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Abstract. This is the ®rst of two articles in which we give a proofÐfor a broad
class of four-manifoldsÐof Witten's conjecture that the Donaldson and Seiberg-Witten
series coincide, at least through terms of degree less than or equal to cÿ 2, where

c � ÿ 1

4
�7w� 11s� and w and s are the Euler characteristic and signature of the four-

manifold. In the present article, we construct virtual normal bundles for the Seiberg-Witten
strata of the moduli space of PU(2) monopoles and compute their Chern classes.

1. Introduction

1.1. Main results. The purpose of the present article and its sequel [18], is to prove
that Witten's conjecture [76] relating the Donaldson and Seiberg-Witten invariants holds in
``low degrees'' for a broad class of four-manifolds, using the PU�2�-monopole cobordism
[64]. We shall assume throughout that X is a closed, connected, smooth four-manifold with
an orientation for which b�2 �X� > 0. We state the simplest version of our result here; more
general results are given in [18], O1. The Seiberg-Witten (SW) invariants (see [18], O4.1)
comprise a function, SWX : Spinc�X � ! Z, where Spinc�X � is the set of isomorphism
classes of spinc structures on X. For w A H 2�X ; Z�, one de®nes

SWw
X �h� �

P
s A Spin c�X�

�ÿ1�12�w2�c1�s��w�SWX �s�ehc1�s�;hi; h A H2�X ; R�;�1:1�

by analogy with the structure of the Donaldson series Dw
X �h� [44], Theorem 1.7. There

is a map c1: Spinc�X � ! H 2�X ; Z� and the image of the support of SWX is the set B

of SW-basic classes [76]. A four-manifold X has SW-simple type when b1�X � � 0 if
c1�s�2 � 2w� 3s for all c1�s� A B, where w and s are the Euler characteristic and signature
of X. We let B?HH 2�X ; Z� denote the orthogonal complement of B with respect to the

intersection form QX on H 2�X ; Z�. Let c�X � � ÿ 1

4
�7w� 11s�.
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Theorem 1.1. Let X be four-manifold with b1�X � � 0 and odd b�2 �X�f 3. Assume X

is abundant, SW-simple type, and e¨ective. For any L A B? and w A H 2�X ; Z� for which
L2 � 2ÿ �w� s� and wÿL1w2�X � �mod 2�, and any h A H2�X ; R�, one has

Dw
X �h�1 01SWw

X �h� �mod hc�X �ÿ2�;�1:2�

Dw
X �h�1 22ÿc�X�e

1
2QX �h;h�SWw

X �h� �mod hc�X��:

The vanishing assertion in low degrees for the series Dw
X �h� and SWw

X �h� in equation
(1.2) was proved in [16].

We shall explain below the terminology and notation in the statement of Theorem
1.1. Witten's conjecture [76] asserts that a four-manifold X with b1�X � � 0 and odd
b�2 �X�f 3 has SW-simple type if and only if it has ``KM-simple type'', that is, simple type
in the sense of Kronheimer and Mrowka (see De®nition 1.4 in [44]), and that the SW-basic
and ``KM-basic'' classes (see Theorem 1.7 in [44]) coincide; if X has simple type, then

Dw
X �h� � 22ÿc�X�e

1
2QX �h;h�SWw

X �h�; h A H2�X ; R�:�1:3�

The quantum ®eld theory argument giving equation (1.3) when b�2 �X �f 3 has been
extended by Moore and Witten [55] to allow b�2 �X �f 1, b1�X �f 0, and four-manifolds X

of non-simple type. Recall that b�2 �X� is the dimension of a maximal positive-de®nite linear
subspace H 2;��X ; R� for the intersection pairing QX on H 2�X ; R�.

With our stated hypotheses, Theorem 1.1 therefore proves that equation (1.3) holds
mod hd, where d � c�X �. To prove the equivalence mod hd for d > c�X�, more work is
required. For example, in [21], we use the gluing theory of [19], [20]Ðallowing ``one bubble''
Ðto prove that equation (1.3) holds mod hc�X ��2 under hypotheses similar to those of
Theorem 1.1. If one desires a mod hd relation such as (1.2) for larger values of d relative to
c�X�, one must allow ``more bubbles'' and the di½culty of the calculations rapidly increases:
see [18], O1 for a more detailed discussion.

The concept of ``abundance'' was ®rst introduced in [16]:

De®nition 1.2 ([16], p. 169). We say that a closed, oriented four-manifold X is
abundant if the restriction of the intersection form to B? contains a hyperbolic sublattice.

The abundance condition is merely a convenient way of formulating the weaker,
but more technical condition that one can ®nd (for example) classes Lj A B? such that
L2

j � 2 j ÿ �w� s�, for j � 1; 2; 3: this is the only property of QX jB? which we use to prove

Theorem 1.1, while slightly di¨erent choices of classes L with even squares are used to
prove the main results (Theorems 1.1 and 1.3) of [16]. While all compact, complex alge-
braic, simply-connected surfaces with b�2 f 3 are abundant (see Theorem A.1 and its proof
in Appendix A), some examples of manifolds which are not abundant but for which one
can still ®nd classes in B? with the desired even squares are described in [16], O2. It remains
an interesting problem to determine whether all smooth four-manifolds have this property,
whether or not they are abundant.
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To see that such classes Lj exist when X is abundant, note that because QX jB?
contains a hyperbolic factor there are classes e0; e1 A H 2�X ; Z� which are orthogonal to

the SW-basic classes and which satisfy e2
0 � 0 � e2

1 and e0 � e1 � 1. Now set t � 1

2
�w� s�

and de®ne Lj A H 2�X ; Z� by L � e0 � � j ÿ t�e1, and observe that L2
j has the desired values

for j � 1; 2; 3.

In the present article and its companion [18] we prove Theorem 1.1 using the
moduli space Mt of PU�2� monopoles [64] to provide a cobordism between the link of the
moduli space M w

k of anti-self-dual connections and links of moduli spaces of Seiberg-Witten
moduli spaces, Ms, these moduli spaces being (topologically) embedded in Mt. Let Mt

denote the Uhlenbeck compacti®cation (see §2.2) of Mt in the space of ideal PU�2�
monopoles,

Sy
l�0

ÿ
Mtl � Syml�X ��.

De®nition 1.3. We say that a closed, oriented, smooth four-manifold X with
b1�X�f 0 and b�2 �X�f 1 is e¨ective if X satis®es Conjecture 3.1 in [16]. This conjecture
asserts that for a Seiberg-Witten moduli space Ms appearing in level lf 0 of Mt, the
pairings of products of Donaldson-type cohomology classes on the top stratum of Mt=S1

with a link of
ÿ
Ms � Syml�X��XMt in Mt are multiples of the Seiberg-Witten invariants

for Ms. In particular, these pairings are zero when the Seiberg-Witten invariants for Ms are
trivial.

The motivation for Conjecture 3.1 of [16] and a more detailed explanation appears in
[16], O3.1; see also [23]. It is almost certainly true that this conjecture holds for all four-
manifolds, based on our work in [19], [20], [22]. We verify Conjecture 3.1 in [16] by direct
calculation in the present pair of articles for Donaldson invariants de®ned by M w

k ,!Mt

and Seiberg-Witten moduli spaces Ms ,!Mt, while in [21] we verify the conjecture for
Seiberg-Witten moduli spaces Ms contained in the ``®rst level'' of the Uhlenbeck compac-
ti®cation Mt. However, we strongly expect the conjecture to hold for Seiberg-Witten
moduli spaces Ms contained in any level of the compacti®cation Mt.

Theorem 1.1 gives a relation, mod hd, between the Donaldson and Seiberg-Witten
series when d � c�X �. Now if ~X � XKCP2 is the blow-up of X, then c� ~X� � c�X � � 1.
However, this does not imply that one can compute a term of higher degree in h in the
Donaldson series Dw

X �h� from Theorem 1.1 merely by blowing up. To understand why, it
su½ces to examine the case where X also has KM-simple type. Let PD�e� A H 2� ~X ; Z� denote
the PoincareÂ dual of the exceptional class e A H2� ~X ; Z�. Then Proposition 1.9 in [44] implies
that for all h A H2� ~X ; R�GR�e�lH2�X ; R�,

D
w�PD�e�
~X

�h� � ÿDw
X �h� exp ÿ 1

2
�e � h�2

� �
sinh�e � h�:

Thus, D
w�PD�e�
~X

has a zero at the origin of order one greater than that of Dw
X .

On the other hand, if L A B?�X�, then we also have L A B?� ~X� and

w� PD�e� ÿL1w2�X � � PD�e�1w2� ~X � �mod 2�;
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while w� ~X � � s� ~X � � w�X� � s�X�, so L2 still has the desired even square in the case of ~X .
If X is SW-simple type and abundant then the same holds for ~X (and as mentioned, it is
almost certainly true that all four-manifolds are e¨ective). Theorem 1.1 then yields, for all
h A H2� ~X ; Z�,

D
w�PD�e�
~X

�h�1 01SW
w�PD�e�
~X

�h� �mod hc�X �ÿ1�;

D
w�PD�e�
~X

�h�1 22ÿc�X �ÿ1 exp
1

2
Q ~X �h; h�

� �
SW

w�PD�e�
~X

�h� �mod hc�X��1�:

One sees that the formula does not give new higher-degree terms in the Donaldson series.

As we mentioned just prior to its statement, Theorem 1.1 is the simplest formula-
tion of the main results of the present article and its companion [18]. More general results
are described in [18], O1, where we allow four-manifolds with b�2 �X �f 1 and drop the
assumptions that X has SW-simple type or is abundant and relax the constraints on the
existence of classes L A B? with prescribed squares; we also consider some limited cases
where b1�X� > 0. A full account of the case b1�X � > 0 is of potential interest but is beyond
the scope of the present pair of articles: we shall describe this case elsewhere.

1.2. An outline of the proof of Theorem 1.1. The proof of Theorem 1.1 splits into
two steps. Step (i), which we carry out in this article, is to construct links of Seiberg-
Witten moduli spaces in the top level of the Uhlenbeck-compacti®ed moduli space of
PU�2� monopoles, as boundaries of tubular neighborhoods in certain ``thickened'' or ``vir-
tual'' moduli spaces of PU�2� monopoles (see Theorems 3.19 and 3.21) and then compute
the Chern character and Chern classes of the vector bundles de®ning these tubular neigh-
borhoods (see Theorem 3.29 and Corollary 3.30).

Step (ii), which we take up in the companion article [18], is to compute the pairings
of products of cohomology classes on the moduli space of PU�2� monopoles with the links
of the anti-self-dual moduli space of SO�3� connections and with links of the moduli spaces
of Seiberg-Witten monopoles. These computations rely on our calculation of the Chern
characters of the normal bundles of the strata of Seiberg-Witten monopoles, and a com-
parison of the orientations of the moduli spaces of anti-self-dual connections and Seiberg-
Witten monopoles, and their links in the moduli space of PU�2� monopoles. Applying the
PU�2�-monopole cobordism then yields an expression for the Donaldson invariants in
terms of Seiberg-Witten invariants and hence completes the proof of Theorem 1.1.

1.3. A guide to the article. The present article is a revision of sections 1±3 of the
preprint [17], while the companion article [18] is a revision of sections 4±7 of [17], which
was distributed in December 1997.

Section 2 of this paper gathers together the principal gauge theory results developed
in [15], [24] that we shall need here for the moduli space of PU�2� monopoles Mt. In O2.1,
we review the construction of the moduli spaces of PU�2� monopoles Mt from [24], but
now phrased in the convenient and more compact framework of ``spinu structures'' t. In
O2.2 we recall our Uhlenbeck compactness and transversality results for the moduli spaces
of PU�2� monopoles from [24] and [15]. In O2.3, we recall the construction of the moduli
space of Seiberg-Witten monopoles Ms as in [43], [45], [56], but with non-standard pertur-
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bations so we can directly identify these moduli spaces with strata of reducible PU�2�
monopoles. Our transversality result [15] ensures that the natural strati®cation of the
Uhlenbeck-compacti®ed moduli space of PU�2� monopoles is smooth. In O2.4 we compute
the cohomology ring of the con®guration space of spinc pairs and describe the cohomology
classes arising in the de®nition of Seiberg-Witten invariants and in our later calculation (see
O3.6) of the Chern character of certain universal families of vector bundles over X para-
meterized by Ms.

The construction of the links in Mt of the stratum M w
k of anti-self-dual connections

and of the strata Ms of reducible (or Seiberg-Witten) PU�2� monopoles occupies O3. In O3.1
we classify the possible singularities of Mt. A link Lw

t;k of the stratum M w
k of anti-self-dual

connections in Mt is constructed in O3.2 using the L2 norm of the spinor components of
PU�2� monopoles to de®ne the distance to the stratum M w

k . In O3.3 we show that the sub-
spaces of reducible PU�2� monopoles in Mt can be identi®ed with Seiberg-Witten moduli
spaces Ms, as de®ned in O2.3. As we explain in O3.4, the elliptic deformation complex for
the PU�2� monopole equations (2.32) at a reducible pair splits into a tangential deformation

complexÐwhich can be identi®ed with the elliptic deformation complex for the Seiberg-
Witten monopole equationsÐand a normal deformation complex. Via the Kuranishi model,
these deformation complexes describe the local structure of the moduli space Mt of PU�2�
monopoles near a reducible solution. The description of a neighborhood of Ms in Mt is
complicated by the fact that we may have both a tangential deformation complex with
positive index, so dim Ms > 0, and a normal deformation complex with negative index.
(This contrasts with the simpler situation considered in [12], [29], pp. 65±69, where abstract
perturbations are used in conjunction with the local Kuranishi model to describe the local
structure of the moduli space M w

k near an isolated reducible connection when the four-
manifold has b�2 �X� � 0: in this case the normal deformation complex has positive index.)
The stratum Ms will not in general be a smooth submanifold of Mt as reducible PU�2�
monopoles cannot be shown to be regular points of the zero locus of the PU�2� monopole
equations (2.32). Therefore, in O3.5, we construct an ambient ®nite-dimensional, smooth
manifold Mt�X; s� containing an open neighborhood in Mt of the stratum Ms and con-
taining Ms as a smooth submanifold. We can then de®ne a link Lt; s of Ms in Mt=S1 as the
S1 quotient of the intersection with Mt=S1 of the boundary of a tubular neighborhood of
Ms in the ambient manifold Mt�X; s�. In order to compute the pairings of cohomology
classes on M�;0

t =S1 (the smooth locus or top stratum of Mt=S1) with the link Lt; s we shall
need the Chern classes of the normal bundle Nt�X; s� of the stratum Ms ,!Mt�X; s�: we
accomplish this in O3.6, using the Atiyah-Singer index theorem for families, by computing
the Chern character of this normal bundle (Theorem 3.29) and then, after imposing a con-
straint on H 1�X ; Z� to simplify our calculations, its Chern classes (Corollary 3.30).

In Appendix A, we include a proof that all compact, complex algebraic, simply con-
nected surfaces with b�2 f 3 are abundant (Theorem A.1). For minimal surfaces of general
type, this fact was asserted in [16], p. 175.
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2. Preliminaries

In this section we recall the framework for gauge theory for PU�2� monopoles
established in [15], [24], [23], though we introduce some notational and other simpli®ca-
tions here. In O2.1 we describe the PU�2� monopole equations while in O2.2 we recall our
Uhlenbeck compactness and transversality results from [15], [24]. We review the usual
construction of the moduli space of Seiberg-Witten monopoles in O2.3, although we use the
perturbation parameter t A W0

ÿ
GL�L��� to achieve transversality for the moduli space of

Seiberg-Witten monopoles rather than employ the customary perturbation parameter
h A W��X ; iR�.

One slightly awkward issue here then concerns the possible presence of zero-section
Seiberg-Witten monopoles. We recall from [56], O6.3 that these may be avoided when
b�2 �X� > 0 by choosing a generic perturbation h A W��X ; iR�. For trivial reasons, variation
of the parameter t has no e¨ect on the presence or absence of zero-section solutions and so,
even for a generic Riemannian metric on X, they cannot be avoided in all cases. Instead, we
circumvent this problem by an employing a restriction on the second Stiefel-Whitney class
of an SO�3� bundle comprising part of the de®nition of the ``spinu structure'' introduced
below, following [25], which precludes the existence of ¯at, reducible connections. With the
aid of the blow-up trick of [57], there is no resulting loss of generality when computing
Donaldson or Seiberg-Witten invariants [27], [26].

Finally, in O2.4 we compute the cohomology ring of the con®guration space of
Seiberg-Witten pairs and express the Seiberg-Witten m-classes in terms of these generators.

Although we use the generic metrics and Cli¨ord maps of [15] to achieve transver-
sality for the moduli space of PU�2� monopoles, we note that all of the results in this article
can be obtained using the holonomy perturbations of [24].

