagonal,
and the fact that n � ÿc1

ÿ
N e

t �X; s�
�
. r

The reduction of �g� idX ��Ft in Lemma 4.4, the computation in Lemma 4.5, and the
fact that c1�L� � c1�t� ÿ c1�s� give the following expression for �g� idX ��p1�Ft�.

Corollary 4.6. Continue the hypotheses and notation of Lemmas 4.4 and 4.5. Then,

�g� idX ��p1�Ft� �
ÿ
p�PNn� 2�ps � idX ��c1�Ls� � p�X

ÿ
c1�t� ÿ c1�s�

��2�4:18�
A H 4

ÿ
PNt�X; s� � X ; Z

�
:

We compute the pullbacks of the cohomology classes mp�b� in C�;0t =S1 to PNt�X; s�:
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Corollary 4.7. Continue the hypotheses of Lemma 4.4. Let fgig be a basis for

H1�X ; Z�=Tor and let fg�i g be the dual basis for H 1�X ; Z�. Then if x A H0�X ; Z� is the
positive generator, g A H1�X ; R�, h A H2�X ; R�, and �Y � A H3�X ; R�, the pullbacks of the

cohomology classes mp�b� in H��C�;0t =S1; R� by the embedding g: PNt�X; s� ,! C�;0t =S1 to

cohomology classes g�mp�b� in H�
ÿ
PNt�X; s�; R

�
are given by

g�mp��Y �� �
Pb1�X�

i�1

h
ÿ
c1�s� ÿ c1�t�

�
^ g�i ; �Y �ims�gi�;�4:19�

g�mp�h� �
1

2
hc1�s� ÿ c1�t�; hi

ÿ
2ms�x� � n

�ÿ 2
P
i< j

hg�i ^ g�j ; hims�gigj�;

g�mp�g� � ÿ
Pb1�X �

i�1

hg�i ; gi
ÿ
2ms�x� � n

�
^ ms�gi�;

g�mp�x� � ÿ
1

4

ÿ
2ms�x� � n

�2
;

where we have written ms�b� for the pullback of this class to PNt�X; s�.

Proof. Recall from [10], Lemma 2.24 that

c1�Ls� � ms�x� � 1� Pb1�X�

i�1

ms�gi� � g�i A H 2�C0
s � X ; R�:

The identities (4.19) then follow from equation (4.18), the de®nition (3.3) of the cohomol-

ogy classes mp�b� � ÿ
1

4
p1�Ft�=b, and standard computations (compare the proof of [7],

Proposition 5.1.21). r

Finally, we compute the pullback of the class mc in C�;0t =S1 to PNt�X; s�:

Lemma 4.8. Continue the hypotheses of Lemma 4.4 and let n be the cohomology class

in De®nition 4.3. Then

g�mc � n A H�
ÿ
PNt�X; s�; R

�
:�4:20�

Proof. We compute c1�g�Lt�, where Lt is the line bundle (3.10) with c1�Lt� � mc, so

Lt � �C�;0t � C�=S1;

with circle action given byÿ
eiy; ��A;F�; z�� 7! �eiy�A;F�; e2iyz� � ÿ%L�e2iy��A;F�; e2iyz

�
;�4:21�

where %L is given by de®nition (4.11) and the preceding equality follows from the rela-
tion (4.12) between the circle actions. The embedding g: N e

t �X; s� ! C�;0t is S1 equivariant
with respect to scalar multiplication on the ®bers of Nt�X; s� and the action induced by
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%L: S1 � V ! V on C�;0t . Hence, by de®nition of Lt and the S1 equivariance of g, we obtain
an isomorphism of complex line bundles

g�Lt G
ÿ
N e

t �X; s� � C
�
=S1;

where the circle acts by ÿ
eiy; ��B;C; h�; z�� 7! ÿ�B;C; eiyh�; eiyz

�
:

Therefore, g�mc � g�c1�Lt� � c1�g�Lt� � n, as desired. r

Corollary 4.7 completes the proof of Lemma 3.15:

Proof of assertions (2) (a), (b) and (c) in Lemma 3.15. Because the class n is non-
trivial on the ®ber of the projection PNt�X; s� !Ms, the closures of the geometric repre-
sentatives V�b�, V�g�, and V�x� dual to the cohomology classes mp�b�, mp�g�, and mp�x�
must contain each point in i�Ms�. Hence, the closures V�b�, V�g�, and V�x� contain
i�Ms�. r

4.3. Euler and Segre classes. In [10], Equation (3.48), the homology class of the link
is given by

�Lt; s� � e
ÿ
g��X=S1��X �PNt�X; s��;

where X=S1 is an obstruction bundle over an open neighborhood of i�Ms�HCt, as de®ned
in [10], Theorem 3.19. In this section, we compute the Euler class of this obstruction bundle
and then compute the Segre classes of Nt�X; s� in order to relate intersection pairings on
PNt�X; s� with pairings on Ms.

The obstruction bundle X is given by

XGU� CrX ! U;

where (see [10], Theorem 3.19) U is a neighborhood of Ms in Ct and the S1 action is given
by, for �A;F� A U, z A CrX , and %L is the map (4.11),

��A;F�; z� 7! ÿ
%L�eiy��A;F�; eiyz

�
:�4:22�

Because the embedding g: N e
t �X; s� ! UHCt is S1 equivariant with respect to scalar mul-

tiplication on the ®bers of Nt�X; s� and the action induced by the map %L on Ct, we have
an isomorphism

g��X=S1�GN e
t �X; s� ��S 1;�ÿ1� CrX ;

where the factor ÿ1 indicates that the S1 action in equation (4.22) is diagonal. Thus, we
can calculate the Euler class of g�X=S1:

Lemma 4.9. The vector bundle g�X=S1 has Euler class e�g�X=S1� � nrX , where n is

the cohomology class in De®nition 4.3, rX � rankC X, and

�Lt; s� � nrX X �PNt�X; s��;
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where Lt; s is given the complex orientation of De®nition 2.7 and �PNt�X; s�� is given the ori-

entation de®ned by the orientation of TMs and the complex orientation of the ®bers.

Proof. The obstruction section vanishes transversely, so its zero locus, Lt; s is Poin-
careÂ dual to e�g�X=S1� � nrX by [3], Proposition 12.8. Note that the top Chern class is the
Euler class associated to the complex orientation of the ®bers of a complex vector bundle
([43], Lemma 14.1 and De®nition, p. 158). r

Although the de®nition of Segre classes is well-known ([24], p. 69), we include a def-
inition here via the following lemma in order to make our conventions clear.