2.1. PU(2) monopoles. Throughout this article, X denotes a closed, connected,
oriented, smooth four-manifold. We begin our discussion with a brief review of the de®ni-
tion of spinc structures and introduce the concept of a ``spinu structure'', which will then
allow us to give a convenient de®nition of the PU�2�-monopole equations.

2.1.1. Hermitian Cli¨ord modules, module derivations, and spin connections. Let
V be a complex vector bundle over a Riemannian manifold �X ; g�. A real-linear map
r: T �X ! End�V� is a Cli¨ord map, which is compatible with g, if it satis®es

r�a�r�a� � ÿg�a; a� idV ; a A Cy�T �X�:�2:1�
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Equation (2.1) and the universal property of Cli¨ord algebras [49], Proposition I.1.1 imply
that r extends to a real algebra homomorphism r: Cl�T �X � ! End�V�, where Cl�T �X � is
the real Cli¨ord algebra, and a complex algebra homomorphism, r: Cl�T �X� ! End�V�,
where Cl�T �X � � Cl�T �X�nR C is the complex Cli¨ord algebra. In particular, the pair
�r;V� de®nes a complex Cli¨ord module. Recall that Cl�T �X � is canonically isomorphic
to L��T �X� as an orthogonal vector bundle (see [49], Proposition II.3.5 or [8], Proposition
3.5). The ®bers of V are irreducible modules for the ®bers of Cl�T �X�, [49], Theorem I.5.8,
if and only if V has complex rank 2n, when X has dimension 2n. If X is even-dimensional,
as we shall assume from now on, the bundle V admits a splitting V � V�lVÿ, where the
subbundles VG are the H1 eigenspaces of r�vol� and are irreducible Cl0�T �X � modules
[49], p. 98±99, where Cl0�T �X�GLeven�T �X�. If V is a Hermitian vector bundle, then
we require that r�a� A End�V� be skew-Hermitian for all a A Cy�T �X� and call �r;V� a
Hermitian Cli¨ord module.

A unitary connection A on V, where �r;V� is a Hermitian Cli¨ord module, de®nes a
Cli¨ord module derivation À on Cy�V� if

`A
h

ÿ
r�a�F� � r� h̀a�F� r�a�`A

h F;�2:2�

where a A Cy�T �X �, h A Cy�TX�, and F A Cy�V� and ` is an orthogonal connection on
T �X . (We follow the convention of [8], De®nition 3.39.) If À is a module derivation, it
preserves the splitting V � V�lVÿ [49], Corollary II.4.12. We shall also denote by ` the
canonically induced orthogonal connections on L� � L��T �X � and the real Cli¨ord alge-
bra Cl�T �X � [49], Proposition II.4.8.

Conversely, if we require that À be a Cli¨ord module derivation, then the relation
(2.2) de®nes an orthogonal connection ` on T �X [68], O6.1. The connection A is called spin

if ` is the Levi-Civita connection on T �X .

We assume for the remainder of the article that �X ; g� is an oriented, Riemannian four-
manifold. The subbundles VG may then be characterized by requiring that r�o�Vÿ � 0 for
all o A W��X ;R� and similarly for V�.

2.1.2. Spinc structures. Here we specialize to the case where the complex Cli¨ord
module has rank four.

De®nition 2.1. We call s � �r;W� a spinc structure over an oriented Riemannian
four-manifold �X ; g� if �r;W� is a Hermitian Cli¨ord module and W has complex rank
four.

Given a spinc structure s � �r;W�, one de®nes

c1�s� � c1�W��:�2:3�
If L is a complex line bundle over X, we obtain a new spinc structure on �X ; g�,

snL � �r;W nL�;�2:4�
with c1�snL� � c1�s� � 2c1�L�. If s, s 0 are any two spinc structures on �X ; g� then one has
s 0 � snL, for a complex line bundle L on X uniquely determined by s and s 0 [68].

Feehan and Leness, PU(2) monopoles and links 63



There is a canonical isomorphism of orthogonal vector bundles,

u�W�G iRl su�W�;

where we abbreviate the trivial real line subbundle iR idW H u�W� by iR � X � iR.
The Cli¨ord multiplication r de®nes canonical isomorphisms LGG su�WG�, where
LG � LG�T �X� are the bundles of self-dual and anti-self-dual two-forms, with respect to
the Riemannian metric g on T �X . A unitary connection À on W determines a unitary
connection on det�W �; conversely, a choice of orthogonal connection on su�W� and a
unitary connection on det�W� uniquely determine a unitary connection on W [24], O2.1.1.
In particular, any two unitary connections on W, which are both spinorial with respect
to `, di¨er by an element of W1�X ; iR�, since the induced connection on su�W�GL2 is
constrained by the choice of ` on T �X . The Dirac operator D � r � ` on Cy�W� is not
self-adjoint unless the connection ` on T �X is torsion-freeÐthat is, ` is the Levi-Civita
connectionÐas one can see from examples.

For k f 2, we let As denote the space of L2
k spin connections on W. From the pre-

ceding remarks (see [68], Lemma 6.1 for details), As is an a½ne space for the Hilbert space
L2

k�X ; iL1� of imaginary one-forms: following the convention of [45], O2(i), the action is
given by

�B; b� 7! B� b idW :�2:5�

Thus, denoting the trace on two-by-two complex matrices by Tr, one has

Tr�FB�b� � Tr�FB� � 2db and DB�b � DB � r�b�;�2:6�

as we later use when describing the deformation complex for the Seiberg-Witten equations.

2.1.3. Spinu structures. An elegant reformulation of the PU�2� monopole equations,
as discussed in [64] and [24], has been described by Mrowka [59], based on his joint work
with Kronheimer and, motivated by his comments, we shall give a more invariant de®ni-
tion of PU�2� monopoles than the one we presented in [24].

De®nition 2.2. We call t � �r;V� a spinu structure over an oriented Riemannian
four-manifold �X ; g� if �r;V� is a Hermitian Cli¨ord module and V has complex rank
eight.

In the case of even-dimensional manifolds X with spin structures and complex mod-
ules (of arbitrary dimension) for the real Cli¨ord algebra, Cl�T �X�, the following result
appears as Proposition 3.35 in [8].

Lemma 2.3. Let W and V be complex Cli¨ord modules over a Riemannian four-

manifold X, of rank four and eight respectively. Then there is a rank-two complex vector bundle

E over X, unique up to isomorphism, and an isomorphism of complex Cli¨ord modules,

V GW nE:
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If W and V are Hermitian Cli¨ord modules, then the bundle E can be assumed Hermitian

and the isomorphism V GW nE can be taken to be an isomorphism of Hermitian Cli¨ord
modules.

Proof. Let D be an irreducible Cl�R4� module, recalling that any such module is
unique up to equivalence [49], Theorem I.5.7, with Cl�R4�GM4�C� as a complex algebra
acting on DGC4 by the standard representation. (We use Md�C� to denote the algebra of
complex d � d matrices.) Hence, the only Cl�R4�-module endomorphisms of D are given
by complex scalar multiplication and we have an isomorphism of complex vector spaces,
CGEndCl�R4��D�, given by z 7! z idD. Therefore, we obtain an isomorphism of complex
vector spaces

C2 GHomCl�R4��D;DlD�;�2:7�

where �z1; z2� A C2 is identi®ed with the Cl�R4�-module homomorphism D! DlD
given by v 7! �z1v; z2v�. Indeed, the map (2.7) is surjective because we can compose any
homomorphism D! DlD with projection onto each factor and then use the fact that
EndCl�R4��D�GC. Moreover, the map (2.7) is injective by construction.

Given a complex Cli¨ord module W of rank four, de®ne

E � HomCl�T �X��W ;V�:�2:8�

For every x A X and isomorphism Cl�T �X�jx GCl�R4� of complex Cli¨ord algebras,
there are isomorphisms of complex Cli¨ord modules, W jx GD and V jx GDlD. The iso-
morphism (2.7) then implies that E is a rank-two complex vector bundle over X. The map
W nE ! V induced by FnM !M�F�, where F A W jx and M A Ejx for some x A X , is
a Cl�R4�-module isomorphism since it is ®berwise surjective, the ranks of the two bundles
agree, and it is a complex Cli¨ord module homomorphism by construction. The ®berwise
surjectivity of the map W nE ! V follows from the explicit form of the isomorphism
(2.7) and the facts that W jx GD and V jx GDlD.

Next we show that E is unique up to isomorphism. If G : W nE GV is a Cli¨ord
module isomorphism, then one can see that the map E C e 7!G��n e� de®nes an iso-
morphism E GHomCl�T�X��W ;V�, showing that E is unique up to isomorphism. Finally,
if W and V are Hermitian then E is Hermitian and the isomorphism V GW nE can be
taken to be Hermitian. r

From equation (2.9) below, we have

c1�E� � 1

2
c1�V�� ÿ c1�W��:

From equation (2.16) below we see that the bundle su�V� determines the subbundle su�E�
up to isomorphism, independently of W, and hence su�V� uniquely determines p1

ÿ
su�E��.

Then

c2�E� � ÿ 1

4

ÿ
p1

ÿ
su�E��ÿ c1�E�2

�
;

giving another characterization of E.
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The presentation of V as W nE is not unique. If W is replaced by W nL, where L

is a complex line bundle over X, then E may be replaced by Lÿ1 nE and so one also has
V G �W nL�n �Lÿ1 nE�. By Lemma 2.3, we may always write

�r;V� � �r;W nE�;

for some spinc structure s � �r;W� and Hermitian bundle E. Although W and E are not
determined by �r;V�, the spinu structure �r;V� does determine a complex line bundle,
which is independent of the tensor-product decomposition V GW nE,

det
1
2�V�� � det�W��n det�E�;�2:9�

noting that det�V��G det�Vÿ�, so det�V�G det�V��n2 since V � V�lVÿ.

The spinu structure �r;V� also de®nes an SO�3� bundle over X. To see this, recall that
there are isometries of orthogonal vector bundles,

u�E�G iRl su�E�; M 7! �Tr M� idE l
ÿ
M ÿ �Tr M� idE

�
;�2:10�

where R � R idE here, and

gl�E�G iu�E�l u�E�; M 7! 1

2
�M �My�l 1

2
�M ÿMy�;�2:11�

with similar isomorphisms for W. Since gl�V�G gl�W �n gl�E�, the decomposition (2.11)
yields an isometry,

u�V�G iu�W�nR u�E�:�2:12�

Combining the identi®cations (2.10) and (2.12), we obtain isometries of orthogonal vector
bundles, u�V�G iRl su�V� where R � R idV here, and an orthogonal decomposition,

su�V�G su�W�l isu�W�n su�E�l su�E�;�2:13�

where we have identi®ed R idW n su�E� with su�E� and su�W�nR idE with su�W�.

Recall that the Cli¨ord map r: T �X ! End�W� de®nes isometries of orthogonal
vector bundles r: LG ! su�WG� [68], O4.8. More generally, one has:

Lemma 2.4. Let �r;W� be a spinc structure over an oriented, Riemannian four-

manifold X. Then the isomorphism r: L�nR C! End�W� de®ned by composing the iso-
morphism L�nR CGCl�T �X � and the Cli¨ord algebra representation Cl�T �X� ! End�W�
yields an isometric isomorphism of orthogonal vector bundles,

L1 lL2 l i�L3 lL4�G su�W�:�2:14�

Proof. The isomorphism L�nR CGEnd�W� is given explicitly by ([8], Propositions
3.5 and 3.19)

ei1 5 � � �5eip 7! r�ei1� � � � r�eip�;
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if fe1; . . . ; e4g is a local oriented, orthonormal frame for T �X . Using this isomorphism
and the fact that r�a�y � ÿr�a� when a A W1�X ;R�, it is easy to see that the left-hand
side of (2.14) is mapped into u�W�, the skew-Hermitian endomorphisms of W. The ele-
ments of r�L1� and r�iL3� give isomorphisms in Hom�WG;WH� and their block-matrix
representations in End�W�lWÿ� have zero components in End�WG�, so they have zero
trace. As remarked earlier, the elements of r�L2� are known to have zero trace. Next,
r�vol�jWG �GidW by de®nition of WG and thus r�iL4� has zero trace. Hence the left-
hand side of (2.14) is also mapped into sl�W�, the traceless endomorphisms of W.

The map Cl�T �X � ! End�W� is an isomorphism ([8], Proposition 3.19) of Cli¨ord
modules and in particular is injective. Since the sum of the ranks of the bundles on the left-
hand side of (2.14) is 15, which is equal to the rank of su�W �, we see that the map (2.14)
must be an isomorphism, as claimed. r

Note that r: L�nR C assigns r�1� � idV . For convenience, we de®ne

L] � L1 lL2 l i�L3 lL4�:�2:15�

From the decomposition (2.13), we see that the Cli¨ord map r: L] ! su�V� embeds L] as
a subbundle of su�V� and LG G su�WG� as subbundles of su�VG� via o 7! r�o�. In par-
ticular, the orthogonal decomposition (2.13) is equivalent to

su�V�G r�L]�l ir�L]�n su�E�l su�E�;�2:16�

and, upon restriction to su�VG�,

su�VG�G r�LG�l ir�LG�n su�E�l su�E�:�2:17�

Plainly, the decompositions (2.16) and (2.17) are independent of the tensor-product decom-
position V GW nE, and so the spinu structure t determines an SO�3� bundle,

gt � su�E�:�2:18�

Indeed, the subbundle gt H su�V� can be characterized invariantly as span of the sections
x A Cy

ÿ
su�V�� for which �r�o�; x� � 0 for all o A Cy�L��.

The spinu structure t thus de®nes the characteristic classes,

c1�t� � c1

ÿ
det

1
2�V���; p1�t� � p1�gt�; and w2�t� � w2�gt�:�2:19�

These classes obey the constraints that w2�t� A H 2�X ; Z=2Z� has an integral lift and

c1�t� ÿ w2�t�1w2�X� �mod 2�;�2:20�

p1�t�1w2�t�2 �mod 4�;

recalling that w2

ÿ
su�E��1 c1�E� �mod 2� and c1�W��1w2�X � �mod 2�. Note that w2�t� is

not necessarily equal to c1�t� �mod 2�.
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Conversely, given a triple �L;w; p�, where L;w A H 2�X ; Z� obey

Lÿ w1w2�X � �mod 2�
and p A Z obeys p1w2 �mod 4�, there is a spinu structure t � �r;V� with c1�t� � L,
w2�t�1w �mod 2�, and p�t� � p. Indeed, it su½ces to choose a spinc structure �r;W � with

c1�W�� � Lÿ w and a U�2� bundle E with c1�E� � w and c2�E� � ÿ 1

4
�pÿ w2�; one then

sets V �W nE.

2.1.4. Spinu structures and spin connections. Suppose we are given a spinu struc-
ture �r;V�. If A is a unitary connection on V, it induces an orthogonal connection on
u�V�G iRl su�V� and su�V�, denoted Aad, by setting

`A
h �MF� � �`Aad

h M�F�M`A
h F;�2:21�

where M A Cy
ÿ
su�V��, h A Cy�TX�, and F A Cy�V�; more succinctly, we have

`Aad

h M � �`A
h ;M�:�2:22�

Suppose A de®nes a Cli¨ord module derivation À. The bundle su�V� is a real Cli¨ord
module and since À is a Cli¨ord module derivation on Cy�V�, it induces a Cli¨ord
module derivation on Cy

ÿ
su�V��, denoted Àad , via equations (2.2) and (2.21), so that

`Aad

h

ÿ
r�a�M� � r� h̀a�M � r�a�`Aad

h M;�2:23�

where a A Cy�T �X�, h A Cy�TX�, and M A Cy
ÿ
su�V��. Hence, if A is a spin connec-

tion on V then Aad is a spin connection on su�V�, inducing the Levi-Civita connection
` on T �X and hence on L2.

Lemma 2.5. Let �r;V� be a spinu structure over a Riemannian four-manifold �X ; g�
and let A be a spin connection on V. Then the induced orthogonal connection Aad on su�V�
is spin and preserves the three subbundles in the orthogonal decomposition (2.16) for su�V�,
inducing the Levi-Civita connection ` on the subbundle r�L]�, an SO�3� connection Â on the

subbundle su�E�, and the tensor-product connection `n Â on the subbundle ir�L]�n su�E�.

Proof. The connection Aad is spin by the remarks preceding the statement of the
lemma. From equations (2.23) and (2.22) one can see that

`Aad

h

ÿ
r�o� idV

� � r� h̀o� idV ;

for all h A Cy�T �X � and o A Cy�L]�, so Aad preserves the subspace r�L]�H su�V�,
inducing the Levi-Civita connection `.

Recall that sections x of su�E�H su�V� can be characterized as sections of su�V�
having zero commutator with all r�o�, for o A Cy�L]�. Thus, for any such x, o, and
h A Cy�T �X �, we have �x; r�o�� � 0 and

`Aad

h �x; r�o�� � �`Aad

h x; r�o�� � �x;`Aad

h r�o��

� �`Aad

h x; r�o�� � �x; r� h̀o�� � �`Aad

h x; r�o��:
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Hence, �`Aad

h x; r�o�� � 0 for all o and therefore Aad preserves the subspace su�E�H su�V�,
on which it induces an orthogonal connection Â.

Sections of the subbundle ir�L]�n su�E� are linear combinations of sections of
the form ir�o�x, where o A Cy�L]� and x A Cy

ÿ
su�E��. Since Àad is a Cli¨ord module

derivation and induces the connections ` and Â on the subbundles r�L]� and su�E�,
respectively, we have

`Aad

h

ÿ
r�o�x� � r� h̀o�x� r�o�`Â

h x;

so the orthogonal connection induced by A on ir�L]�n su�E� is given by `n Â. r

We shall ®x, once and for all, a smooth, unitary connection AL on the square-root
determinant line bundle, det

1
2�V��, and henceforth require that our unitary connections A

on V � V�lVÿ induce the resulting unitary connection on det�V��,

Adet � 2AL on det�V��;�2:24�

where we write Adet for the connection on det�V�� induced by AjV� . If a unitary connec-
tion A on V induces a connection Adet � 2AL on det�V��, then it necessarily induces the
connection AL on det

1
2�V��.

2.1.5. PU(2) monopoles. For k f 2, we let At denote the space of L2
k spin connec-

tions on V. From the preceding subsection, At is an a½ne space for the Hilbert space
L2

k�L1 n gt�,
�A; a� 7! A� a;�2:25�

via the inclusion (2.13) given by su�E�H su�V�, a 7! idn a. This descends to an action on
the a½ne space of SO�3� connections on gt,

�Â; a� 7! Â� ad�a�;�2:26�

with ad�a� A L2
k

ÿ
L1 n so�gt�

�
. We have

adÿ1�F eA�a
� � adÿ1�FÂ� � dÂa� a5a and DA�a � DA � r�a�;�2:27�

as we later use when describing the deformation complex for the PU�2�-monopole equa-
tions; note that the map ad: gt ! so�gt� is an isomorphism.

Recall from the proof of Lemma 2.3 that the ®bers of V are isomorphic to DlD as
complex Cli¨ord algebra modules, where D is the unique (up to equivalence) irreducible
Cl�R4� module. From equation (2.7) we see that there is an isomorphism

C2 GHomCl�R4��D;DlD�;

identifying �z1; z2� with the homomorphism D! DlD, v 7! �z1v; z2v�. Hence, there is an
isomorphism of complex algebras,

m: M2�C�GEndCl�R4��DlD�; M 7! idD nM;�2:28�
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where M2�C� is the space of complex 2� 2 matrices. If u A EndCl�R4��DlD�, we de®ne the
Cli¨ord determinant of u by

detCl�u� � det
ÿ
mÿ1�u��;�2:29�

where det
ÿ
mÿ1�u�� is the usual complex determinant of mÿ1�u� as a 2� 2 complex matrix.

Since the Cli¨ord determinant (2.29) is invariant under conjugation by Cli¨ord algebra
automorphisms of DlD and complex automorphisms of C2, we can therefore de®ne
the Cli¨ord determinant, detCl�u�, of a complex Cli¨ord algebra endomorphism u of the
bundle V by taking the corresponding de®nition on the ®bers of V.

De®nition 2.6. We say that u is a spinu automorphism of V if it is an L2
k�1 unitary,

complex Cli¨ord algebra automorphism of V with Cli¨ord-determinant one. We let Gt

denote the Hilbert Lie group of spinu automorphisms of V.

Let Gw
k be the group of L2

k�1 unitary, determinant-one automorphisms of E, with Lie

algebra L2
k�1

ÿ
su�E��, where w � c1�E� and k � c2�E� ÿ 1

4
c1�E�2. While at ®rst glance it

might seem more natural to relax the requirement that u A Gt have Cli¨ord-determinant
one to the requirement of having complex-determinant one, our re®nement gives us a useful
identi®cation of Gt with Gw

k :

Lemma 2.7. Suppose �r;V� is a spinu structure with V �W nE, for some spinc

structure �r;W� and rank-two Hermitian bundle E. Then the following map is an iso-
morphism of Hilbert Lie groups:

m: Gw
k GGt; u 7! idW n u:�2:30�

Proof. Plainly, the map is an injective homomorphism, so it remains to show that it
is surjective. Suppose v A Gt. For any x A X , the remarks preceding De®nition 2.6 imply
that we may write vjx � idWx

n ux, where ux A EndC�Ex� and so we have v � idW n u for
some u A EndC�E�. But det�u� � detCl�v� � 1 and as idW n uyu � vyv � idV , we must have
uyu � idE and thus u A Gw

k , as desired. r

Consequently, the Hilbert Lie group Gt has Lie algebra L2
k�1�gt�HL2

k�1

ÿ
su�V��.

Note that if u is a spinu automorphism of V, then Ad�u� preserves the three factors in the
orthogonal decomposition (2.17) of su�V�; it acts as the identity on the subbundle r�L2�,
as an orthogonal gauge transformation û on su�E�, and as idn û on the subbundle
ir�L2�n su�E�.

For an L2
k section F of V�, we let F� denote its pointwise Hermitian dual and let

�FnF��00 be the component of FnF� A iu�V�� which lies in the factor su�W��n su�E�
of the decomposition (2.13) of iu�V��GRl isu�V�� (with V� in place of V ). The Clif-
ford multiplication r de®nes an isomorphism r: L� ! su�W�� and thus an isomorphism
r � rn idsu�E� of L�n su�E� with su�W��n su�E�.

The pre-con®guration space of pairs on V is given by

~Ct �At � L2
k�V��;�2:31�
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with tangent spaces L2
k�gt�lL2

k�V��. We call a pair �A;F� A ~Ct a PU�2� monopole if

S�A;F� � adÿ1�F�
Â
� ÿ trÿ1�FnF��00

DAF� r�Q�F

 !
� 0;�2:32�

where F�
Â

A L2
kÿ1

ÿ
L�n so�gt�

�
is the self-dual component of the curvature FÂ of Â

while DA � r � À: L2
k�V�� ! L2

kÿ1�Vÿ� is the Dirac operator, t A L2
k�1

ÿ
X ;GL�L��� and

Q A L2
k�1�L1 nC� are perturbation parameters. We let

Mt � f�A;F� A Ct: �A;F� satisfies �2:32�g;�2:33�
be the moduli space of solutions to (2.32) cut out of the con®guration space,

Ct � ~Ct=Gt;�2:34�
where u A Gt acts by u�A;F� � �u�A; uF�. The linearization of the map Gt ! ~Ct,
u 7! u�A;F�, at idV A Gt, is given by

z 7! ÿd 0
A;Fz � �ÿdÂz; zF�;�2:35�

with L2-adjoint d 0;�
A;F, where z A L2

k�1�gt�.

The circle S1 de®nes a family of unitary gauge transformations on V acting by scalar
multiplication, so that

S1 � ~Ct ! ~Ct;
ÿ
eiy; �A;F�� 7! �A; eiyF�:�2:36�

Because scalar multiplication by S1 commutes with Gt, the action (2.36) descends to an
action on Ct and on Mt.

Remark 2.8. Note that we break here with our former convention [24], [23] of con-
sidering Mt and Ct as quotients by S1 �fG1g Gt, rather than Gt as de®ned here.

We call a spin connection A on V reducible if it splits as a direct sum of connections
on V �W lW 0, where s � �r;W� and s 0 � �r;W 0� are spinc structures, and call A irre-

ducible otherwise. We write t � sl s 0 and A � BlB 0, for the induced spin connections B

on W and B 0 on W 0.

We call a connection Â on an SO�3� bundle F reducible if it splits as a direct sum
dR lAL on F � iRlL, where AL is a unitary connection on a complex line bundle L over
X and dR is the product connection on iR, and call Â irreducible otherwise. The following
lemma summarizes the relationship between these notions of reducibility:

Lemma 2.9. Let �r;V� be a spinu structure on X. Then a spin connection A on V is

reducible with respect to a splitting V �W lW 0, where �r;W� and �r;W 0� are spinc

structures, if and only if the induced SO�3� connection Â on gt is reducible with respect to a
splitting gt � iRlL, where L is a complex line bundle over X such that W 0 �W nL. If

A � BlB 0 is reducible, then there is a unitary connection AL on L such that

B 0 � BnAL and Â � dR lAL:�2:37�
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If Adet � 2AL on det�V��, then

AL � AL n �Bdet��:�2:38�

Remark 2.10. We write Bdet for the connection on det�W�� induced by BjW� , where
B is a spin connection on W �W�lWÿ.

Proof. Suppose that A � BlB 0 is a reducible spin connection on V with respect to
the splitting V �W lW 0. There is a unique complex line bundle L over X such that
W 0 �W nL. If AL is a unitary connection on L, then both B 0 and BnAL are spin con-
nections on W 0. But any two spin connections on W 0 di¨er by an element of W1�X ; iR�, via
the action (2.5), and thus we can write B 0 � BnAL for some unitary connection AL on L.

The unitary connection ~A � dC lAL on E � ClL induces the SO�3� connection
dR lAL on su�E�G iRlL. To see this, we pass to a local trivialization of E and view ~A
as a connection matrix one-form,

~A � 0 0

0 AL

� �
A W1

ÿ
u�E��:

The matrix ~A acts on a section x of su�E� via the adjoint representation,

Â � x � ad� ~A�x � � ~A; x� � 0 ÿALz

ALz 0

� �
; where x � n ÿz

z ÿn

� �
A Cy

ÿ
su�E��:

Thus, Â � �n; z� � �0;ALz�, with respect to the isomorphism su�E�G iRlL of Lemma
3.10 and so, as a connection, we see that Â � dR lAL.

Therefore, the spin connection A � Bn �dC lAL� on W nE induces the SO�3�
connection dR lAL on su�E�G iRlL via the decomposition (2.13),

su�V�G su�E�l su�W�l isu�W�n su�E�:
The connections B on W and dC lAL on E induce the connection Bdet nAL on
det�W��n det�E� � det

1
2�V��. By convention, our spin connections A on V induce the

connection 2AL on det�V��, and thus AL � Bdet nAL.

Conversely, if Â � dR lAL is an SO�3� connection which is reducible with respect
to the splitting su�E� � iRlL, then Â lifts to a U�2� connection dC lAL on E which
is reducible with respect to the splitting E � ClL, and lifts to a spin connection
A � Bn �dC lAL� � BlB 0 on V which is reducible with respect to the splitting
W n �ClL� �W lW nL. r

We say that a pair �A;F� A ~Ct is irreducible (respectively, reducible) if the connection
A is irreducible (respectively, reducible). We let C�t HCt be the open subspace of gauge-
equivalence classes of irreducible pairs. If F1 0 on X, we call �A;F� a zero-section pair.
We let C0

t HCt be the open subspace of gauge-equivalence classes of non-zero-section pairs
and recall that

C�;0t � C�t XC0
t�2:39�

Feehan and Leness, PU(2) monopoles and links72



is a Hausdor¨, Hilbert manifold ([24], Proposition 2.8) represented by pairs with trivial
stabilizer in Gt. Let

M�;0
t �Mt XC�;0t�2:40�

be the open subspace of the moduli space Mt represented by irreducible, non-zero-section
PU�2� monopoles; the subspaces M�

t and M0
t are de®ned analogously.

2.1.6. Spaces of SO(3) connections. Given a class in H 2�X ; Z=2Z� with an integral

lift w A H 2�X ; Z� and an integer p obeying p1w2 �mod 4�, set k � ÿ 1

4
p, and choose

any Hermitian rank-two bundle E with c1�E� � w, so w2

ÿ
su�E�� � w �mod 2�, and

p1

ÿ
su�E�� � ÿ4k. Let Aw

k �X� denote the a½ne space of L2
k orthogonal connections

on su�E� and let Bw
k �X � �Aw

k �X�=Gw
k be the quotient, where Gw

k acts on su�E� via the
adjoint action.

Let Aw;�
k �X� and Bw;�

k �X � be the subspace of irreducible SO�3� connections and its
quotient. The moduli space of anti-self-dual connections on su�E� is then de®ned by

M w
k �X� � f�Â � A Bw

k �X� : F�
Â
� 0g;�2:41�

with M w;�
k �M w

k XBw;�
k . We follow the convention of [44] in taking the quotient by

the group of determinant-one, unitary automorphisms of E rather than the group of
determinant-one, orthogonal automorphisms of su�E�.

Lemma 2.5 implies that a spin connection A on V �W nE determines a unique
orthogonal connection Â on su�E� and, conversely, that every orthogonal connection on
su�E� is in the image of the map A 7! Â. Hence, one can easily translate between the con-
ventions employed in the present article and those of [24], [15], [23]:

Lemma 2.11. Let AL be the ®xed unitary connection on the complex line bundle

det
1
2�V�� and let At denote the corresponding space of spin connections on V, as described in

O2.1.4. For each SO�3� connection Â on su�E�, let A denote the corresponding spin connec-
tion on V. With respect to the action of Gw

k on Aw
k and of Gt on At, and the identi®cation

Gw
k GGt, the following map is a gauge-equivariant bijection:

Aw
k GAt; Â 7! A:�2:42�

2.2. Uhlenbeck compactness and transversality for PU(2) monopoles. We brie¯y recall
our Uhlenbeck compactness and transversality results [15], [24] for the moduli space of
PU�2� monopoles with the perturbations discussed in the preceding section. The moduli
space of PU�2� monopoles is non-compact but has an Uhlenbeck compacti®cation analo-
gous to the compacti®cation M w

k of the moduli space of anti-self-dual connections on an
SO�3� bundle [14], O4.4.

Given a non-negative integer l and a spinu structure t � �r;V�, Lemma 2.3 allows us
to write V �W nE for some choice of spinc structure �r;W� and corresponding Hermi-
tian, rank-two bundle E. Let El ! X be the Hermitian, rank-two bundle with

Feehan and Leness, PU(2) monopoles and links 73



c1�El� � c1�E� and c2�El� � c2�E� ÿ l:�2:43�

We then de®ne a spinu structure tl � �r;Vl� on X by setting

Vl �W nEl;�2:44�

and observe that

c1�tl� � c1�t�; p1�tl� � p1�t� � 4l; and w2�tl� � w2�t�:�2:45�

We say that a sequence of points �Aa;Fa� in Ct converges to a point �A;F; x� in
Ctl � Syml�X� if the following hold:

. There is a sequence of L2
k�1; loc spinu bundle isomorphisms ua: V jXnx ! VljXnx such

that the sequence of monopoles ua�Aa;Fa� converges to �A;F� in L2
k; loc over Xnx, and

. the sequence of measures jFAa
j2 converges in the weak-* topology on measures to

jFAj2 � 8p2
P
x A x

d�x�.

There is a natural extension of this de®nition of convergence of points in Ct to one for

sequences in the space of ``ideal pairs'',
Fy
l�0

ÿ
Ctl � Syml�X��, and this serves to de®ne the

``Uhlenbeck topology'' on the space of ideal pairs. We de®ne the topological space

Mt � Closure�Mt�H
Fy
l�0

ÿ
Mtl � Syml�X��;�2:46�

where the closure is taken with respect to the Uhlenbeck topology on the (second count-

able, Hausdor¨ ) space of ideal PU�2� monopoles,
Fy
l�0

ÿ
Mtl � Syml�X��. We call the inter-

section of Mt with Mtl � Syml�X� a lower-level of the compacti®cation Mt if l > 0 and
call Mt the top or highest level.

Theorem 2.12 ([24]). Let X be a closed, oriented, Riemannian, smooth four-manifold
with spinu structure t. Then there is a positive integer N, depending at most on the curvature

of the ®xed unitary connection on det�V�� together with p1�t�, such that the topological space

Mt is second countable, Hausdor¨, compact, and given by the closure of Mt in the space of

ideal PU�2� monopoles,
FN
l�0

ÿ
Mtl � Syml�X��, with respect to the Uhlenbeck topology.