Lemma 4.10. Let N be a complex rank-r vector bundle with Chern classes ci � ci�N�
over an oriented, real m-dimensional manifold M. Let N e HN be the associated e-sphere

bundle. De®ne Segre classes si � si�N� A H 2i�X ; Z� by the relation

�1� c1 � c2 � � � � � cr��s0 � s1 � � � �� � 1:�4:23�

Let p: P�N� !M be the projectivization of N and h the negative of the ®rst Chern class of

the bundle N e ! P�N�. Then, for any a A H mÿ2i�M; Z�,

hhr�iÿ1 ^ p�a; �P�N��i � hsi ^ a; �M�i;�4:24�

where P�N� is given the orientation arising from that of M and the complex orientation of the
®bers of p.

Proof. The cohomology ring of P�N� is given by ([3], Equation (20.7)),

H�
ÿ
P�N�; Z

� � p�H��M; Z��h�=�hr � p�c1hrÿ1 � � � � � p�cr�:

We then have hr � ÿPr

i�1

p�cih
rÿi in H�

ÿ
P�N�; Z

�
. Suppose a A H m�M; Z�, so i � 0 in the

assertion of the lemma, and a is dual to ha; �M�ip A H0�M; Z�, where p is a point. Then

hhrÿ1 ^ p�a; �P�N��i � hhrÿ1; �pÿ1�p��iha; �M�i
� hhrÿ1;CPrÿ1�iha; �M�i � ha; �M�i:

Because s0�N� � 1 by equation (4.23), equation (4.24) holds for i � 0. We now use
induction on i and consider a A H mÿ2i�M;Z�:

hhr�iÿ1 ^ p�a; �P�N��i � ÿ Pi

j�1

p�cjh
r�iÿ1ÿ j

 !
^ p�a; �P�N��

* +

� ÿPi

j�1

hcjsiÿj ^ a; �M�i � hsi ^ a; �M�i:

The last equality follows from the identity
P

i

ci

� � P
sj

� �
� 1

j

, by equating degrees. This
gives the desired relation. r
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Next we compute the Segre classes of Nt�X; s�. Recall from [10], Equation (3.72) that

n 0s�t; s� � ÿ
ÿ
c1�t� ÿ c1�s�

�2 ÿ 1

2
�w� s�;�4:25�

n 00s �t; s� �
1

8

ÿÿ
2c1�t� ÿ c1�s�

�2 ÿ s
�
;

where ns � n 0s � n 00s is the index of the elliptic ``normal deformation operator'' for the
Seiberg-Witten stratum i�Ms�HMt.

Lemma 4.11. Suppose that for all a; a 0 A H 1�X ; Z� one has a ^ a 0 � 0. Let t be a

spinu structure with t � sl snL and assume Ms contains no zero-section pairs. Then the

bundle Nt�X; s� !Ms has Segre classes

si

ÿ
Nt�X; s�

� � ms�x� i
Pi

j�1

2 j ÿn 0s
j

� � ÿn 00s
i ÿ j

� �
; i � 0; 1; 2; . . . :�4:26�

Proof. With the hypothesis on H 1�X ; Z�, Corollary 3.30 in [10] asserts that Nt�X; s�
has total Chern class

c
ÿ
Nt�X; s�

� � ÿ1� 2ms�x�
�n 0sÿ1� ms�x�

�n 00s :

As described in Lemma 4.10, the total Segre class s � s0 � s1 � s2 � � � � is the formal
inverse of the total Chern class c � 1� c1 � c2 � � � �, so

s
ÿ
Nt�X; s�

� � ÿ1� 2ms�x�
�ÿn 0sÿ1� ms�x�

�ÿn 00s :

The lemma follows by computing the formal power series expansions for the above expres-
sion, using equation (2) in Lemma 4.16 to simplify before multiplying the two series. r

Remark 4.12. The assumption a ^ a 0 � 0 in Lemma 4.11 is used to simplify the
expression for the Chern character of Nt�X; s� computed in [10], Theorem 3.29. Without this
assumption, the universal expression of the Segre classes in terms of the Chern character
given in [39], Equation (2.11) and Theorem 3.29 of [10] still show that the Segre classes of
Nt�X; s� are expressible in terms of the ms-classes, though not as explicitly.

4.4. Computation of the intersection pairing. We now compute intersection pairings
with Lt; s of the type encountered in the cobordism formula (3.70). Some combinatorial
factors appearing in this computation can be expressed in terms of the Jacobi polynomials

[29], O8.96, which are de®ned by

Pa;b
n �x� �

1

2n

P
k

a� n

nÿ k

� �
n� b

k

� �
�xÿ 1�k�x� 1�nÿk; x A C:�4:27�

Functional relations, relations with other special functions, and the generating function for
the Jacobi polynomials can be found in [29], pp. 1034±1035.

Theorem 4.13. Let X be a four-manifold with a ^ a 0 � 0 for every a; a 0 A H 1�X ; Z�,
and let W be a homology orientation. Let s and t be a spinc and spinu structure on X for

which t � sl snL, and assume Ms contains no zero-section pairs. Give Lt; s the complex
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orientation, determined by the orientation for Ms ®xed by the homology orientation W as

in De®nition 2.5. Let z A A�X� and let dc be a non-negative integer satisfying

deg�z� � 2dc � dim�M�;0
t =S1� ÿ 1:

If z � z 0Y for some Y A H3�X ; Z� and z 0 A A�X�, then

hmp�z�^ mdc
c ; �Lt; s�i � 0:�4:28�

If z � xd0Qhd2 , where h A H2�X ; R�, Q A Ld1
ÿ
H1�X ; R��, and x A H0�X ; Z� is the positive

generator, then ds�s�1 d1 �mod 2� and if we set

2d � ds�s� ÿ d1;�4:29�
then

hmp�z�^ mdc
c ; �Lt; s�i � �ÿ1�d0�d1 2ÿd2ÿ2 d0 Cw;s

ÿ
deg�z�; dc; da�t�; ds�s�; d1

��4:30�

� hms�xdQ�; �Ms�ihc1�s� ÿ c1�t�; hid2 ;

where

Cw;s

ÿ
deg�z�; dc; da�t�; ds�s�; d1

� � �ÿ2�dPa;b
d �0�;

for

a � dc ÿ d and b � 1

2

ÿ
deg�z� ÿ da�t� ÿ ds�s�

�ÿ 1

4
�w� s�:

If d � 0, then Cw;s � 1.

Remark 4.14. If d1 > ds�s�, then the pairing hms�xdQ�; �Ms�i vanishes and so the
pairing (4.30) also vanishes.

Proof of Theorem 4.13. By the multilinearity of the pairing, we can assume that Q
is a monomial, Q � g1 � � � gd1

, where fg1; . . . ; gd1
g is a subset of a basis for H1�X ; Z�=Tor.

Extend it to a basis and let fg�i g be a dual basis for H 1�X ; R�, so hg�i ; gji � dij.

Suppose z � z 0Y for Y A H3�X ; Z� and z 0 A A�X �. The expression for mp��Y �� in
equation (4.19) is a sum of terms of the form

h
ÿ
c1�s� ÿ c1�t�

�
^ g�i ; �Y �ims�gi� � h

ÿ
c1�s� ÿ c1�t�

�
^ g�i ^ PD�Y �; �X �ims�gi�;

which vanish by our hypothesis on H 1�X ; Z�. This yields identity (4.28).