Theorem 2.12 is a special case of the more general result proved in [24] for the
moduli space of solutions to the PU�2� monopole equations in the presence of holonomy
perturbations. The existence of an Uhlenbeck compacti®cation for the moduli space of
solutions to the unperturbed PU�2� monopole equations (2.32) was announced by Pidstri-
gatch [63] and an argument was outlined in [64]. A similar argument for the equations
(2.32) (without perturbations) was outlined by Okonek and Teleman in [61]. An independent
proof of Uhlenbeck compactness for (2.32) and other perturbations of these equations is
also given in [73].
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We recall from [24], Equation (2.37) that the elliptic deformation complex for the
moduli space Mt is given by

L2
k�1�gt� ���!d 0

A;F

L2
k�L1 n gt�

l

L2
k�V��

���!d 1
A;F

L2
kÿ1�L�n gt�

l

L2
kÿ1�Vÿ�

�2:47�

with elliptic deformation operator

DA;F � d 0;�
A;F � d 1

A;F�2:48�

and cohomology H�A;F. Here, d 1
A;F is the linearization at the pair �A;F� of the gauge-

equivariant map S de®ned by the equations (2.32), so

d 1
A;F�a; f� � �DS�A;F�a; f� �

d�
Â

aÿ trÿ1�fnF� �Fn f��00ÿ
DA � r�Q��f� r�a�F

 !
;�2:49�

while ÿd 0
A;F is the di¨erential of the map Gt ! ~Ct, u 7! u�A;F� � ÿAÿ �dAu�uÿ1; uF

�
, so

d 0
A;Fz � �dÂ z; zF�:�2:50�

The space H 0
A;F � Ker d 0

A;F is the Lie algebra of the stabilizer in Gt of a pair �A;F� and

H 1
A;F is the Zariski tangent space to Mt at a point �A;F�. If H 2

A;F � 0, then �A;F� is a

regular point of the zero locus of the PU�2� monopole equations (2.32) on Ct.

We now turn to the question of transversality. Let DA;` and DA be the Dirac operators
on V� de®ned, respectively, by unitary connections A on V which are spin with respect to
an SO�4� connection ` and spin, in the usual sense, with respect to the Levi-Civita con-
nection on T �X : the two operators di¨er by an element r�Q 0� A Hom�V�;Vÿ� [15], Lemma
3.1, where Q 0 A W1�X ;C�. Even though a unitary connection on V will not necessarily induce
a torsion-free connection on T �X for generic pairs �g; r� of Riemannian metrics and com-
patible Cli¨ord maps, we can assume that the Dirac operator DA in (2.32) is de®ned using
the Levi-Civita connection for the metric g by absorbing the di¨erence term r�Q 0� into the
perturbation term r�Q�. Given any ®xed pair �g0; r0� satisfying (2.1) and automorphism
f A Cy

ÿ
GL�T �X ��, then �g; r� � � f �g0; f �r0� is again a compatible pair; the pair �g; r� is

generic if f is generic.

Theorem 2.13 ([15]). Let X be a closed, oriented, smooth four-manifold with spinu

structure t. Then for a generic, Cy pair �g; r� satisfying (2.1) and generic, Cy parameters

�t; Q�, the moduli space M�;0
t �M�;0

t �g; r; t; Q� of PU�2� monopoles is a smooth manifold of
the expected dimension,

dimM�;0
t � da � 2na;

where

da�t� � ÿ2p1�t� ÿ 3

2
�w� s�;�2:51�

na�t� � 1

4

ÿ
p1�t� � c1�t�2 ÿ s

�
:
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In equation (2.51), the quantity da�t� is the expected dimension of the moduli space of
anti-self-dual connections on gt, while na�t� is the complex index of the Dirac operator on
Cy�V��. Theorem 2.13 was proved independently, using a somewhat di¨erent method, by
A. Teleman [73].

2.3. Moduli spaces of Seiberg-Witten monopoles. We recall the de®nition of the
space of Seiberg-Witten monopoles. Let s � �r;W � be a spinc structure on X and let

~Cs �As � L2
k�W���2:52�

be the pre-con®guration space of pairs �B;C�, with tangent space L2
k�X ; iR�lL2

k�W�� due
to the a½ne structure (2.5). We call a unitary automorphism of W a spinc automorphism

if it is a complex Cli¨ord module endomorphism of W. Thus, spinc automorphisms
induce the identity on the factor su�W�GL2�T �X� of the orthogonal decomposition
u�W � � iRl su�W �. We let Gs denote the group of L2

k�1 spinc automorphisms of W and
observe that there is an isomorphism ([56], OO4.3±4.5)

L2
k�1�X ;S1� ! Gs; s 7! s � idW :

Hence, the group Gs has Lie algebra L2
k�1�X ; iR� via the identi®cation

L2
k�1�X ; iR�GTidGs; f 7! f � idW ;

and acts smoothly by pushforward on ~Cs,ÿ
s; �B;C�� 7! �s�B; sC� � �Bÿ sÿ1 ds; sC�:�2:53�

We thus obtain a con®guration space

Cs � ~Cs=Gs�2:54�

and let ~C0
s H ~Cs denote the open subspace of pairs �B;C� with C1j 0, where Gs acts freely

on ~C0
s with quotient C0

s , a smooth Hilbert manifold.

We call a pair �B;C� A ~Cs a Seiberg-Witten monopole if

S�B;C� � Tr�F�B � ÿ trÿ1�CnC��0 ÿ h

DBC� r�Q�C;
� �

� 0;�2:55�

where F�B A L2
kÿ1

ÿ
L�n u�W��� is the self-dual component of the curvature FB of B and

Tr�F�B � A L2
kÿ1

ÿ
L�n su�W��� is the trace-free part, DB � r � B̀: Cy�W�� ! Cy�Wÿ� is

the Dirac operator de®ned by the spin connection B, the perturbation terms t and Q are
as de®ned in our version of the PU�2� monopole equations (2.32), and where h A Cy�iL��
is an additional perturbation (see Remark 2.14). The quadratic term CnC� lies in
Cy
ÿ
iu�W��� and �CnC��0 denotes the traceless component lying in Cy

ÿ
isu�W���, so

rÿ1�CnC��0 A Cy�iL��.
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Remark 2.14. We note that in the usual presentation of the Seiberg-Witten equa-
tions [43], [60], one takes t � idL� and Q � 0, while h is a generic perturbation. However,
we shall see in Lemma 3.12 that in order to identify solutions to the Seiberg-Witten equa-
tions (2.55) with reducible solutions to the PU�2� monopole equations (2.32), we need to
employ the perturbations given in equation (2.55) and choose

h � F�AL
;�2:56�

where AL is the ®xed unitary connection on the line bundle det
1
2�V�� with Chern class

denoted by c1�t� � L A H 2�X ; Z� and represented by the real two-form �1=2pi�FAL
. In

particular, this choice of h is not generic in the sense of [56], Proposition 6.3.1 and Corol-
lary 6.3.2 if c1�s� ÿL A H 2�X ; Z� is a torsion class. If c1�s� ÿL is not torsion, then this
class is represented by �1=2pi�ÿTr�FB� ÿ FAL

�
and, if b�2 �X� > 0 and the metric g is generic,

then there are no zero-section solutions to the Seiberg-Witten equations (2.55) by [56],
Proposition 6.3.1.

The moduli space of Seiberg-Witten monopoles is de®ned by

Ms � f�B;C� A ~Cs : S�B;C� � 0g=Gs;�2:57�
M 0

s �Ms XC0
s :

The usual Seiberg-Witten moduli spaceÐobtained from our de®nition with t � idL� and
Q � 0Ðis compact ([43], Corollary 3, [56], Proposition 6.4.1) and, for generic h, the
open subspace M 0

s is a smooth manifold of the expected dimension ([43], Lemma 5, [56],
Proposition 6.2.2). In the subsections below we describe transversality and compactness
properties for the space Ms, as de®ned here.

2.3.1. The deformation complex. Given �B;C� A ~Cs, the smooth map Gs ! ~Cs

de®ned by (2.53) has di¨erential at idW ,

f 7! ÿ d 0
B;C f � �ÿdf ; f C�; f A L2

k�1�X ; iR�:�2:58�

For all �b;c� A L2
k�iL1�lL2

k�W�� and f A L2
k�1�X ; iR� we haveÿ�df ;ÿ f C�; �b;c��

L2 � �df ; b�L2 � �ÿ f C;c�L2

� � f ; d �b�L2 ÿ � f ; hC;ci�L2

� � f ; d �b�L2 ÿ � f ; hc;Ci�L2

� � f ; d �b�L2 ÿ � f ; i Imhc;Ci�L2 ;

noting that W0�X ; iR� has a real L2 inner product, and thus (compare [56], Lemma 4.5.5)

d 0;�
B;C�b;c� � d �bÿ i Imhc;Ci:�2:59�

The Seiberg-Witten equations (2.55) de®ne a Gs-equivariant map

S: ~Cs ! L2
kÿ1�iL�� � L2

kÿ1�Wÿ�
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with di¨erential at the point �B;C� given by

d 1
B;C�b;c� � �DS�B;C�b;c� �

2d�bÿ trÿ1�cnC� �Cnc��0
DBc� r�Q�c� r�b�C

� �
:�2:60�

Since S
ÿ
s�B;C�� � ÿS1�B;C�; sS2�B;C�

� � s �S�B;C�, the di¨erential of the composi-
tion Gs ! L2

k�iL�� � L2
k�Wÿ� is given by

f 7! d 1
B;C � d 0

B;C f � ÿ0; f S2�B;C�
�
; f A L2

k�1�X ; iR�;

and so d 1
B;C � d 0

B;C � 0 if and only if S2�B;C� � 0. In particular, if S�B;C� � 0 we have
an elliptic deformation complex

L2
k�1�X ; iR� ���!d 0

B;C

L2
k�iL1�
l

L2
k�W��

���!d 1
B;C

L2
kÿ1�iL��
l

L2
kÿ1�Wÿ�

�2:61�

with cohomology H�B;C. We write

DB;C � d 0;�
B;C � d 1

B;C�2:62�

for the rolled-up deformation operator of the complex (2.61).

The deformation complex (2.61) is the same, up to slight di¨erences in the zeroth
order terms of the di¨erential d 1

B;C, as the deformation complex ([56], O4.6) for the usual
Seiberg-Witten equations and so has the same index. Therefore, provided the zero locus
M 0

s of the section S is regular we have

ds�s� � dim M 0
s �

1

4

ÿ
c1�s�2 ÿ 2wÿ 3s

�
:�2:63�

With the deformation complex in place, we now turn to the issues of compactness and
transversality.

2.3.2. Compactness and transversality. We ®rst observe that the standard arguments
[43], [56], [76] establishing that the Seiberg-Witten equations as stated in those references
de®ne a compact moduli space carry over to show that the moduli space Ms de®ned by
(2.55) is compact; the only slight change is the requirement that t be C0-close to the iden-
tity on L�:

Proposition 2.15. Let s � �r;W � be a spinc structure on a closed, oriented, Rie-

mannian four-manifold, �X ; g�, parameters h A W0�iL�� and Q A W1�X ;C�, and perturba-

tion t A W0
ÿ
GL�L��� such that ktÿ idL�kC 0 <

1

64
. Then the moduli space Ms�g; h; t; Q� is

compact.

Our next task is to establish a transversality result for M 0
s �g; h; t; Q� with generic

parameter t analogous to the one in [43] where h is generic.
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Proposition 2.16. Let s � �r;W� be a spinc structure on a closed, oriented, Rieman-

nian four-manifold, �X ; g�. Then for any ®xed parameters h A W0�iL�� and Q A W1�X ;C�
there is a ®rst-category subset of W0

ÿ
GL�L��� such that for all Cy parameters t in the

complement of this subset, the moduli space M 0
s �g; t; h; Q� is a smooth manifold of the

expected dimension.

Proof. We closely follow the method described in [24], O5.1 and O5.2. Our Banach
space of parameters is given by

P � C r
ÿ
GL�L���:

We de®ne an extended Gs-equivariant map,

S � �S1;S2�: P� ~Cs ! L2
kÿ1�iL�� � L2

kÿ1�Wÿ�;

by setting

S�t;B;C� � Tr�F�B � ÿ trÿ1�CnC��0 ÿ h

DBC� r�Q�C
� �

:

The parametrized moduli space Ms is then �S�ÿ1�0�=Gs HCs and M0
s �Ms X �P� C0

s �.
The map S has di¨erential at the point �t; �B;C�� A M0

s given by

DS�dt; b;c� � 2d�bÿ trÿ1�cnC� � cnC��0 � �dt�trÿ1�CnC��0ÿ
DB � r�Q��c� r�b�c

� �
;

where �b;c� A L2
k�iL1�lL2

k�W��. Suppose

�c; j� A L2
kÿ1�iL��lL2

kÿ1�Wÿ�

is L2-orthogonal to the image of DS. We may assume without loss of generality that
�t;B;C� is a C r representative of the point �t; �B;C�� (see, for example, [24], Proposition
3.7) and so, as �DS��DS���c; j� � 0, elliptic regularity implies that �c; j� is C r. Then

0 � ÿDS�dt; 0; 0�; �c; j��
L2 �

ÿ�dt�t�CnC��0; c
�

L2 ;�2:64�

for all dt A C r
ÿ
gl�L���, which yields the pointwise identity

h�dt�xtx�Cx nC�x�0; cxix � 0; x A X :�2:65�

If cx 3 0 for some x A X (and thus c3 0 on a non-empty open neighborhood in X ), then
(2.65) implies that C � 0 on the non-empty open subset fc3 0gHX . Aronszajn's theorem
then implies that C1 0 on X, contradicting our assumption that �t;B;C� is a point in M0

s .
Hence, we must have c1 0 on X, so (2.64) now yields

0 � ÿDS�0; b; 0�; �0; j��
L2 �

ÿ
r�b�C; j�

L2 ;
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for all b A L2
k�iL1�. Since C1j 0, this implies that j1 0, just as in the proof of [43], Lemma

5. Hence, Coker�DS�t; �B;C� � 0 at each point �t; �B;C�� in �S�ÿ1�0� and so the parametrized

moduli space �S�ÿ1�0� �M0
s is a smooth Banach submanifold of P� C0

s . Therefore, the
Sard-Smale theorem, in the form of [14], Proposition 4.3.11 (see the proof of Corollary
5.3 in [24]), implies that there is a ®rst-category subset of C r

ÿ
GL�L��� such that for all C r

parameters t in the complement of this subset, the zero locus M 0
s �t� is a regular submani-

fold of C0
s . Lastly, we can constrain the parameter t to be Cy (and not just C r) by the

argument used in [24], O5.1.2Ðsee [68], O8.4. r

The following lemma relates the Seiberg-Witten moduli spaces de®ned with the per-
turbations of [43], [56], [76] to those used in this article.

Lemma 2.17. Let �X ; g� be a closed, oriented, Riemannian four-manifold with

b�2 �X� > 0 and spinc structure s.

(1) Suppose that the moduli spaces M 0
s �g; idL� ; h

0; 0� and M 0
s �g; t; h; Q� are regular

zero loci of the Seiberg-Witten maps S in (2.55) for these perturbation parameters. If
b2
��X� > 1, then these moduli spaces are related by an oriented, smooth cobordism.

(2) Suppose that Ms�g; idL� ; h
0; 0� contains no zero-section solutions. Then Ms�g; t; h; Q�

contains no zero-section solutions for any triple �t; Q; h� which is C r-close enough to

�idL� ; 0; h
0�.

Proof. If P denotes the Banach space of C r perturbation parameters �t; h; Q�, then
a generic, smooth path in P joining �idL� ; h

0; 0� to �t; h; Q� induces a smooth, oriented
cobordism in P� C0

s joining M 0
s �g; idL� ; h

0; 0� to M 0
s �g; t; h; Q�. This proves assertion (1).

If the compact space Ms�g; idL� ; h
0; 0� is contained in the open subset C0

s HCs,
then the same holds for Ms�g; t; h; Q�, that is, the latter subspace also contains no zero-
section pairs, for any triple �t; Q; h� which is C r-close enough to �idL� ; 0; h

0�. This proves
assertion (2). r

2.4. Cohomology ring of the con®guration space of spinc pairs. We next compute
the cohomology ring of the con®guration space C0

s and describe the cohomology classes
used to de®ne Seiberg-Witten invariants and arising in the calculation (see O3.6) of the
Chern classes of certain vector bundles over Ms. For this purpose we may make use of
the fact since U�1� is Abelian, we have a global slice theorem for Cs modulo the har-
monic gauge transformations. Computations of the cohomology ring of C0

s have already
appeared in, for example [68], Chapter 7 and [62], Lemma 5. The version we present
here is convenient for the computation of the Chern class of the universal line bundle
in Lemma 2.24.

2.4.1. Harmonic gauge transformations. A gauge transformation s A Map�X ;S1� is
harmonic if sÿ1 ds A L2

k�iL� satis®es d ��sÿ1 ds� � 0 (we always have d�sÿ1 ds� � 0). Every
component of Map�X ;S1� contains a harmonic representative which is unique up to mul-
tiplication by a constant element of S1. The harmonic elements of Map�X ;S1� form a
subgroup,

Ĝs � fs A Map�X ;S1�: d ��sÿ1 ds� � 0gGS1 �H 1�X ; iZ�;�2:66�
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where, given a point p A X , the isomorphism is de®ned by s 7! ÿ
s�p�; sÿ1 ds

�
, where we

identify H 1�X ; iZ� with the integer lattice contained in the space of harmonic one-forms on
X. Conversely, we have a map

hp: H 1�X ; iZ� !Map�X ;S1�
de®ned by setting hp�b� equal to the unique harmonic gauge transformation satisfying
hp�b��p� � 1 (see, for example, [68], O5.4). The group S1 �H 1�X ; iZ� acts on ~Cs byÿ�eiy; b�; �B;C�� 7! ÿ

Bÿ b idW ; e
iyhp�b�C

�
;�2:67�

where �eiy; b� A S1 �H 1�X ; iZ� and �B;C� A ~Cs. We then have the following global ``slice
result'' for Cs:

Lemma 2.18. Let B0 be an L2
k spin connection on W. Then the inclusion

Ĉs �
ÿ
B0 � �Ker d �� idW

�� L2
k�W�� ,! ~Cs;�2:68�

where Ker d �HL2
k�iL1�, is equivariant with respect to the action (2.67) of

S1 �H 1�X ; iZ�HGs

and descends to a homeomorphismÿ
B0 � �Ker d �� idW

��S1�H 1�X ; iZ� L2
k�W�� ! Cs;

and a di¨eomorphism on Ĉ0
s , the complement in Ĉs of the space of zero-section pairs.

Proof. Any L2
k spin connection on W can be written as B � B0 � b idW , where

b A L2
k�iL1�. An element s of the gauge group Gs acts on this representation of B by send-

ing b to bÿ sÿ1 ds. The argument in [68], O7.2 (also see [14], pp. 54±55) implies that there
is a solution of the equation d ��bÿ sÿ1 ds� � 0, which is unique up to a harmonic gauge
transformation, so the map on quotients is surjective. If �Bj;Cj�, j � 1; 2, are pairs in ~Cs

such that d ��Bj ÿ B0� � 0 and s A Gs satis®es s�B1;C1� � �B2;C2�, that is

�B1 ÿ sÿ1 ds idW ; sC1� � �B2;C2�;

then d ��B2 ÿ B1� � 0 implies d ��sÿ1 ds� � 0, so s is harmonic and the map on quotients is
injective. r

2.4.2. Cohomology ring of the con®guration space. We now use the reduction of the
gauge group from Gs to Ĝs to compute the integral cohomology ring of C0

s . We begin by
de®ning the universal complex line bundle over C0

s � X ,

Ls � ~C0
s �Gs CG Ĉ0

s �Ĝs
C;�2:69�

where C � X � C and the action of Gs is given for s A Gs, x A X and z A C byÿ
s; �B;C�; �x; z�� 7! ÿ

s��B;C�;
ÿ
x; s�x�ÿ1z

��
:�2:70�
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As in [68], O7.4, we de®ne cohomology classes on C0
s (the ``Seiberg-Witten m-classes'') by

ms: H��X ; R� ! H 2ÿ��C0
s ; R�; ms�a� � c1�Ls�=a;�2:71�

where a is either the positive generator x A H0�X ; Z� or a class g A H1�X ; R�. Let Gp
s be the

subgroup of maps s A Gs with s�p� � 1 and note that

Gs � Gp
s � S1:�2:72�

The following alternative characterization of ms�x� appears in much of the literature on
Seiberg-Witten invariants.

Lemma 2.19. Let Cp;0
s � ~C0

s =G
p
s be the con®guration space of framed pairs. Then

c1�Cp;0
s �S 1 C� � ms�x�:�2:73�

Proof. The class ms�x� is the ®rst Chern class of Ls restricted to C0
s � fpg. Equation

(2.73) then follows from the splitting Gs � Gp
s � S1. r

Using the isomorphism of universal line bundles in (2.69), we shall now give another
description of the cohomology classes ms�x� and ms�g�, and show they generate the coho-
mology ring H ��C0

s ; Z�. We de®ne

Jac�X � � H 1�X ; iR�=H 1�X ; iZ�:�2:74�

We then have:

Lemma 2.20. Let s be a spinc structure on a smooth, closed, oriented four-manifold X.
Then, there is an S1-equivariant retraction r: Cp;0

s ! Jac�X� � ÿL2
k�W�� ÿ f0g� where S1

acts trivially on Jac�X� and by complex multiplication on L2
k�W��.

Proof. From the Hodge decomposition,

L2
k�iL1� � H1�X ; iR�lRan d lRan d �;

where H1�X ; iR� denotes the harmonic, imaginary-valued one-forms on X, we see that

Ker d � � �Ran d�? � H1�X ; iR�lRan d �:

Thus, we can write the pre-con®guration space Ĉ0
s as

Ĉ0
s �

ÿ
B0 �H1�X ; iR�lRan d �

�� ÿL2
k�W�� ÿ f0g�:

As usual, the factor S1 of the harmonic gauge group Ĝs � S1 �H 1�X ; iZ� acts trivially on
B0 �H1�X ; iR�lRan d � and by complex multiplication on L2

k�W�� ÿ f0g. An element
b A H1�X ; iZ�GH 1�X ; iZ� acts on an element �B;C� � �B0 � b 0 � b 00;C� of Ĉ0

s (where
b 0 A H1�X ; iR� and b 00 A Ran d �) byÿ

b; �B0 � b 0 � b 00;C�� 7! ÿ
B0 � �b 0 � b� � b 00; hp�b�C

�
:
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Thus, replacing b 00 A Ran d � with tb 00, 0e te 1, de®nes a Ĝs-equivariant retraction of Ĉ0
s

onto ÿ
B0 �H1�X ; iR��� ÿL2

k�W�� ÿ f0g�:
This yields a deformation retraction of Ĉ0

s onto the projectivization of the complex vector
bundle ÿ

B0 �H1�X ; iR���H 1�X ; iZ� L2
k�W�� ! Jac�X�:�2:75�

By Kuiper's theorem (see Corollary 3.18) this vector bundle is trivial, which completes the
proof. r

De®nition 2.21. Let fgig be a basis for H1�X ; Z�=Tor and let fg�i g be the dual basis
for H 1�X ; Z�, so hg�i ; gji � dij. Then f �������ÿ1

p
g�j g generates p1

ÿ
Jac�X ��. We will write these

elements of p1

ÿ
Jac�X�� as gJ

j to avoid confusion. Let

gJ;�
j A H 1

ÿ
Jac�X�; Z

� � Hom
ÿ
p1

ÿ
Jac�X��;Z�

be de®ned by hgJ;�
i ; gJ

j i � dij. Given such a basis fgig for H1�X ; Z�=Tor, we call fgJ
i g and

fgJ;�
i g the related generators and basis for p1

ÿ
Jac�X�� and H 1

ÿ
Jac�X�; Z

�
respectively.

Note that H 1�X ; Z� and H 1
ÿ
Jac�X �; Z

�
are free Z-modules by the universal coe½cient

theorem [70], Theorem 5.5.3.

Corollary 2.22. Continue the notation and assumptions of Lemma 2.20. Let

r: C0
s ! Jac�X � � ÿL2

k�W�� ÿ f0g�=S1 be the retraction given by Lemma 2.20. Then
the cohomology ring of C0

s is generated by fr�h; r�gJ;�
i g, where fgJ;�

1 ; . . . ; gJ;�
b1
g is a basis

for H 1
ÿ
Jac�X�; Z

�
and h the ®rst Chern class of the S1 bundle given byÿ

B0 �H1�X ; iR���H 1�X ; iZ�
ÿ
L2

k�W�� ÿ f0g�???yÿ
B0 �H1�X ; iR���H 1�X ; iZ�

ÿ
L2

k�W�� ÿ f0g�=S1:

2.4.3. Seiberg-Witten m-classes and generators of the cohomology ring of the con®gu-
ration space. Finally, we show that the Seiberg-Witten m-classes can be expressed in terms
of the classes r�h and r�g�i de®ned in Corollary 2.22. For this purpose, we use the complex
line bundle,

D � H1�X ; iR� � X ��H 1�X ; iZ�;hp� C! Jac�X� � X ;�2:76�

whose ®rst Chern class we now compute.

Lemma 2.23. Continue the notation of De®nition 2.21. Then c1�D� �
Pb1�X �

i�1

gJ;�
i � g�i .

Proof. Since H 1�X ; Z� and H 1
ÿ
Jac�X�; Z

�
are free, we can write

c1�D� � c0;2 � c1;1 � c2;0
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with respect to the decomposition given by the Kunneth formula:

H 2
ÿ
Jac�X � � X ; Z

�
G
L2
i�0

H i
ÿ
Jac�X�; Z

�
nH 2ÿi�X ; Z�;

ci;2ÿi A H i
ÿ
Jac�X �; Z

�
nH 2ÿi�X ; Z�:

For �B� A Jac�X� and p A X , the restrictions of D to f�B�g � X and to Jac�X� � fpg are
trivial so c1�D� � c1;1. We now calculate the ®rst Chern class of D restricted to the tori
gJ

i � gj. Let ~gJ
i �t� be the path in H1�X ; iR�, starting at zero and covering gJ

i . Let s: X ! S1

be an element of Ĝs satisfying s�p� � 1 and sÿ1 ds � ~gJ
i �1�. Thus, the degree of the map

s: gj ! S1 is dij. The restriction of the line bundle D to gJ
i � gj is given by taking the trivial

bundle over I � gj and making the identi®cation

�0; q; z�@ ÿ
1; q; sÿ1�q��z��; where q A gj; z A C:

Since the degree of the map s: gj ! S1 is dij, we see

c1�DjgJ
i
�gj
� � dijg

J;�
i � g�j :

This completes the proof. r

We now describe the relation between the cohomology classes of Corollary 2.22 and
the ms-map.

Lemma 2.24. Let fgig be a basis for H1�X ; Z�=Tor, let fg�i g be the related basis for
H 1
ÿ
Jac�X �; Z

�
, and let x A H0�X ; Z� be a generator. Let rJ : C0

s ! Jac�X� be the composi-

tion of the retraction r de®ned in Lemma 2.20 with the projection to Jac�X�. Then

c1�Ls� � h� 1� �rJ � idX ��c1�D�;�2:77�

and thus

ms�x� � r�h; ms�gi� � r�J gJ;�
i :

Proof. Because r is a retraction, it su½ces to compute the restriction of the universal
line bundle Ls to the image of the retraction where Ls is given by

H1�X ; iR� � ÿL2
k�W�� ÿ f0g��S1�H 1�X ; iZ� C:�2:78�

The bundle

H1�X ; iR� �H 1�X ; iZ�
ÿ
L2

k�W�� ÿ f0g��S1 C???y
H1�X ; iR� �H 1�X ; iZ�

ÿ
L2

k�W�� ÿ f0g�=S1

�2:79�
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is the restriction of the framed con®guration space, Cp;0
s �S 1 C to the image of r and thus

has ®rst Chern class h. Then the restriction of Ls in equation (2.78) is isomorphic to the
tensor product of the bundle (2.79) with the pullback of the bundle D by the map rJ � idX .
Thus c1�Ls� � h� 1� �rJ � idX ��c1�D�. The computations of ms�b� then follow from the
de®nition of the map ms in equation (2.71) and the computation of c1�D� in Lemma
2.23. r

3. Singularities and their links

As we shall see in this section, the moduli space Mt of solutions to the perturbed
PU�2� monopole equations (2.32) is a smoothly strati®ed space. According to Theorem
2.13, the subspace M�;0

t of solutions to (2.32) which are neither zero-section nor reducible
is a smooth manifold of the expected dimension and this comprises the top stratum of Mt.
In O3.1 we classify the PU�2� monopoles where S1 acts trivially, noting that these are given
by the zero-section or reducible solutions and comprise the singular points of Mt. We
exclude the possibility of PU�2� monopoles with ¯at associated SO�3� connections by a
suitable choice of w2�t�. We then analyze these lower strata of solutions in Mt which are
either zero-section or reducible or both and show that they are identi®ed with the moduli
space M w

k of anti-self-dual connections on the associated SO�3� bundle gt and moduli
spaces of Seiberg-Witten monopoles, Ms (see O3.3). We describe the link in M�;0

t of the
stratum M w

k in O3.2 and the links in M�;0
t of the strata Ms in O3.4 and O3.5. For M w

k , it will
su½ce to describe the normal cone (in the sense of [35], p. 41) at a generic point in M w

k ,
while in the case of the link of a stratum Ms, a global description is required. Finally, in
O3.6 we compute the Chern character of the normal bundle of Ms with respect to a ®nite-
dimensional, open, S1-invariant smooth manifold containing a neighborhood of the image
of Ms in Mt.

3.1. Classi®cation of ®xed points under the circle action. In this section we classify
the ®xed points in Mt under the circle action induced by scalar multiplication on V.

For pairs �A;F� in ~Ct, it is useful to distinguish between two kinds of circle action.
First, S1 can act on V by scalar multiplication:

S1 � V ! V ; �eiy;F� 7! eiyF:�3:1�

Second, if V �W lW nL is a direct sum of Cli¨ord modules, then S1 can act by scalar
multiplication on the factor W nL and the identity on W:

S1 � V ! V ; �eiy;ClC 0� 7! Cl eiyC 0;�3:2�

where C A Cy�W� and C 0 A Cy�W nL�. With respect to the splitting V �W lW nL,
the two actions are related by

1 0

0 ei2y

� �
� eiyu; where u � eÿiy 0

0 eiy

� �
A Gt;

and so, when we pass to the induced circle actions on the quotient Ct � ~Ct=Gt, we obtain
the same space Ct=S1 for both circle actions.
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If we write V �W nE, where E � ClL, the circle action (3.2) on V is equivalent
to the one induced by scalar multiplication on the complex line bundle L and the trivial
action on C. Hence, the induced circle action (3.3) on su�E�H su�V� with respect to the
decomposition (2.13) takes the form

S1 � su�E� ! su�E�; ÿ
eiy; �n; z�� 7! �n; eiyz�;�3:3�

with respect to the isomorphism su�E�G iRlL in Lemma 3.10: the circle acts as the
identity on iR and by scalar multiplication on the complex line bundle L. On the other
hand, the circle action (3.1) on V induces the trivial action on both su�V� and su�E�.

Proposition 3.1. Let t � �r;V� be a spinu structure over a closed, oriented, smooth

four-manifold X, with b�2 �X�f 1 and generic Riemannian metric. If Â is a non-¯at connec-
tion on gt, then �A;F� A Mt is a ®xed point with respect to the S1 action on Mt if and only if

one of the following hold:

(1) The connection Â is anti-self-dual, irreducible, and F1 0. The pair �A;F� is a

®xed point with respect to the circle action (3.1).

(2) The pair �A;F� is reducible with respect to a splitting V �W lW nL but

F1j 0,

�A;F� � �BlBnAL;Cl 0�:
The pair �A;F� is a ®xed point with respect to the circle action (3.2). The connection Â on

gt is reducible with respect to the splitting gt G iRlL, with Â � dR lAL.

Proof. Suppose �A;F� A Mt is a ®xed point of the S1 action on Mt. Consequently,
there is an element eiy 3G1 such that eiy�A;F� � �A;F� and hence a gauge transformation
u A Gt such that

�A; eiyF� � u�A;F� � ÿu�A�; uF
�
:

Thus, u is in the stabilizer of A, and hence that of Â, and eiyF � uF.

(1) If Â has the trivial stabilizer fGidVg in Gt, then eiyF �GF and so F1 0 because
eiy 3G1. The connection Â is irreducible ([29], Theorem 10.8) since it is an SO�3� con-
nection with minimal stabilizer in Gt. The curvature equation in (2.32) implies that F�

Â
� 0,

so Â is anti-self-dual. The pair �A;F� is ®xed by the S1 action (3.1).

(2) If Â has non-trivial stabilizer in Gt, then Â is reducible with respect to a split-
ting gt G iRlL ([29], Theorem 10.8), for some complex line bundle L, and takes the
form Â � dR lAL. The connection Â has stabilizer SO�2�GS1 acting on L by complex
multiplication and trivially on iR. Lemma 2.9 implies that A is reducible with respect to
the splitting V �W lW nL, taking the form A � BlBnAL.