The integers di and dc satisfy

2d2 � 3d1 � 4d0 � 2dc � deg�z� � 2dc � dim�M�;0
t =S1� ÿ 1�4:31�

� ds�s� � 2n 0s � 2n 00s ÿ 2:

Thus d1 1 ds�s� �mod 2� and d � 1

2

ÿ
ds�s� ÿ d1

�
is an integer. We use Corollary 4.7 and
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[10], Equation (3.48) and Lemma 4.9, to write the pairing in equation (4.30) as

hmp�hd2Qxd0�mdc
c ; �Lt; s�i�4:32�

� 2ÿd2hc1�s�ÿc1�t�; hid2

�
*ÿ

2ms�x��n
�d2

Qd1

k�1

ÿÿ2ms�x�ÿn
�
ms�gk�

� �
ÿ 1

4

ÿ
2ms�x��n

�2
� �d0

ndc ;

nrX X �PNt�X; s��
+
:

Write C1 � �ÿ1�d1�d0 2ÿd2ÿ2 d0hc1�s� ÿ c1�t�; hid2 and de®ne

dp � 1

2

ÿ
deg�z� ÿ d1

� � d2 � d1 � 2d0:�4:33�

The pairing (4.32) is then equal to

C1h
ÿ
2ms�x� � n

�dpms�Q�ndc�rX ; �PNt�X; s��i�4:34�

� C1

Pdp

i�0

2 i dp

i

� �
ms�xiQ�ndp�dc�rXÿi; �PNt�X; s��

* +
:

Then ms�xiQ� A H ds�s�ÿ2�dÿi��Ms; Z� and

dp � dc � rX ÿ i � d2 � d1 � 2d0 � dc � rX ÿ i �as dp � d2 � d1 � 2d0�

� n 0s � n 00s � rX � 1

2

ÿ
ds�s� ÿ d1

�ÿ 1ÿ i �equation �4:31��

� n 0s � n 00s � rX � �d ÿ i� ÿ 1 �as d � 1

2
�ds�s� ÿ d1��:

We use the preceding equation, the Segre class relation (4.24), and the formulas (4.26) for
the Segre classes si

ÿ
Nt�X; s�

�
to calculate

hms�xiQ�ndp�dc�rXÿi; �PNt�X; s��i � hms�xiQ�sdÿi; �Ms�i�4:35�

� Pdÿi

j�0

2 j ÿn 0s
j

� � ÿn 00s
dÿ iÿ j

� �
hms�xdQ�; �Ms�i:

Writing C2 � C1hms�xdQ�; �Ms�i and substituting the formula (4.35) into equation (4.34)
yields a simpli®ed expression for that pairing:

C2

Pd
i�0

2 i dp

i

� �Pdÿi

j�0

2 j ÿn 0s
j

� � ÿn 00s
d ÿ i ÿ j

� �
�4:36�

� C2

Pd
i�0

Pdÿi

j�0

2 i�j dp

i

� � ÿn 0s
j

� � ÿn 00s
d ÿ i ÿ j

� �
:
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If we write u � i � j, then the pairing (4.36) becomes

C2

Pd
u�0

Pu
i�0

2u dp

i

� � ÿn 0s
uÿ i

� � ÿn 00s
d ÿ u

� �
� C2

Pd
u�0

2u ÿn 00s
d ÿ u

� �Pu
i�0

dp

i

� � ÿn 0s
uÿ i

� �
�4:37�

� C2

Pd
u�0

2u ÿn 00s
d ÿ u

� �
dp ÿ n 0s

u

� �
;

where the second equality follows from the Vandermonde convolution identity (see equa-
tion (5) in Lemma 4.16). Equation (4.30) will follow from equation (4.37) and Lemma 4.18
which expresses the last sum in equation (4.37) in terms of the Jacobi polynomial given by
Cw;s

ÿ
deg�z�; dc; da�t�; ds�s�; d1

�
. This completes the proof of the theorem. r

Remark 4.15. The proof of Theorem 4.13 implies that Conjecture 3.1 of [8]
holds for level-zero reducibles, even without the assumption that a ^ a 0 � 0 for every
a; a 0 A H 1�X ; Z�. We only used this condition on H 1�X ; Z� in equation (4.35) in order to
apply the Segre class computations of Lemma 4.11. If the condition on H 1�X ; Z� is
omitted, thenÐas noted in Remark 4.12Ðthe Segre classes can still be computed in terms
of ms-classes, though less explicitly. In the general situation, the pairing (4.30) could still be
expressed in terms of a pairing of ms-classes with Ms and, when c1�s� is not a basic class, the
pairing (4.30) would be zero.

Before proving the relation between the combinatorial expression in equation (4.37)
and the Jacobi polynomial used at the end of the proof of Theorem 4.13, it is convenient to
collect the combinatorial identities we shall need here. For a A R and n A N, de®ne

�a�n � a�a� 1� � � � �a� nÿ 1�; and �a�0 � 1:�4:38�

We then have:

Lemma 4.16 ([38], p. 9). Let a; b A R and let k; n A N be non-negative integers. Then:

�a�k � �ÿ1�k�1ÿ aÿ k�k;�1�

a

k

� �
� �ÿ1�k�ÿa�k

k!
;�2�

�a�nÿk �
�ÿ1�k�a�n
�1ÿ aÿ n�k

; nf k;�3�

�nÿ k�! � n!

�ÿ1�k�ÿn�k
;�4�

Pu
i�0

a

i

� �
b

uÿ i

� �
� a� b

u

� �
:�5�

Identity (5) in Lemma 4.16 (the Vandermonde convolution identity) follows by com-
paring coe½cients in binomial expansions of the two sides of the identity

�x� y�a�x� y�b � �x� y�a�b:
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Remark 4.17. Note that identity (2) in Lemma 4.16 allows one to extend the

de®nition of a binomial coe½cient
n

r

� �
to the case when ne 0. If r � 0, the identity

n

r

� �
� 1 still holds.

We now prove the relation between the combinatorial expression in equation (4.37)
and the Jacobi polynomial.

Lemma 4.18. Continue the notation of Theorem 4.13. Then

Pd
u�0

2u ÿn 00s
d ÿ u

� �
dp ÿ n 0s

u

� �
� �ÿ2�dPa;b

d �0�;

where dp is de®ned in equation (4.33) and

a � dc ÿ d and b � 1

2

ÿ
deg�z� ÿ da�t� ÿ ds�s�

�ÿ 1

4
�w� s�:

Proof. We ®rst recall that the hypergeometric functions [29], O9.10 are de®ned by

2F1�a; b; c; x� � Py
k�0

�a�k�b�k
�c�kk!

xk; x A C:�4:39�

We shall use the following identities ([38], Equation (23), p. 40 and Equation (2), p. 274):

2F1�ÿm; b; c; x� � �b�m�ÿ1�mxm

�c�m 2F1�ÿm; 1ÿmÿ c; 1ÿmÿ b; xÿ1�;�4:40�

Pa;b
n �x� �

�ÿ1�n�b� 1�n
n!

2F1 ÿn; n� a� b� 1; b� 1;
1

2
�1� x�

� �
:

By equation (2) of Lemma 4.16, the combinatorial expression in equation (4.37) can be
written as

C�n 00s ; n 0s; dp; d� :� Pd
u�0

2u ÿn 00s
d ÿ u

� �
dp ÿ n 0s

u

� �
�4:41�

� Pd
u�0

2u�ÿ1�dÿu �n 00s �dÿu

�d ÿ u�! �ÿ1�u �n
0
s ÿ dp�u

u!
:

Applying equation (3) of Lemma 4.16 to �n 00s �dÿu and equation (4) to �d ÿ u�! yields

C�n 00s ; n 0s; dp; d� � �ÿ1�d Pd
u�0

2u �ÿ1�u�n 00s �d�ÿ1�u�ÿd�u�n 0s ÿ dp�u
�1ÿ n 00s ÿ d�ud!u!

�4:42�

� �ÿ1�d�n 00s �d
d!

Pd
u�0

�ÿd�u�n 0s ÿ dp�u
�1ÿ n 00s ÿ d�uu!

2u

� �ÿ1�d�n 00s �d
d!

2F1�ÿd; n 0s ÿ dp; 1ÿ n 00s ÿ d; 2�:
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Substituting the ®rst identity in equation (4.40) into equation (4.42) gives

C�n 00s ; n 0s; dp; d� � �n
00
s �d2d�n 0s ÿ dp�d

d!�1ÿ n 00s ÿ d�d 2F1 ÿd; n 00s ; dp ÿ n 0s ÿ d � 1;
1

2

� �
:�4:43�

By substituting equation (1) from Lemma 4.16 into equation (4.43) we obtain

C�n 00s ; n 0s; dp; d� � 2d�ÿ1�d�n 0s ÿ dp�d
d!

2F1 ÿd; n 00s ; dp ÿ n 0s ÿ d � 1;
1

2

� �
:�4:44�

Applying the second identity in (4.40) to equation (4.44) yields

C�n 00s ; n 0s; dp; d� � 2d�n 0s ÿ dp�d�d�!
d!�dp ÿ n 0s ÿ d � 1�d

P
n 00s �n 0sÿdpÿ1; dpÿn 0sÿd

d �0�:�4:45�

By applying equation (1) from Lemma 4.16, we can then simplify the right-hand side of
equation (4.45) to give

C�n 00s ; n 0s; dp; d� � �ÿ2�dP
n 00s �n 0sÿdpÿ1; dpÿn 0sÿd

d �0�:�4:46�

Then, the equalities

ds�s� � 2n 0s � 2n 00s ÿ 2 � dim�M�;0
t =S1� ÿ 1 � deg�z� � 2dc � 2dp � d1 � 2dc

and ds�s� � 2d � d1 imply

n 00s � n 0s ÿ dp ÿ 1 � dc ÿ d:�4:47�

The de®nition (4.25) of n 0s implies that

n 0s �
1

2
da�t� � 1

4
�w� s�;

which, together with the identities d � 1

2

ÿ
ds�s� ÿ d1

�
and dp � 1

2

ÿ
deg�z� ÿ d1

�
, yields

dp ÿ n 0s ÿ d � 1

2

ÿ
deg�z� ÿ da�t� ÿ ds�s�

�ÿ 1

4
�w� s�:�4:48�

Substituting equations (4.47) and (4.48) into equation (4.46) then completes the proof. r

4.5. A blow-up formula for Seiberg-Witten link pairings. Our formula (4.30) in
Theorem 4.13 for pairings with Seiberg-Witten links �Lt; s� only applies when Ms con-
tains no zero-section pairs. In the same vein, our formula (3.70) in Theorem 3.33 for
K
ÿ
V�z�XM w

k

�
in terms of pairings with �Lt; s� only applies when w2�t�1w �mod 2� and
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w �mod 2� is good; when t � sl s 0 and w2�t� is good, then Ms contains no zero-section
pairs. The de®nition (3.31) of the Donaldson invariants Dw

X �z� incorporates the blow-up
formula in order to remove any such constraint on w. Therefore, we derive a ``blow-up''
formula for the Seiberg-Witten link pairings which, together with equations (3.70) and
(4.30), will allow us to compute Dw

X �z� for arbitrary w A H 2�X ; Z�.

As before, we let ~X � XKCP2 be the blow-up of X with exceptional class
e A H2� ~X ; Z� and denote its PoincareÂ dual by PD�e� A H 2� ~X ; Z�. We ®rst need to relate
spinc structures on X with those on ~X . Because CP2 is simply-connected, the following
map is a bijection:

Spinc�CP2� ! f�2k ÿ 1�PD�e� : k A ZgHH 2�CP2; Z�; s 7! c1�s�:

Let s2kÿ1 denote the spinc structure on CP2 with c1�s2kÿ1� � �2k ÿ 1�PD�e�. By the dis-
cussion in [52], O12.4, a spinc structure s on X and s2kÿ1 on CP2 can be spliced together to
yield a spinc structure sKs2kÿ1 on ~X with

c1�sKs2kÿ1� � c1�s� � �2k ÿ 1�PD�e�:�4:49�

Moreover, every spinc structure on ~X can be realized in this way. The dimensions of the
Seiberg-Witten moduli spaces are related by

ds�sKs2kÿ1� � 1

4

ÿ
c1�sKs2kÿ1�2 ÿ 2~wÿ 3~s

��4:50�

� ds�s� ÿ k�k ÿ 1�;

where ~w � w� 1 denotes the Euler characteristic of ~X and ~s � sÿ 1 is the signature of ~X .
We now de®ne a spinu structure ~t on ~X related to a spinu structure t on X, and relate
reducible PU�2� monopoles in M~t to those in Mt.

Lemma 4.19. Let t be a spinu structure on X with the property that reducible PU�2�
monopoles in Mt appear only in the top level Mt. For ~X � XKCP2, let e A H2� ~X ; Z� be the
exceptional class, and let PD�e� A H 2� ~X ; Z� be its PoincareÂ dual. Then we have:

(1) There is a spinu structure ~t on ~X satisfying

c1�~t� � c1�t�; p1�~t� � p1�t� ÿ 1; and w2�~t�1w2�t� � PD�e� �mod 2�:

(2) The reducible PU�2� monopoles in M~t appear only in the top level, M~t, and are

de®ned by spinc structures sG on ~X with c1�sG� � c1�s�GPD�e�, where i�Ms�HMt.