If u �GidV , then F1 0 just as in case (1) and so Â would be a reducible, anti-self-dual
SO�3� connection on gt. But b�2 �X� > 0 and the Riemannian metric g on X is generic, so
this possibility is excluded by Corollary 4.3.15 in [14] (the four-manifold X does not need to
be simply connected).
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Hence, we must have u3GidV and F1j 0. Because Ad�u� stabilizes Â, it induces
an action on L via complex multiplication by some eÿi2m 3 1 and the trivial action on iR,
as in (3.3). Hence, with respect to the splitting V �W lW nL, the gauge transformation
u takes the form

u � eim 0

0 eÿim

� �
:

Because eÿiyuF � F and writing F � ClC 0 with respect to the splitting

V �W lW nL;

the section F is ®xed by

eÿiyu � ei�mÿy� 0

0 eÿi�m�y�

� �
:

If C1j 0, then m � y �mod 2p� and we must have C 01 0; conversely, if C 01j 0, then
m � ÿy �mod 2p� and we must have C1 0. The two cases di¨er only by how the factors
in the splitting of V are labeled, so we can assume that C 01 0 and C A Cy�W��. In par-
ticular, the pair �A;F� is ®xed by the S1 action (3.2). r

Our proof that F is a section of W� when Â is a non-¯at reducible connection could
be replaced by an appeal to Lemma 5.22 in [24], but the argument here seems more direct.

Proposition 3.1 only classi®es the ®xed points �A;F� A Mt of the circle action under
the assumption that Â is not ¯at. However, the following lemma gives a simple condition
which guarantees that there will be no pairs in Mt with ¯at associated SO�3� connections.
Because it relies only on a choice of integral class w �mod 2�, the lemma applies simulta-
neously to all spinu structures t � �r;V� with a ®xed w2�t�1w �mod 2� and all oriented,
orthogonal 3-plane bundles F with w2�F�1w �mod 2�, and thus simultaneously to all
levels of the Uhlenbeck compacti®cations M w

k and Mt.

Lemma 3.2 ([57], p. 226). Let X be a closed, oriented four-manifold. Then:

. If w A H 2�X ; Z� and e A H2�X ; Z� is a spherical class such that hw; ei1j 0 �mod 2�,
then no oriented, orthogonal 3-plane bundle F over X with w2�F�1w �mod 2� admits a ¯at

connection.

. In particular, if w A H 2�X ; Z� and ~X � XKCP2 is the blow-up, with exceptional

class e � �CP1� A H2�X ; Z� and PoincareÂ dual e� A H 2�X ; Z�, then no SO�3� bundle F over
~X with w2�F� � w� e� �mod 2� admits a ¯at connection.

Therefore, if X has a spherical class e A H2�X ; Z� such that hw; ei3 0 �mod 2�, then
Lemma 3.2 implies that there are no pairs in Mt with ¯at SO�3� connections when
w2�t�1w �mod 2�. In this situation, Proposition 3.1 implies that the only ®xed points of
the circle action on Mt are given by either points �A;F� with A irreducible and F1 0 or A

reducible and F1j 0.
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Suppose w A H 2�X ; Z� is any integral class and that t � �r;V� is a spinu structure
over ~X with w2�t�1w� e� �mod 2�. Then the SO�3� bundle gt over ~X obeys the Morgan-
Mrowka criterion of Lemma 3.2. Because the Donaldson and Seiberg-Witten invariants of
~X determine and are determined by those of X (see [26], [27], [57]), no information about

these invariants is lost by passing to the blow-up in this way.

In Lemma 3.13 we show that the moduli space of Seiberg-Witten monopoles, M 0
s ,

can be identi®ed with the subspace of PU�2� monopoles in M0
t which are reducible with

respect to the splitting t � sl snL, while zero-section points in Ms are mapped to zero-
section reducibles in Mt (though not necessarily injectively). If w2�t� obeys the Morgan-
Mrowka criterion then Proposition 3.1 implies that reducible PU�2� monopoles cannot be
zero-section pairs, leading to the following

Corollary 3.3. If Ms ,!Mt is a Seiberg-Witten moduli subspace and w2�t� obeys the
Morgan-Mrowka criterion of Lemma 3.2, then Ms contains no zero-section solutions.

3.2. The link of the stratum of anti-self-dual PU(2) monopoles. In this section we
describe the Kuranishi model for a neighborhood of a zero-section solution in the PU�2�
monopole moduli space and de®ne a link of the stratum M w

k in Mt. The di¨erential DS
will not be surjective at all the zero-section monopoles �A; 0�, but we will show that the
cokernel of �DS�A;0, namely H 2

A;0, can be identi®ed with the cokernel of the perturbed
Dirac operator, DA � r�Q�.

If we are given a decomposition, V �W nE, Lemma 2.7 provides a canonical
identi®cation of automorphism groups, Gw

k GGt, and with respect to this identi®cation
and choice of ®xed connection AL on det

1
2�V��, Lemma 2.11 provides a canonical gauge-

equivariant isomorphism

Aw
k GAt; Â 7! A;

where the space Aw
k of SO�3� connections on su�E�G gt was de®ned in O2.1.6, with

p1�gt� � ÿ4k and w2�gt�1w �mod 2�.

Let Bt �At=Gt be the quotient of the space of L2
k spin connections on V. By the

preceding discussion there is a canonical homeomorphism,

Bw
k GBt; �Â � 7! �A�;

restricting to di¨eomorphisms on smooth strata. There are a canonical smooth embed-
ding At ,! ~Ct and a ``smoothly strati®ed embedding'' Bt ,! CtÐthat is, a topological
embedding restricting to smooth embeddings on smooth strataÐgiven by A 7! �A; 0�
and �A� 7! �A; 0�. Combining these identi®cations and embeddings, we obtain a gauge-
equivariant smooth embedding and a smoothly strati®ed embedding,

i: Aw
k ,! ~Ct ; Â 7! �A; 0� and i: Bw

k ,! Ct; �Â � 7! �A; 0�:�3:4�

Hence, we can identify the image of the induced smoothly strati®ed embedding

i: M w
k �X � ,! Ct; �Â � 7! �A; 0��3:5�
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with the subspace of Mt given by the zero-section solutions to the PU�2� monopole equa-
tions (2.32). Therefore, we shall refer to pairs or connections representing points in M w

k as
zero-section PU�2� monopoles or anti-self-dual connections, depending on the context.

For a generic Riemannian metric on X, the moduli space M w;�
k of irreducible anti-

self-dual connections is a smooth manifold ([14], Corollary 4.3.18, [29]) of the expected
dimension da�t� given in equation (2.51).

At a zero-section PU�2� monopole �A; 0�, the elliptic deformation complex (2.47)
splits into a direct sum of complexes:

Cy�gt� ���!dÂ
Cy�L1 n gt� ���!d�

Â
Cy�L�n gt�;�3:6�

Cy�V�� ���!DA�r�Q�
Cy�Vÿ�:

The ®rst complex in (3.6) is simply the elliptic deformation complex for the moduli space
M w

k of anti-self-dual connections, with cohomology H�
Â

. The following lemma is then a
clear consequence of the preceding decomposition:

Lemma 3.4. If �A; 0� is a zero-section PU�2� monopole then there are canonical
isomorphisms

H 0
A;0 GH 0

Â
;

H 1
A;0 GH 1

Â
lKer

ÿ
DA � r�Q��;

H 2
A;0 GH 2

Â
lCoker

ÿ
DA � r�Q��:

If the manifold X is not simply connected, there may exist anti-self-dual connections
which, while not globally reducible, become reducible when restricted to certain open sets
in X: this complicates the construction of the restriction maps used in the de®nition of
geometric representatives on moduli spaces of anti-self-dual connections in [44] and for
PU�2� monopoles here. Therefore, we recall some of the technical points from [44],
pp. 586±588 which we shall need to address these additional complications when X is not
simply connected. A connection Â on an SO�3� bundle F over X is called a twisted reducible

if it preserves a splitting F � llN, where l is a non-trivial real line bundle and N is an
O�2� bundle. The curvature FÂ of a twisted reducible connection Â has rank one even
though Â is not reducible. When restricted to open sets in X over which the real line bundle
l is trivial, the connection Â becomes reducible. Let H i�X ; l� denote the cohomology
group of dimension bi�l� with coe½cients in the local system given by l. The bundle ln l
is trivial and so the cup product gives a pairing H 2�X ; l�nH 2�X ; l� ! H 4�X ; R�GR.
We de®ne b��l� and bÿ�l� to be the maximum dimensions of subspaces of H 2�X ; l� on
which this pairing is respectively positive or negative de®nite. If F admits a reduction
llN, then the corresponding subspace of twisted reducibles in M w

k (where p1�F� � ÿ4k
and w2�F�1w �mod 2�) de®ned by this splitting is a torus of dimension b1�l�. Whether or
not such connections exist in M w

k for a generic metric depends on b��l�, as described in the
following lemma.

Feehan and Leness, PU(2) monopoles and links 89



Lemma 3.5 ([44], Lemma 2.4 and Corollary 2.5). Let X be a smooth four-manifold, l
a non-trivial real line bundle on X, and F an oriented, orthogonal three-plane bundle for which
F admits a reduction F � llN. Suppose p1�F� � ÿ4k3 0 and w2�F�1w �mod 2�, where

w A H 2�X ; Z�.

(1) If b��l� � 0, then b1�l� � ÿ�b� ÿ b1 � 1� and M w
k contains twisted reducibles

corresponding to F � llN for all Riemannian metrics on X. If, in addition, b1�l�f 0, then

ÿ2p1�F� ÿ 3�1ÿ b1 � b�� > b1�l� and if the Riemannian metric on X is generic, each anti-
self-dual connection Â, which is a twisted reducible with respect to F � llN, has H 2

Â
� 0.

(2) If b��l�f 1, then for generic Riemannian metrics on X, the space M w
k contains no

twisted reducibles for the splitting F � llN.

Therefore, when b�2 �X� > 0, the only twisted reducibles appearing in M w
k have codi-

mension at least ÿ2p1�gt� ÿ 2�b�2 ÿ b1 � 1� and are smooth points. The Kuranishi lemma,
[14], Proposition 4.2.19 or [29], Lemma 4.7, gives the following description of a neighbor-
hood of a zero-section monopole in Mt.

Corollary 3.6. Let t be a spinu structure on a closed, oriented, smooth four-manifold

X with b�2 �X� > 0 and generic Riemannian metric. Let �A; 0� be a point in the image of

M w
k ,!Mt, so H 0

Â
� 0 � H 2

Â
for �Â � A M w

k . Then there are

. an open, S1-invariant neighborhood OA of the origin in TÂM w
k lKer

ÿ
DA � r�Q��

together with a smooth, S1-equivariant embedding

gA: OA HTÂM w
k lKer

ÿ
DA � r�Q�� ,! ~Ct;

with gA�0; 0� � �A; 0� and Mt X gA�OA� an open neighborhood of �A; 0� in Mt, and

. a smooth, S1-equivariant map

jA: OA HTÂM w
k lKer

ÿ
DA � r�Q��! Coker

ÿ
DA � r�Q��

such that gA restricts to an S1-equivariant, smoothly-strati®ed di¨eomorphism from
jÿ1

A �0�XOA onto Mt X gA�OA�.

If na e 0, then at a generic point �A; 0� A Mt where Ker
ÿ
DA � r�Q�� � f0g (assuming

the map from M w
k to the space of Fredholm operators of index na is transverse to the

``jumping lines strata'' as described in [41]) the Kuranishi model in Lemma 3.6 shows that a
neighborhood of �A; 0� A Mt contains no elements of M 0

t . Thus, such points in the anti-self-
dual moduli space are isolated from the subspace M0

t of non-zero-section points. For this
reason, we will restrict our attention to the cases where na > 0.

Although we can only describe a neighborhood of the anti-self-dual connections
locally, because of the problem of spectral ¯ow, we can still introduce a global, codimension-
one subspace of the compacti®cation Mt which will serve as a link. This space might not
have a fundamental class because it is not known to have locally ®nite topology near the
lower strata of the Uhlenbeck compacti®cation Mt. However, we shall see that the local
Kuranishi model in Corollary 3.6 will su½ce to de®ne intersections under some additional
assumptions.
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De®nition 3.7. The link of M w
k in Mt is given by

Lw; e
t;k � f�A;F; x� A Mt=S1: kFk2

L2 � eg:

We write Lw
t;k when the positive constant e is understood.

Lemma 3.8. For generic e > 0, the link Lw; e
t;k is closed under the S1 action, is a smoothly

strati®ed, closed subspace of Mt, and has codimension one in every stratum of Mt which it
intersects.

Proof. That Lw; e
t;k is closed under the S1 action follows directly from the de®nitions.

It is clear that the function

l: Mt ! R; �A;F; x� 7! kFk2
L2 ;

is smooth on each stratum of Mt: we claim it is continuous on Mt. Let �Aa;Fa� be a sequence
of points in Mt which converge to �Ay;Fy; x�. We may assume, by an appropriate choice
of a sequence of L2

k�1 spinu gauge transformations of V, that the sequence fFag converges
to Fy in Cy on X ÿ B�x; r�, where we de®ne B�x; r� � S

x Ax
B�x; r�. Therefore,��kFak2

L2�X� ÿ kFyk2
L2�X �

��e kFa ÿFyk2
L2�XÿB�x; r�� � kFa ÿFyk2

L2�B�x; r��

e kFa ÿFyk2
L2�XÿB�x; r�� � Cr4;

where the second inequality follows from the universal a priori C0 bound for the sequence
Fa and Fy given by [24], Lemma 4.4. Thus,

lim sup
a!y

��kFak2
L2�X� ÿ kFyk2

L2�X�
��eCr4; for all r > 0;

and so

lim
a!y
kFak2

L2�X � � kFyk2
L2�X�;

as desired. A generic e > 0 is a regular value for the function l on each smooth stratum
of Mt. For such an e, the preimage lÿ1�e� is a smooth submanifold of each stratum and
because the function l: Mt ! R is continuous, these smooth submanifolds ®t together to
form a smoothly strati®ed subspace of Mt (see Remark 3.3 in [18]). r

Remark 3.9. In de®ning a link, it might seem more natural to work with the image
of the e-sphere in the normal bundle given by Ker

ÿ
DA � r�Q��, at least on the image of

M w
k ,!Mt where the cokernel of the Dirac operator vanishes. This de®nition would have

the disadvantage of not being a global object because of the jumping-line problem (that is,
spectral ¯ow). However, it can be shown that the two functions de®ned on the open set O
of the Kuranishi model of �A; 0� in Corollary 3.6, one given by the L2 norm of the element
of Ker

ÿ
DA � r�Q��, the other de®ned by l � g are C1 close as e goes to zero, as they di¨er

by the di¨erence of g and the identity. As we shall see in O3.4.3 in [18] it is su½cient that
these two links are cobordant.
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3.3. Reducible PU(2) monopoles and their identi®cation with Seiberg-Witten mono-

poles. In this section we show that the subspaces of reducible PU�2� monopoles in Mt can
be identi®ed with the moduli spaces of Seiberg-Witten monopoles de®ned in O2.3.

3.3.1. Decomposing PU(2) bundles. We now describe the canonical isomorphisms of
associated bundles induced from a splitting E � L1 lL2 of a Hermitian two-plane bundle
E; the lemmas below are of course elementary and we just state them in order to make our
conventions clear.

Lemma 3.10. If E is a Hermitian two-plane bundle and L1, L2 are Hermitian line

bundles over a manifold X such that E � L1 lL2, then there is a canonical isometry of
SO�3� bundles, su�E�G iRl �L2 nL�1 �, given by

n ÿz

z ÿn

� �
7! �n; z�:�3:7�

Proof. With respect to the decomposition E � L1 lL2, any element M A gl�E�
takes the form

M � M11 M12

M21 M22

� �
;

where Mjk A Lj nL�k , for 1e j, k e 2. Thus, M11;M22 A C, after identifying

L1 nL�1 GL2 nL�2 GC:

If M A su�E�, then M11 A iR and M12 A L1 nL�2 with M22 � ÿM11 and M21 � ÿM12, so
any element of su�E� takes the shape

M � n ÿz

z ÿn

� �
; n A C; z A L2 nL�1 ;

and the desired isomorphism su�E�G iRl �L2 nL�1� is given by M 7! �n; z�.

We recall from [24], O2.4 that the induced ®ber inner product on gl�E� is de®ned by

hM;M 0i � 1

2
tr�M 0My�:

Thus, if M 0;M A Cy
ÿ
su�E�� correspond to �n 0; z 0�; �n; z� A Cy�iL0�lCy�L�, respectively,

we see that

hM 0;Mi � 1

2
tr�M 0My� � 1

2
tr

n 0 ÿz 0

z 0 ÿn 0

� �
n ÿz

z ÿn

� �
�3:8�

� n 0n� 1

2
�z 0z� z 0z� � n 0n�Rehz 0; ziC;

and so the isomorphism of SO�3� bundles is an isometry. r

Feehan and Leness, PU(2) monopoles and links92



3.3.2. The identi®cation of reducible PU(2) monopoles with Seiberg-Witten monopoles.
Next, we explain how reducible pairs in the moduli space of PU�2� monopoles may be
identi®ed with Seiberg-Witten monopoles.

Recall that Ct is the quotient space of pairs whose spinu connections induce the ®xed
unitary connection 2AL on the complex line bundle det�V��.

Lemma 3.11. Let s � �r;W� be a spinc structure over an oriented, Riemannian four-
manifold X and let t � �r;V� be a spinu structure with V �W lW nL. Then

i: ~Cs ,! ~Ct; �B;C� 7! �BlBnAL;Cl 0�;�3:9�

is a smooth embedding, where AL � AL n �Bdet��, and is gauge-equivariant with respect to

%: Gs ,! Gt; s 7! s idW l sÿ1 idWnL;�3:10�

so that

i
ÿ
s�B;C�� � %�s�i�B;C�:

The image of the map (3.9) contains all pairs in ~Ct ®xed by the action (3.2) of S1 on V. The

induced map,

i: Cs ,! Ct; �B;C� 7! �BlBnAL;Cl 0�;�3:11�

is continuous and, when restricted to C0
s , a topological embedding. If w2�t�3 0, then (3.11) is

a topological embedding of Cs. If w2�t� � 0 then the map (3.11) takes zero-section points in

Cs to zero-section reducibles in Ct, although this identi®cation of zero-section points need not
be injective if b1�X � > 0.

Proof. The map i: ~Cs ! ~Ct is clearly a Cy embedding. Furthermore,

%�s�i�B;C� � ÿs�Bl �sÿ1���BnAL�; sCl 0
�
:

Since AL � AL n �Bdet��, we see that s A Gs acts on AL as �sÿ2��AL (see also O3.4.2) and so
�sÿ1���BnAL� � s�Bn �sÿ2��AL. Thus, %�s�i�B;C� � i�s�B; sC�, as desired.

Next, we characterize the image of the map i: ~Cs ! ~Ct. Suppose �A;F� A ~Ct is
®xed by the S1 action (3.2) on V: this action descends to the action (3.3) on gt � iRlL,
which ®xes the induced connection Â. As in the proof of assertion (2) of Proposition 3.1,
the connection Â must then be reducible with respect to this splitting, taking the form
Â � dR lAL on gt and A � BlBnAL on V. Thus, �A;F� is in the image of i.

If UHCs is an open subset, it is easy to see that i�U� is open in i�Cs� with respect to
the subspace topology induced by Ct.

We now show i: C0
s ! Ct is injective and that i: Cs ! Ct is injective when w2�t�1j 0.

Suppose �B;C� and �B 0;C 0� are pairs in ~C0
s and that u A Gt satis®es ui�B;C� � i�B 0;C 0�,
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and thus �i�B;C�� � �i�B 0;C 0�� in Ct. With respect to the decomposition V �W nE and
splitting E � ClL, we can consider u to be a gauge transformation of E � ClL via the
isomorphism Gw

k GGt in Lemma 2.7 (and acting as the identity on W ) and write

u � s v

ÿv s

� �
; where s A Map�X ;C� and v A Cy

ÿ
Hom�L;C��;

noting that uÿ1 � uy and det�u� � 1. As in the proof of Lemma 2.9, we may write
i�B� � BnAE and i�B 0� � BnA 0E , where AE and A 0E � u�AE� are U�2� connections on E
which are reducible with respect to the splitting E � ClL. Let %L: S1 ! End�E� denote
the action of S1 on E by the trivial action on C and scalar multiplication on L. Then %L�S1�
®xes u�AE� and thus for all real y

uÿ1%L�eiy�u A StabU�2��AE� � S1 � S1;

where StabU�2��AE� is the stabilizer of AE in the space of unitary automorphisms of E.
Consequently, for every real y there are real constants m and n such that

1 0

0 eiy

� �
s v

ÿv s

� �
� s v

ÿv s

� �
eim 0

0 ein

� �
;

and we can assume eiy 3 1. Simplifying, this becomes

s v

ÿeiyv eiys

� �
� eims einv

ÿeimv eins

� �
:

If s1j 0, then we must have eim � 1 and thus v � 0 because eiyv � v. Since

det�u� � jsj2 � jvj2 � 1;

we see that s A Map�X ;S1�GGs. Hence, u � %�s� and �B;C� � �B 0;C 0� A Cs because
s�B;C� � �B 0;C 0�.

It remains to consider the case s1 0, for which we must then have vv � 1. First sup-
pose C1j 0 and observe that

u�Cl 0� � sClÿvC � C 0l 0;

so vC1 0 on X and hence C1 0, contradicting our hypothesis that �B;C� A C0
s . Therefore

the case s1 0 cannot occur in this situation. Thus, i: C0
s ! Ct is injective.

Otherwise, if s1 0, suppose w2�t�3 0 and observe that the automorphism

u A Aut�ClL�
induces an isomorphism LGC. But c1�E� � c1�L� and c1�E�1w2�t� �mod 2�: by the
hypothesis in the ®nal statement of the lemma, w2�t�3 0, so this contradicts LGC

and therefore the case s1 0 cannot occur in this situation either. Thus, if w2�t�3 0, the
map i: Cs ! Ct is injective. r

The following lemma highlights the key property of the PU�2� monopole equations:
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Lemma 3.12. Let �r;V� be a spinu structure on X. Suppose

�A;F� � �BlBnAL;Cl 0�
is a reducible pair with respect to a splitting V �W lW nL, where B is a spin connection

on W, AL is a unitary connection on a complex line bundle L, and C is a section of W�. Then
�A;F� solves the PU�2� monopole equations (2.32) if and only if �B;C� solves the Seiberg-

Witten equations (2.55) with perturbation h � F�AL
, where AL is the unitary connection on

det
1
2�V�� de®ned by equation (2.24) and AL � AL n �Bdet��.

Proof. Suppose that �A;F� solves the PU�2� monopole equations (2.32). With
respect to the splitting gt � iRlL, Lemma 2.9 implies that Â � dR lAL, where dR is
the product connection on iR and AL � AL n �Bdet�� is a unitary connection on the com-
plex line bundle L � det

1
2�V��n det�W���. Let E � ClL and observe that ~A � dC lAL

is a reducible unitary connection on E which is a lift of Â on su�E�. Then

F�~A �
0 0

0 F�AL

� �
� F�AL

n
0 0

0 1

� �
A Cy

ÿ
L�n u�E��;

and therefore, since F�
Â

A Cy
ÿ
L�n so

ÿ
su�E���, we have

adÿ1�F�
Â
� � �F�~A �0 � ÿF�AL

n

1

2
0

0 ÿ 1

2

0B@
1CA A Cy

ÿ
L�n su�E��:�3:12�

If F � Cl 0, where C A W0�W�� and writing u�V�� � u�W��n u�E�, we have

FnF� � CnC� 0

0 0

� �
� �CnC��n 1 0

0 0

� �
A Cy

ÿ
u�W��n u�E��:

Hence, projecting to su�W��n su�E�, we see that

�FnF��00 � �CnC��0 n
1

2
0

0 ÿ 1

2

0B@
1CA A Cy

ÿ
su�W��n su�E��:�3:13�

Furthermore, with respect to the splitting V� �W�lW�nL, we clearly haveÿ
DA � r�Q��F � ÿÿDB � r�Q��C; 0�:�3:14�

Then, combining equations (2.32), (3.12), (3.13), and (3.14), and noting that

FAL
� FAL

ÿ FBdet � FAL
ÿ Tr�FB�;

shows that the pair �B;C� solves

Tr�F�B � ÿ trÿ1�CnC��0 ÿ F�AL
� 0;�3:15� ÿ

DB � r�Q��C � 0:

Comparing (3.15) with the Seiberg-Witten equations (2.55) concludes the proof. r
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Lemma 3.13. Let X be a closed, oriented, Riemannian four-manifold with spinu

structure t having a splitting t � sl snL. If w2�t�3 0 then the map (3.11) of Cs into Ct

restricts to a topological embedding

i: Ms ,! Ct;�3:16�

whose image is the subspace of Mt represented by pairs �A;F� which are reducible with

respect to the splitting V �W lW nL, with F A L2
k�W�� and t � �r;V� and s � �r;W�.

If w2�t� � 0 then the map (3.11) takes zero-section points in Ms to zero-section reducibles

in Mt, although this identi®cation of zero-section points need not be injective when b1�X � > 0.

Proof. Given Lemma 3.11, we need only characterize the image of i. If �A;F� rep-
resents a point in Mt and is reducible with respect to the splitting V �W lW nL, with
F A L2

k�W��, then Lemma 3.11 implies that �A;F� � i�B;C�, for some pair �B;C� A ~Cs.
Then Lemma 3.12 implies that �B;C� satis®es the Seiberg-Witten equations (2.55) since
�A;F� satis®es the PU�2� monopole equations (2.32). r

3.4. The link of a stratum of reducible monopoles: local structure. The construction
of the link in Mt of the stratum Ms ,!Mt of reducible PU�2� monopoles occupies this and
the next subsection. Although for generic perturbations the locus Ms of reducible solutions
in Mt de®ned by a reduction t � sl snL will be a smooth manifold, the linearization
of the map S de®ned by the PU�2� monopole equations (2.32) need not be surjective at a
reducible solution and so the points of Ms might not be regular points of Mt. Moreover,
unlike the case of the link of M w

k , a local model of the link does not su½ce as only one
of our cohomology classes extends over Ms (and that one vanishes in many cases), so we
cannot use geometric representatives to cut down to a generic point in Ms.

We begin with a de®nition of link of a stratum in smoothly strati®ed space, essentially
following Mather [52] and Goresky-MacPherson [35]. We need only consider the relatively
simple case of a strati®ed space with two strata since the lower strata in

Mt GM�;0
t WM w

k W
S
s

Ms�3:17�

do not intersect when Mt contains no reducible, zero-section solutions. (The ®nite union
above over s is over the subset of all spinc structures for which Ms is non-empty and for
which there is a splitting t � sl s 0.)

De®nition 3.14. Let Z be a closed subset of a smooth, Riemannian manifold M, and
suppose that Z � Z0 WZ1, where Z0 and Z1 are locally closed, smooth submanifolds of M
and Z1 HZ0. (That is, Z is a smoothly strati®ed space with two strata in the sense of [58],
Chapter 11.) Let NZ1

be the normal bundle of Z1 HM and let O 0HNZ1
be an open

neighborhood of the zero section Z1 HNZ1
such that there is a di¨eomorphism g, com-

muting with the zero section of NZ1
(so gjZ1

� idZ1
), from O 0 onto an open neighborhood

g�O 0� of Z1 HM. Let OFO 0 be an open neighborhood of the zero section Z1 HNZ1
, where

O � OW qOHO 0 is a smooth manifold-with-boundary. Then LZ1
� Z0 X g�qO� is a link of

Z1 in Z0.

In the preceding de®nition, Z0 will be the intersection of M�;0
t with a neighborhood

of the image of Ms and Z1 will be identi®ed with Ms. Although the ambient manifold M
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in De®nition 3.14 is not required to be ®nite-dimensional, we shall impose this constraint
as we need to de®ne a fundamental class for the sphere bundle of NZ1

. Thus, we will need
to de®ne a ®nite-dimensional submanifold of Ct containingÐas smooth submanifoldsÐ
the image of Ms and an open neighborhood in Mt of the image of Ms. We ful®ll these
requirements in the next subsection by using a globalized, stabilized version of the local
Kuranishi model ([14], O4.2.4, [47]) de®ned by the deformation complex of the PU�2�
monopole equations (2.32). For the remainder of this subsection, we describe the split-
ting of this deformation complex, at a reducible PU�2� monopole, into deformation com-
plexes which are ``tangential'' and ``normal'' to the stratum Ms.

3.4.1. Decomposing the PU(2) elliptic deformation sequence at reducible pairs. In
this and the next two sub-subsections we describe how the elliptic deformation complex
for Mt at a point �A;F� in the image of Ms ,!Mt can be split into normal and tangential
components, where s � �r;W� and t � �r;V� with V �W lW nL as in Lemma 3.11.

Let �A;F� � i�B;C� be a pair in ~Ct, although not necessarily a solution to the PU�2�
monopole equations. We begin by considering the deformation sequence (2.47), namely

Cy�F0� ���!d 0
A;F

Cy�F1� ���!d 1
A;F

Cy�F2�;�3:18�

at a point �A;F� � �BlBnAL;Cl 0�, where AL � AL n �Bdet�� and the vector
bundles Fj, j � 0; 1; 2, are de®ned by

F0 � gt;�3:19�
F1 � L1 n gt lV�;

F2 � L�n gt lVÿ:

We shall also use L2
k�1ÿj�Fj�, the Hilbert spaces of L2

k�1ÿj sections for j � 0; 1; 2, when
applying these sequences. (The sequence is a complex if and only if S�A;F� � 0.) It will be
convenient to de®ne vector bundle splittings,

Fj GF t
j lF n

j ; j � 0; 1; 2;�3:20�

using the canonical isomorphism gt G iRlL of Lemma 3.10:

F t
0 � iL0 and F n

0 � L0 nR L � L;�3:21�
F t

1 � iL1 lW� and F n
1 � L1 nR LlW�nL;

F t
2 � iL�lWÿ and F n

2 � L�nR LlWÿnL:

Conversely, the decompositions (3.20) yield inclusions which we write as

i: F t
j ,! Fj and i: F n

j ,! Fj; j � 0; 1; 2:�3:22�

The motivation for the splitting is due to the fact that the component Cy�F t
1� will contain

vectors tangent to Ms while Cy�F n
1 � will contain those vectors normal to Ms. We note in
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passing that when the above vector bundles are given their natural ®ber inner products,
the splittings Fj � F t

j lF n
j de®ne isomorphisms of Riemannian vector bundles when the

bundles F t
j lF n

j are given their direct sum ®ber inner products.

3.4.2. Decomposing the group actions on the deformation sequence bundles. The
embedding Gs ,! Gt de®ned in (3.10) and two S1 actions on V �W lW nL of interest
to us, namely (3.1) and (3.2), induce corresponding group actions on the bundles F t

j , F n
j in

(3.21), arising in the decomposition (3.34) of the PU�2�-monopole deformation sequence
(3.18). For ease of later reference, we record the induced group actions here on F t

j and F n
j .

Writing V �W nE and E � ClL, we de®ned an embedding (3.10) of gauge
groups,

%: Gs ,! Gt; s 7! idW n
s 0

0 sÿ1

� �
:

Then the homomorphism Ad: Aut�E� ! Aut
ÿ
su�E��, u 7! u���uÿ1, induces an action of

%�s� on su�E�G iRlL via the isomorphism x 7! �n; z� in (3.7),

Ad
ÿ
%�s��x � s 0

0 sÿ1

� �
n ÿz

z n

� �
sÿ1 0

0 s

� �
� n ÿs2z

sÿ2z n

� �
;

where n A Cy�X ; iR� and z A Cy�X ;C�. Hence, the induced action of %�s� on
su�E�G iRlLÐvia the composition of the embedding %: Gs ,! Gt given by (3.10),
the map Ad: Aut�V� ! Aut

ÿ
su�V��, and the projection su�V� ! su�E� � gt given by

(2.13)Ðis trivial on the factor iR and acts as scalar multiplication by sÿ2 on the complex
line bundle L:

Ad � %: Gs � �iRlL� ! iRlL;
ÿ
s; �n; z�� 7! �n; sÿ2z�:�3:23�

Hence, the induced action of s A Gs is trivial on the bundles F t
j while on F n

j it acts as sÿ2

on the factors L j nR L and as sÿ1 on the factors WGnL.

The action (3.1) of S1 on V �W lW nL by scalar multiplication induces the
trivial action on gt � su�E�. Hence, S1 acts trivially on the factors iL j and L j nR L of F t

j ,
F n

j , whereas it acts by scalar multiplication on the factors WG and WGnL.

Finally, we consider the action (3.2) of S1 on V �W lW nL by the identity on
the factor W and as scalar multiplication on W nL. The induced action of S1 is trivial
on the factors F t

j while it acts by scalar multiplication on the factors F n
j .

3.4.3. Decomposing the di¨erentials in the deformation sequence at reducible pairs.
We now describe the splitting of the di¨erentials d

j
A;F in the sequence, when �A;F� � i�B;C�

is a reducible pair in ~Ct.