(3) Suppose we relax the assumption that reducible PU�2� monopoles in Mt appear
only in the top level Mt, to the assumption that reducible PU�2� monopoles in Mt with

non-trivial Seiberg-Witten functions appear only in the top level Mt. Then reducible PU�2�
monopoles in M~t with non-trivial Seiberg-Witten functions appear only in the top-level M~t.

Proof. Suppose t � �r;V�. By Lemma 2.3 in [10], we may assume V �W nE,
where s � �r;W� is a spinc structure on X and E ! X is a complex rank-two vector
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bundle. Let ~E ! ~X be the complex, rank-two bundle with c1� ~E� � c1�E� � PD�e� and
c2� ~E� � c2�E�, and let ~s � � ~r; ~W� be the spinc structure on ~X with c1�~s� � c1�s� ÿ PD�e�.
Then set ~V � ~W n ~E and ~t � � ~r; ~V�, and observe that ~t has the desired characteristic
classes.

By the neck-stretching argument described in [19], the only non-empty Seiberg-Witten
moduli spaces on ~X are de®ned by spinc structures sKs2kÿ1, where Ms is non-empty. Since
i�Ms�HMt by hypothesis, equation (3.63) implies that c1�s� obeysÿ

c1�s� ÿ c1�t�
�2 � p1�t�:

To see which Seiberg-Witten moduli spaces i�MsKs2kÿ1
� can be contained in Mt and in

which level, we need to check the corresponding equation for c1�sKs2kÿ1�. Equation (4.49)
and the relations between the characteristic classes of t and ~t yieldÿ

c1�sKs2kÿ1� ÿ c1�~t�
�2 � ÿc1�s� � �2k ÿ 1�PD�e� ÿ c1�t�

�2

� p1�t� ÿ �2k ÿ 1�2

� p1�~t� ÿ 4k�k ÿ 1�:

Restricted to integers, the function ÿ4k�k ÿ 1� takes its maximum value at k � 0 and
k � 1. Hence, only the spaces i�MsKs2kÿ1

� with k � 0; 1, appear in M~t, as all other spinc

structures sKs2kÿ1 would require an SO�3� bundle with Pontrjagin class smaller than
p1�~t�. r

Theorem 4.20 ([50], Theorem 3.2, [19], Theorem 1.4). Let X be a four-manifold, and

let ~X � XKCP2 denote its blow-up, with exceptional class e A H2� ~X ; Z�. If b�2 �X� > 1, then

for each spinc structure ~s on ~X with ds�~s�f 0 and each z A B�X�GB� ~X�, we have

SW ~X ;~s�z� � SWX ; s�xmz�;�4:51�

where s is the spinc structure induced on X by restriction, and 2m � ds�s� ÿ ds�~s�. If

b�2 �X� � 1 and c1�s� ÿL is not torsion, there is a one-to-one correspondence betweenÿ
c1�s� ÿL

�
-chambers in the positive cone of H 2�X ; R� and

ÿ
c1�~s� ÿL

�
-chambers in the

positive cone of H 2� ~X ; R�, and the above relation holds provided both invariants are calcu-

lated in related chambers.

Remark 4.21. The presence of the class L in the hypotheses of Theorem 4.20 when
describing the chambers arises because of the nature of the ®xed perturbation used in our
de®nition of the Seiberg-Witten moduli spaces; see the discussion in O4.1.

Lemma 4.19, the blow-up formula for Seiberg-Witten invariants (Theorem 4.20), and
Theorem 3.33 then yield the following ``blow-up'' formula for Seiberg-Witten link pairings:

Proposition 4.22. Continue the hypotheses and notation of Theorem 4.13 leading to

equation (4.30), except we omit the requirement that Ms contains no zero-section pairs and
de®ne z as given below. Let ~X � XKCP2 be the blow-up, let e A H2� ~X ; Z� be the exceptional

class, and let PD�e� A H 2� ~X ; Z� be its PoincareÂ dual. Let z � xd0Qhd2ÿk A A�X �HA� ~X �. Let
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t and ~t be related spinu structures on X and ~X, respectively, as in Lemma 4.19. Then, for k

even,

�ÿ1�o~t�w�PD�e�; s��hmp�ek�1z�^ mdc
c ; �L~t; s��i�4:52�

� �ÿ1�o~t�w�PD�e�; sÿ�hmp�ek�1z�^ mdc
c ; �L~t; sÿ�i

� �ÿ1�ot�w; s��d0�d1 2ÿd2ÿ2 d0 Cw;s

ÿ
deg�z� � 2k; dc; da�t�; ds�s�; d1

�
� SWX ; s�xdQ�hc1�s� ÿ c1�t�; hid2ÿk;

while the left-hand side is zero if k is odd or z is replaced by z 0Y and Y A H3�X ; Z�.

Proof. The result follows by applying equation (4.30) in Theorem 4.13 to the links
L~t; sG of MsG� ~X � in M~t� ~X �, together with the following observations.

The vanishing result in the case z � z 0Y follows immediately from equation (4.28).

Because ds�sG� � ds�s� by equation (4.50), and da�~t� � da�t� � 2 by equation (3.21)
(noting that p1�t� � p1�~t� ÿ 1 from Lemma 4.19), and ~w� ~s � w� s, we have:

C~w; ~s

ÿ
deg�ze2k�1�; dc; da�~t�; ds�sG�; d1

� � Cw;s

ÿ
deg�z��2k; dc; da�t�; ds�s�; d1

�
:�4:53�

The proof (see [19], O4) of the blow-up formula, Theorem 4.20, gives an identity

hms��xdQ�; �Ms�� ~X��i � hmsÿ�xdQ�; �Msÿ� ~X��i;

and thus our de®nition (4.5) of the Seiberg-Witten invariants yields

hmsG�xdQ�; �MsG� ~X ��i � SWX ; s�xdQ�:

Noting that c1�~t� � c1�t� by Lemma 4.19, the product

hc1�sG� ÿ c1�~t�; eik�1hc1�sG� ÿ c1�t�; hid2ÿk

appearing in equation (4.30) can be simpli®ed to

hc1�sG�ÿc1�~t�; eik�1hc1�sG�ÿc1�~t�; hid2ÿk � �H1�k�1hc1�s�ÿc1�t�; hid2ÿk:�4:54�

From its de®nition (3.66), the orientation term is given by

o~t�w� PD�e�; sG� � 1

4

ÿ
w� PD�e� ÿ c1�~t� � c1�sG�

�2�4:55�

� 1

4

ÿ
wÿ c1�t� � c1�s�

�2 ÿ 1

4
�1G 1�2

� ot�w; s� ÿ 1

4
�1G 1�2:
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Hence, applying equation (4.30) to the pair L~t; sG , using equations (4.54) and (4.55) to
compute the sign di¨erences between the pairings with L~t; s� and L~t; sÿ , and using equation
(4.53) to relate the constants yields

�ÿ1�o~t�w�PD�e�; s��hmp�ek�1z�^ mdc
c ; �L~t; s��i

� �ÿ1�o~t�w�PD�e�; sÿ�hmp�ek�1z�^ mdc
c ; �L~t; sÿ�i

� ÿ�ÿ1��ÿ1�k�1 � 1
��ÿ1�ot�w; s��d0�d12ÿd2ÿ1ÿ2 d0 Cw;s

ÿ
deg�z� � 2k; dc; da�t�; ds�s�; d1

�
� SWX ; s�xdQ�hc1�s� ÿ c1�t�; hid2ÿk:

Since �ÿ1��ÿ1�k�1 � 1 � 2 if k is even and is zero if k is odd, the preceding equation
reduces to the desired formula (4.52). r

4.6. Proofs of main theorems. Combining Theorems 3.33 and 4.13 and a brief dis-
cussion will complete the proofs of Theorems 1.1, 1.2, 1.4, and Corollary 1.5:

Proof of Theorem 1.2. By hypothesis we have wÿL1w2�X� �mod 2� and the
invariants Dw

X �z� are zero unless deg�z� obeys the constraint (1.4). Let p A Z satisfy
p1w2 �mod 4� and recall thatÐsee the paragraph following equation (2.20) in [10]Ðwe
may choose a spinu structure t on X for which

c1�t� � L; p1�t� � p; and w2�t�1w �mod 2�:

Then da�t� � ÿ2pÿ 3

2
�w� s� and na�t� � 1

4
�p�L2 ÿ s�, by equation (3.21).

From equation (3.64), a reducible PU�2� monopole in Mt de®ned by a spinc structure
s lies in the level Mtl � Syml�X�, where l � l�t; s� and

4l�t; s� � ÿc1�t� ÿ c1�s�
�2 ÿ p1�t�:

But c1�t� � L and p1�t� � ÿ
1

2
da�t� ÿ 3

4
�w� s� by equation (3.21), so the de®nition (1.12)

of r�L� and r
ÿ
L; c1�s�

�
implies that

4l�t; s� � 1

2
da�t� �

ÿ
Lÿ c1�s�

�2 � 3

4
�w� s��4:56�

� 1

2
da�t� ÿ r

ÿ
L; c1�s�

�
e

1

2
da�t� ÿ r�L�:

Hence, when da e 2r�L�, the strata i�Ms� with non-trivial Seiberg-Witten functions SWX ; s

can only appear in the top level Mt of Mt (if at all), where they correspond to splittings
t � sl s 0.
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From equation (3.21), the stratum i�M w
k � has real codimension 2na�t� in Mt, with

4na�t� � p1�t� � c1�t�2 ÿ s�4:57�

� ÿ 1

2
da�t� ÿ 3

4
�w� s� �L2 ÿ s

� ÿ 1

2
da�t� ÿ 1

4
�7w� 11s� �L2 � w� s

� ÿ 1

2
da�t� � i�L�;

where the second equality follows from equation (3.21) and the ®nal one by de®nition
(1.11) of i�L�. Thus, our hypotheses on deg�z� and L imply that na�t� > 0 in cases (a) and
(b) below (where da � deg�z�), and also in case (c) (where da < deg�z�), recalling that

deg�z� is denoted by 2d, for d A
1

2
Z, in the hypotheses of Theorem 1.2.

Therefore, provided w �mod 2� is good, we can apply Theorem 3.33 to the cobord-
ism M�;0

t . To eliminate this last constraint on w when b�2 �X� > 1, we shall instead apply
Theorem 3.33 to the cobordism M�;0

~t
, where ~t is the related spinu structure on the

blow-up ~X � XKCP2 produced by Lemma 4.19. When b�2 �X � � 1, we assume that
w1w2�X� ÿL �mod 2� is good so that the Donaldson and Seiberg-Witten invariants are
well-de®ned in this case (see O3.4.2 and O4.1) and Mt contains no zero-section pairs.

From Lemma 4.19, Seiberg-Witten strata i�MsG� with non-trivial invariants appear
only in the top level M~t of M~t if and only if Seiberg-Witten strata i�Ms�HMt with non-
trivial invariants appear only in the top level Mt of Mt. Since X is ``e¨ective'' by hypoth-
esis, we may assume Conjecture 3.34 holds. Also,

na�~t� � na�t� > 0;

using equation (4.57) and the facts that p1�~t� � p1�t� ÿ 1 and c1�~t� � c1�t� by Lemma 4.19
and s� ~X� � s�X� ÿ 1. Hence, Corollary 3.35 applies to M�;0

~t
.

Theorem 1.2 now follows by applying Proposition 4.22 in conjunction with the rela-
tion (3.70) for the cobordism M�;0

~t
. Equation (3.70) (with the additional hypothesis of

Corollary 3.35) gives

K
ÿ
V�ez�XM

w�PD�e�
k�1=4 � ~X���4:58�

� ÿ21ÿna
P

fs: sls 0�tg

ÿ�ÿ1�o~t�w�PD�e�; s��hmp�ez�^ mnaÿ1
c ; �L~t; s��i

� �ÿ1�o~t�w�PD�e�; sÿ�hmp�ez�^ mnaÿ1
c ; �L~t; sÿ�i

�
:

From Theorem 3.33 we see that we need to consider the following cases, when na > 0:

(a) deg�z� � da < 2r�L�,

(b) da � 2r�L� and deg�z� � da,

(c) da � 2r�L� and da < deg�z�e da � 2na ÿ 2.
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Case (a). The condition na > 0 is equivalent to d < i�L�, since na � 1

8

ÿ
2i�L� ÿ da

�
by equation (4.57) and deg�z� � da � 2d in this case.

Using the de®nition (3.31) of the Donaldson invariants and using c1�t� � L in
Theorem 3.33 and Corollary 3.35 yields

Dw
X �z� � 0; for deg�z� < 2r�L�:�4:59�

This proves case (a).

Case (b). The condition na > 0 is again equivalent to d < i�L�, since

deg�z� � da � 2d

in this case. We also have deg�z� � 2r�L�.

Using the de®nition (3.31) of the Donaldson invariants, applying our blow-up for-
mula (4.52) (with k � 0) for link pairings to equation (4.58), and using c1�t� � L yields

Dw
X �z� � 21ÿna2ÿd2ÿ2 d0�ÿ1�d0�d1�1�4:60�

� P
fs: sls 0�tg

�ÿ1�ot�w; s�Cw;s

ÿ
deg�z�; dc; 2r�L�; ds�s�; d1

�
� SWX ; s�xdQ�hc1�s� ÿL; hid2 :

Note that although we assume dc � na ÿ 1 in case (b), we allow dc f na ÿ 1 in the above
sum, as dc > na ÿ 1 in case (c). The inequality (4.56) implies that the subset of s A Spinc�X �
giving a splitting t � sl s 0 coincides with the subset for which r

ÿ
L; c1�s�

� � r�L�. Hence,
the sum in (4.60) is over the same subset of Spinc�X� as that in equation (1.14).

We simplify the sign factor �ÿ1�ot�w; s� in equation (4.60) by writing

ot�w; s� � 1

4

ÿ
wÿL� c1�s�

�2 �from definition �3:66���4:61�

� 1

2
c1�s� � �wÿL� � 1

4

ÿ�wÿL�2 � c1�s�2
�
:

Because c1�s� and Lÿ w are characteristic, we have c1�s�2 1 �Lÿ w�2 1 s �mod 8�. Thus,
equation (4.61) yields

ot�w; s�1 1

2
c1�s� � �wÿL� � 1

2
s �mod 2��4:62�

1
1

2

ÿ
w2 � c1�s� � �wÿL��� 1

2
�sÿ w2� �mod 2�:

Substituting equation (4.62) for ot�w; s� �mod 2� into equation (4.60) implies that the power
of �ÿ1� in that formula for Dw

X �z� becomes

�ÿ1�d0�d1�1�ÿ1�1
2�sÿw2��ÿ1�1

2�w2�c1�s���wÿL��;

matching the power of �ÿ1� appearing in equation (1.14).
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Equation (4.57) gives na�t� � 1

4

ÿ
i�L� ÿ d

�
and so the power of 2 in equation (4.60) for

Dw
X �z� then becomes

21ÿ1
4�i�L�ÿd�2ÿd2ÿ2 d0 ;

matching the power of 2 appearing in equation (1.14).

Finally we simplify the expression for the constant Cw;s

ÿ
deg�z�; dc; 2r�L�; ds�s�; d1

�
.

Equation (4.57), the equality deg�z� � 2dc � da � 2na ÿ 2 and the assumption that
da � 2r�L� give

dc � 1

2

ÿ
da � 2na ÿ 2ÿ deg�z�� � 1

4

ÿ
3r�L� � i�L��ÿ 1

2
deg�z� ÿ 1:

(Note that this holds without the assumption dc � na ÿ 1.) Then, by the expression for Cw;s

in Lemma 4.18,

Cw;s

ÿ
deg�z�; dc; 2r�L�; ds�s�; d1

� � Hw;s

ÿ
L2; deg�z�; ds�s�; d1

�
;

where the function H is de®ned in equation (1.15). This completes the proof of the formula
(1.14) in case (b).

The result mentioned in Remark 1.3 for z � z 0Y can be proved by the same argu-
ment, noting that z as described there is intersection-suitable in the sense of Lemma 3.17
and that the pairings with L~t; sG all vanish by Proposition 4.22.

Case (c). Continue to assume da � 2r�L�, so the reducibles (with non-trivial
Seiberg-Witten functions) can lie in the top level (but not in any lower level). This case
follows in exactly the same way as case (b), except that we now use equation (3.71) in place
of equation (3.70) when deg�z� lies in the range

da < deg�z�e da � 2na ÿ 2;�4:63�
so we obtain non-trivial relations among the Seiberg-Witten invariants from the cobordism.

Using na � 1

8

ÿ
2i�L� ÿ da

�
, the upper bound in equation (4.63) becomes

da � 2na ÿ 2 � da � 1

4

ÿ
2i�L� ÿ da

�ÿ 2

� 3

4
da � 1

2
i�L� ÿ 2

� 3

2
r�L� � 1

2
i�L� ÿ 2

� 1

2

ÿ
3r�L� � i�L��ÿ 2:

Thus, our pair of inequalities reduces to

2r�L� < deg�z�e r�L� � 1

2

ÿ
r�L� � i�L��ÿ 2:�4:64�
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Therefore we obtain a non-trivial relation amongst the Seiberg-Witten invariants and a
vanishing result for Donaldson invariants when the constraint (4.64) on L2 and deg�z�
hold. r

Proof of Theorem 1.4. By hypothesis, L � c1�s� � 0 for all s A Spinc�X� with
SWX �s�3 0, so from equation (1.12) for r

ÿ
L; c1�s�

�
we have

r
ÿ
L; c1�s�

� � ÿc1�s�2 ÿL2 ÿ 3

4
�w� s�

� ÿ�2w� 3s� ÿL2 ÿ 3

4
�w� s�

� ÿ�w� s� ÿL2 � c�X �
� r�L�;

using the de®nition of c�X � (see O1.1) and the de®nition (1.12) of r�L�, and the formula
(see O1.1) for c1�s�2 when X has SW-simple type. A reducible PU�2� monopole in Mt

de®ned by a splitting tl � sl s 0 appears in level

l�t; s� � 1

8

ÿ
da�t� ÿ 2r

ÿ
L; c1�s�

�� � 1

8

ÿ
da�t� ÿ 2r�L��;

and thus all reducibles appear in the same level of Mt. Hence, the sum over s A Spinc�X �
with r

ÿ
L; c1�s�

� � r�L� can be replaced by a sum over s A Spinc�X� when L A B?. We
write deg�z� � 2d, as in the hypothesis of the theorem.

Case (a). In this situation, d < r�L�, d < i�L�, and

Dw
X �z� � 0; when 0e d < r�L�;

by Theorem 1.2.

Case (b). In this situation, d � r�L� and d < i�L�. We can further simplify the for-
mula (1.14). First, using i�L� � 2c�X� ÿ r�L� � 2c�X� ÿ d, d2 � dÿ 2m, and d0 � m, the
power of 2 in equation (1.14) becomes

21ÿ1
4�2c�X�ÿ2 d�ÿd � 21ÿ1

2�c�X��d�;

matching the power of 2 in equation (1.19). The power of �ÿ1� in equation (1.14) is

�ÿ1�m�1�ÿ1�1
2�sÿw2��ÿ1�1

2�w2�c1�s��w�;

since d0 � m and c1�s� �L � 0, and also matches that in (1.19). Finally, ds�s� � 0 because
we assume X is SW-simple type, so the constant Hw;s��� is equal to one and thus equation
(1.19) follows from equation (1.14).
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Case (c). Using deg�z� � 2d, r�L� � i�L� � c�X�, and equation (1.17) for r�L�, the
constraint (4.64) simpli®es to

2r�L� < 2de r�L� � c�X� ÿ 2:�4:65�

The vanishing relation follows from case (c) in Theorem 1.2. This completes the proof. r

Proof of Corollary 1.5. We consider the last case of Theorem 1.4, where d and L2

obey the constraints (4.65) and so

r�L� < c�X� ÿ 2:

Therefore, the choice of r�L� < c�X� ÿ 2 giving the largest possible integer d (admit-
ting a non-trivial vanishing relation) is r�L� � c�X� ÿ 4, achieved when L � L0 with
L2

0 � 4ÿ �w� s�. By hypothesis, such a class L0 A B? exists. Therefore, the pair (4.65) of
inequalities constrains

d � c�X � ÿ 3:

Thus, using z � xmhdÿ2m with 0eme �d=2�, we obtain for w0 A H 2�X ; Z� with
w0 ÿL0 1w2�X� �mod 2�

P
s A Spin c�X�

�ÿ1�1
2�w2

0
�c1�s��w0�SWX �s�hc1�s� ÿL0; hi

d � 0; 0e d e c�X � ÿ 3:�4:66�

Indeed, if c�X� ÿ 3 is even, then we may choose m � d=2 to obtain the above relation with
d � 0 and, as we explain shortly, the relation for d � 0 also holds when c�X � ÿ 3 is odd.
Hence, the degree-d terms in the Taylor expansion of SWw0

X �h�eÿhL;hi about h � 0 are zero
for 0e d e c�X � ÿ 3 and so the same holds for SWw0

X �h�.

If w is any integral lift of w2�X�, write w � w�L0 ÿL0 and observe that

SWw
X �h� � �ÿ1�1

2�L2
0ÿ2w�L0�SWw�L0

X �h�:

Thus SWw
X �h� vanishes to the same order as SWw0

X �h� with w0 � w�L0 and this completes
the proof, aside from the remark below on the case of odd c�X � ÿ 3.

When c�X� ÿ 3 is odd, it only remains to show that the relation (4.66) still holds
when d � 0. We choose L1 A B? with L2

1 � 6ÿ �w� s� and r�L1� � c�X� ÿ 6, so that
(4.65) allows d1 � c�X� ÿ 4, which must be even and thus, taking m � d1=2 yields

P
s ASpin c�X �

�ÿ1�1
2�w2

1
�c1�s��w1�SWX �s� � 0;

for any w1 A H2�X ; Z� with w1 ÿL1 1w2�X�. Writing w1 � w0 �L1 ÿL0 and combining

SWw1

X �h� � �ÿ1�1
2��L1ÿL0�2�2w0��L1ÿL0��SWw0

X �h�

with the previous vanishing result yields the relation (4.66) when d � 0. r
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Proof of Theorem 1.1. We assume without loss that c�X� > 0. From Theorem 1.4
we know that Dw

X �xmhdÿ2m� � 0 if d < r�L� and that the ®rst potentially non-zero invari-
ant is given by equation (1.19) when d � r�L�. The cobordism method constrains L2 by
requiring that d < i�L�. Hence, from the graphs of r�L� and i�L� as functions of L2 (see
Figure 1 in [8]) one sees that these two lines meet for L0 A H 2�X ; Z� with L2

0 � ÿ�w� s�,
at which point r�L0� � c�X � � i�L0�. Therefore, we choose L2 to give the largest pos-
sible d � r�L� < c�X�. We also take L A B?, to simplify the formula (1.19) and as the
SW-basic classes c1�s� are characteristic, this gives (for B non-empty) L � c1�s� � 0 and
L � c1�s�1L2 �mod 2�, so that L2 is even. Thus we want to choose L A B? with smallest
even value of L2 > ÿ�w� s�, namely

L2 � 2ÿ �w� s�;�4:67�
because w� s is even (in fact, divisible by four since b1�X � � 0 and b�2 �X � is odd). By
hypothesis, L exists and the formula (1.17) for r�L� and the de®nition of c�X� yield

d � r�L� � ÿL2 � c�X� ÿ �w� s�
� c�X� ÿ 2:

Therefore Theorem 1.4 and the fact that d � c�X � ÿ 2 � r�L� yield

Dw
X �xmhdÿ2m� � 0; 0e d < d and 0eme �d=2�:�4:68�

When m � 0, the power of �ÿ1� in equation (1.19) simpli®es to

�ÿ1�1
2�w2�c1�s��w�;

as
1

2
�sÿ w2�1 1 �mod 2�. Indeed, to see this note that wÿL is characteristic, so

�wÿL� �L1L2 �mod 2�, and as w� s1 0 �mod 4�, we have

w2 � �wÿL�2 � 2�wÿL� �L�L2�4:69�
1 s�L2 �mod 4�
1 s� 2 �mod 4� �by equation �4:67��:

The power of 2 in equation (1.19), when d � c�X� ÿ 2, becomes

22ÿc�X �;

as we expect from Witten's formula (1.6).

From equation (4.68), the invariants Dw
X �hd� and Dw

X �xhdÿ2� are zero when
d < d � c�X� ÿ 2 (while the method of this article does not allow us to compute the
invariants when d f d� 4), so (compare equation (1.5))

Dw
X �h�1 0 �mod hd�;�4:70�

Dw
X �h�1

1

d!
Dw

X �hd� � 1

2�dÿ 2�! Dw
X �xhdÿ2� �mod hd�2�:
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For a monomial z A A�X�, the invariant Dw
X �z� is zero unless

deg�z�1ÿ2w2 ÿ 3

2
�w� s� �mod 8�:

Therefore, as d1w2 ÿ 3

4
�w� s� �mod 4�, the invariants Dw

X �hd�2� and Dw
X �xhd� are neces-

sarily zero and the next potentially non-zero invariant of higher degree in h would be
Dw

X �xhd�2�.

For the terms Dw
X �hd�, equation (1.19) yields

1

d!
Dw

X �hd� � 22ÿc�X� P
s A Spin c�X�

�ÿ1�1
2�w2�c1�s��w�SWX �s� 1

d!
hc1�s� ÿL; hid:�4:71�

Since SWwÿL
X �h�1 0 �mod hd� by Corollary 1.5, we have

SWw
X �h� � �ÿ1�1

2�L2�2�wÿL��L�SWwÿL
X �h�1 0 �mod hd�:�4:72�

Therefore, using equation (4.71) and noting that the terms in e
1
2Q�h;h� and ehÿL;hi of lowest

degree in h are both 1 and the lowest-degree non-zero term in SWw
X �h� has degree d in h by

equation (4.72), we see that

1

d!
Dw

X �hd� � �22ÿc�X �SWw
X �h�ehÿL;hi�d � �22ÿc�X�e

1
2Q�h;h�SWw

X �h��d;�4:73�

where ���d denotes the term of degree d in h in the power series.

For the term Dw
X �xhdÿ2�, equation (1.19) yields

Dw
X �xhdÿ2� � ÿ22ÿc�X � P

s ASpin c�X �
�ÿ1�1

2�w2�c1�s��w�SWX �s�hc1�s� ÿL; hidÿ2�4:74�

� ÿ�22ÿc�X �SWw
X �h�ehÿL;hi�dÿ2 � �dÿ 2�!

� 0;

where the ®nal equality follows from the fact that the term in ehÿL;hi of lowest degree in h
is 1 and the terms in SWw

X �h� of degree dÿ 2 or lower in h are zero. Combining equations
(4.70), (4.73), and (4.74) thus completes the proof. r
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