Recall from equation (2.47) that

d 1
A;F�a; f� � �DS�A;F�a; f� �

d�
Â

aÿ trÿ1�Fn f� � fnF��00ÿ
DA � r�Q��f� r�a�F

 !
:�3:24�
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If F � Cl 0 and f � clc 0, the quadratic term takes the form

Fn f� � fnF� � Cnc� � cnC� Cnc 0;�

c 0nC� 0

� �
;

and so

trÿ1�Fn f� � fnF��00

�
1

2
trÿ1�Cnc� � cnC��0 trÿ1�Cnc 0;��0

trÿ1�c 0nC��0 ÿ 1

2
trÿ1�Cnc� � cnC��0

0BB@
1CCA;

where the diagonal term
1

2
trÿ1�Cnc� � cnC��0 is in Cy�iL�� while the o¨-diagonal

term trÿ1�c 0nC��0 is in Cy�L�nL�. Indeed, we have

�c 0nC��0 A Cy
ÿ
sl�W��nC L

� � Cy
ÿ
su�W��nR L

�
;

since sl�W�� � su�W��nR C. The complex-linear Cli¨ord map restricts to a real-linear
isomorphism r: L� ! su�W��, so we have rÿ1�c 0nC��0 A Cy�L�nL�.

The Dirac-operator term DA � r�Q� � r�a�: Cy�V�� ! Cy�Vÿ� splits as

ÿ
DA � r�Q��f� r�a�F �

ÿ
DB � r�Q��c� r�a�Cÿ

DBnAL
� r�Q��c 0 � r�b�C

� �
;

noting that

a � a ÿb

b ÿa

� �
; with a A Cy�iL1� and b A Cy�L1 nL�:

By Lemma 2.9, Â � dR lAL. The term d�
Â

a A Cy�L�n gt� then splits as

d�
Â

a � d�a ÿd�A�
L
b

d�AL
b ÿd�a

 !
;�3:25�

where the diagonal term d�a is in Cy�iL��, and o¨-diagonal term d�AL
b is in Cy�L�nL�.

With respect to these identi®cations, the linear operator d 1
i�B;C�: Cy�F1� ! Cy�F2�

diagonalizes to give

d 1
i�B;C� �

d 1; t
i�B;C� 0

0 d 1;n
i�B;C�

 !
: Cy�F t

1�lCy�F n
1 � ! Cy�F t

2�lCy�F n
2 �;
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where d 1; t
i�B;C�: Cy�F t

1� ! Cy�F t
2� and d 1;n

i�B;C�: Cy�F n
1 � ! Cy�F n

2 � are the ``tangential'' and

``normal'' components of d 1
i�B;C�. More explicitly, the operator

d 1
i�B;C�:

Cy�iL1�lCy�W��;
l

Cy�L1 nL�lCy�W�nL�
!

Cy�iL��lCy�Wÿ�;
l

Cy�L�nL�lCy�WÿnL�

diagonalizes and the tangential component of d 1
i�B;C� is given by

d 1; t
i�B;C�: Cy�iL1�lCy�W�� ! Cy�iL��lCy�Wÿ�;

where we de®ne

d 1; t
i�B;C��a;c� �

d�aÿ 1

2
trÿ1�Cnc� � cnC��0ÿ

DB � r�Q��c� r�a�C

0@ 1A:�3:26�

Note that d 1; t
i�B;C� matches the Seiberg-Witten di¨erential d 1

B;C in equation (2.60), aside from
a factor of 2 in the d� component: the scaling factor has no signi®cance since we are only
interested in the kernels and cokernels of these operators. The normal component of d 1

i�B;C�
is given by

d 1;n
i�B;C�: Cy�L1 nL�lCy�W�nL� ! Cy�L�nL�lCy�WÿnL�;

where we de®ne

d 1;n
i�B;C��b;c 0� �

d�AL
b ÿ trÿ1�c 0nC��0ÿ

DBnAL
� r�Q��c 0 � r�b�C

 !
:�3:27�

This completes our description of the diagonalization of the di¨erential d 1
i�B;C�.

It remains to discuss the rather simpler diagonalization of the di¨erential d 0
i�B;C� with

respect to the splitting of Cy�F0� and Cy�F1� into normal and tangential components.
From Lemma 3.10 we see that elements z of Cy�gt�, recalling that L2

k�1�gt� � TidGt, may
be uniquely written as

z � f ÿk

k ÿ f

� �
;�3:28�

where f A Cy�X ; iR� is an imaginary-valued function and k A Cy�L�. Thus,

z � f l k A Cy�F t
0�lCy�F n

0 �:

Recall from equation (2.50) that the di¨erential d 0
A;F is de®ned by

d 0
A;Fz � �dÂz;ÿzF� A Cy�L1 n gt�lCy�V��; z A Cy�L1 n gt�:
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Note that

zF � f ÿk

k ÿ f

 !
� C

0

 !
� f C

kC

 !
;

dÂz � df ÿdA�
L
k

dAL
k ÿdf

 !
:

So, at the pair �A;F� � i�B;C� � �BlBnAL;Cl 0� we have

d 0
i�B;C�z �

 
df ÿdA�

L
k

dAL
k ÿdf

� �
;
ÿ f C

ÿkC

� �!
:

With respect to these identi®cations, the linear operator d 0
i�B;C�: Cy�F0� ! Cy�F1� diago-

nalizes to give

d 0
i�B;C� �

d 0; t
i�B;C� 0

0 d 0;n
i�B;C�

 !
: Cy�F t

0�lCy�F n
0 � ! Cy�F t

1�lCy�F n
1 �;

where d 0; t
i�B;C�: Cy�F t

0� ! Cy�F t
1� and d 0;n

i�B;C�: Cy�F n
0 � ! Cy�F n

1 � are the ``tangential'' and

``normal'' components of d 0
i�B;C�. More explicitly, the operator

d 0
i�B;C�:

Cy�iL0�
l

Cy�L�
!

Cy�iL1�lCy�W��
l

Cy�L1 nL�lCy�W�nL�

diagonalizes and the tangential component of d 0
i�B;C� is given by

d 0; t
i�B;C�: Cy�iL0� ! Cy�iL1�lCy�W��;�3:29�

where we de®ne

d 0; t
i�B;C�f � �df ;ÿ f C�:

Note that d 0; t
i�B;C� matches the gauge group di¨erential d 0

B;C in equation (2.58). The normal

component of d 0
i�B;C� is given by

d 0;n
i�B;C�: Cy�L� ! Cy�L1 nL�lCy�W�nL�;�3:30�

where we de®ne

d 0;n
i�B;C�k � �dAL

k;ÿkC�:

This completes our description of the diagonalization of the di¨erential d 0
i�B;C�.
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Recall from [24], Equation (2.38) that the L2 adjoint of d 0
A;F is given by

d 0;�
A;F�a; f� � d �

Â
aÿ ��F��f; �a; f� A Cy�L1 n gt�lCy�V��:�3:31�

The L2 adjoint d 0;�
i�B;C�: Cy�F1� ! Cy�F0� then diagonalizes to give

d 0;�
i�B;C� �

d 0; t;�
i�B;C� 0

0 d 0;n;�
i�B;C�

 !
: Cy�F t

1�lCy�F n
1 � ! Cy�F t

0�lCy�F n
0 �;

where d 0; t;�
i�B;C�: Cy�F t

1� ! Cy�F t
0� is given explicitly by

d 0; t;�
i�B;C�: Cy�iL1�lCy�W�� ! Cy�iL0�;

with

d 0; t;�
i�B;C��a;c� � d �aÿ ImhC;ci;�3:32�

and d 0;n;�
i�B;C�: Cy�F n

1 � ! Cy�F n
0 � is explicitly given by

d 0;n;�
i�B;C�: Cy�L1 nL�lCy�W�nL� ! Cy�L�;

with

d 0;n;�
i�B;C��b;c 0� � d �AL

b � c 0nC�:�3:33�

Of course, these L2 adjoints are de®ned in the usual way by

�d �aÿ ImhC;ci; f �L2 � �a; df �L2 ÿ �c; f C�L2 ;

�d �AL
b � c 0nC�; k�L2 � �b; dAL

k�L2 � �c 0; kC�L2 ;

for all f A Cy�iL0� and k A Cy�L�, where

� f C;c�L2 � � f ; hc;Ci�L2 � � f ; hC;ci�L2 ;

�kC;c 0�L2 � �k;c 0nC��L2 :

This completes our description of the diagonalization of the L2 adjoint d 0;�
i�B;C�.

The above discussion implies that the deformation sequence (3.18) splits when
�A;F� � i�B;C�:

Cy�F t
0� ���!d 0; t

i�B;C�
Cy�F t

1� ���!d 1; t

i�B;C�
Cy�F t

2�;�3:34�

Cy�F n
0 � ���!d 0; n

i�B;C�
Cy�F n

1 � ���!d 1; n

i�B;C�
Cy�F n

2 �:
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These sequences form complexes if and only if S�A;F� � 0, in which case they give
the tangential and normal deformation complexes for the PU�2� monopole equations at a
reducible solution, so it is convenient to consider the rolled-up sequences

Cy�F t
1� ���!D t

i�B;C�
Cy�F t

0�lCy�F t
2�;

Cy�F n
1 � ���!Dn

i�B;C�
Cy�F n

0 �lCy�F n
2 �;

comprising the tangential and normal components of the rolled-up deformation sequence

Di�B;C�: Cy�F1� ! Cy�F0�lCy�F2�

for the PU�2� monopole equations. The tangential and normal components of the deforma-
tion operator Di�B;C� � d 0;�

i�B;C� � d 1
i�B;C� are given by

D t
i�B;C� � d 0; t;�

i�B;C� � d 1; t
i�B;C� and Dn

i�B;C� � d 0;n;�
i�B;C� � d 1;n

i�B;C�;

so that we have a decomposition

Di�B;C� � D t
i�B;C�lDn

i�B;C�:�3:35�

More explicitly, we see from (3.26) and (3.32) that the tangential component

D t
i�B;C�: Cy�iL1�lCy�W�� ! Cy�iL0�lCy�iL��lCy�Wÿ��3:36�

of Di�B;C� is given by

D t
i�B;C��a;c� �

d �aÿ ImhC;ci

d�aÿ 1

2
trÿ1�Cnc� � cnC��0ÿ

DB � r�Q��c� r�a�C

0BBB@
1CCCA;

while from (3.27) and (3.33) the normal component

Dn
i�B;C�: Cy�L1 nL�lCy�W�nL��3:37�

! Cy�L�lCy�L�nL�lCy�WÿnL�

of Di�B;C� is given by

Dn
i�B;C��b;c 0� �

d �AL
b � c 0nC�

d�AL
b ÿ trÿ1�c 0nC��0ÿ

DBnAL
� r�Q��c 0 � r�b�C

0B@
1CA:

Note the operators d 0;n
i�B;C� and d 1;n

i�B;C�, and thus Dn
i�B;C�, are complex linear when the vector

bundles F n
j , j � 0; 1; 2, are given the natural complex structures induced by the S1 action

on L.
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If S�A;F� � 0, the two sequences in (3.34) de®ne cohomology groups H�; t
i�B;C�

and H�;n
i�B;C�, respectively, which we may compare with the cohomology groups H�i�B;C� and

H�B;C of the PU�2� monopole deformation complex (2.47) at the pair i�B;C� A ~Mt and the
cohomology groups H�B;C of the Seiberg-Witten deformation complex (2.61) at the pair
�B;C� A ~Ms:

Lemma 3.15. Continue the above notation and require that i�B;C� be a (reducible)
PU�2� monopole. For the elliptic deformation complex (2.47) de®ned by the PU�2� monopole

equations (2.32) and the automorphism group Gt, we have the following canonical iso-

morphisms of cohomology groups,

H�; t
i�B;C�GH�B;C;

and hence,

H�i�B;C�GH�B;C lH�;n
i�B;C�:

Moreover, if C1j 0 then H 0
B;C � 0, while if H 2

B;C � 0 then H 2
i�B;C�GH 2;n

i�B;C�.

Proof. The isomorphisms identifying the cohomology of the tangential deformation
complex with that of the Seiberg-Witten complex follow immediately from a comparison of
these two complexes.

If C1j 0, then H 0
B;C � 0. Also, if C1j 0, then the de®nition following (3.30) implies

that H 0;n
i�B;C�� 0. Therefore, H 0

i�B;C�� 0. Moreover, if H 2
B;C � 0, then H 2

i�B;C�� H 2;n
i�B;C�. r

Transversality for the Seiberg-Witten equations (Proposition 2.16) implies H 2
B;C � 0.

3.5. The link of a stratum of reducible monopoles: global structure. Our task in this
subsection is to construct an ambient ®nite-dimensional, smooth submanifold Mt�X; s�HCt

containing Ms as a smooth submanifold, as required by the de®nition of the link in De®-
nition 3.14. Recall that S is the section of the S1-equivariant, in®nite-rank ``obstruction
bundle''

V � ~Ct �Gt L2
kÿ1�F2� ! Ct�3:38�

de®ned by the PU�2� monopole equations (2.32) and this section need not vanish trans-
versely along Ms.

To motivate the construction of the ambient manifold Mt�X; s� given in this sub-
section, suppose temporarily that the cokernel of DA;F has constant rank as �A;F� varies
in the image of Ms ,!Mt (that is, no spectral ¯ow occurs). Then we obtain a ®nite-
rank, S1-equivariant vector bundle Coker D over Ms, with ®bers CokerDA;F. Let 2n be
the least positive eigenvalue of the Laplacian DA;F � DA;FD

�
A;F as �A;F� varies along

the image of the compact manifold Ms and let PA;F; n denote the L2 orthogonal projec-
tion from L2

kÿ1�F2� onto the subspace spanned by the eigenvectors of DA;F with eigenvalue
less than n. The vector bundle Coker D over i�Ms�HCt then extends to a vector bundle
Xn � Ker P?n D � Coker P?n D, where P?n � idÿPn, of the same rank over an open neigh-

Feehan and Leness, PU(2) monopoles and links104



borhood of i�Ms�HCt. Arguing as in Lemma 3.16, one can see that the space Ms would be
a smooth submanifold of Ct. Then both Ms and an open neighborhood in M�;0

t of i�Ms�
would be smooth submanifolds of the S1-invariant ``thickened'' moduli space,

Mt�Xn; s� � �P?n S�ÿ1�0�HCt;

a ®nite-dimensional, smooth, S1-invariant manifold which serves as the ambient, ®nite-
dimensional, smooth manifold ``M'' of De®nition 3.14. Ambient manifolds of this form,
de®ned by spectral projections as above, have been used by Donaldson [13], Friedman-
Morgan [31], and Taubes [71], [72] to describe neighborhoods of the stratum

f�Y�g� Symk�X�
containing the trivial connection Y in the Uhlenbeck compacti®cation of the moduli space
M w

k of anti-self-dual connections when w � 0.

In practice, one cannot guarantee that Coker D will either vanish or even have con-
stant rank due to spectral ¯ow, so we must resort to a more general construction of an S1-
equivariant vector bundle X over an open neighborhood of the image of Ms in Ct which
``spans'' Coker D along Ms. The method we employ is an extension of one used by Atiyah
and Singer to construct the index bundle or determinant-line bundle of a family of elliptic
operators ([6], pp. 122±127, [14], O5.1.3 and O5.2.1). The Atiyah-Singer method has also
been exploited by Furuta [32], T.-J. Li and Liu [51], J. Li and Tian [50], and Ruan [65],
[66], [67] to construct certain ``global Kuranishi models'' (or ``virtual'' or ``thickened''
moduli spaces) parameterizing spaces of Seiberg-Witten monopoles or pseudo-holomorphic
curves; related ideas are contained in [11], [69]. The principal di¨erence between our con-
struction and those of Li-Liu, Li-Tian, or Ruan is that the vector bundle replacing Coker D
is de®ned over an open neighborhood in the original con®guration space Ct rather than on
an arti®cial, augmented con®guration space, such as Cr � Ct. In this sense, our construc-
tion is closer to that of [13], [31], [71], [72] and corresponds to the alternative construction
of index bundles discussed in [4], pp. 153±166, [9], O1.7; we ®nd this second stabilization
technique more convenient when constructing links of lower-level strata of reducibles via
gluing in [19], [20], [21].

3.5.1. Smooth embeddings. We recall that our abstract de®nition of a link of the
lower stratum of a two-stratum space (see De®nition 3.14) requires an ambient smooth
manifold containing the strata. As a ®rst step in the construction of a ®nite-dimensional
ambient manifold, we use the decompositions of O3.4 to show that the topological embed-
ding Ms ,! C0

t of Lemma 3.13 is smooth, so Ms is a smooth submanifold of C0
t .

Lemma 3.16. Let t be a spinu structure on a closed, oriented, smooth four-manifold X,
with reduction t � sl snL. Let i: C0

s ,! C0
t be the map in Lemma 3.13. Then the following

hold:

. The map i: C0
s ! C0

t is a smooth immersion, and

. the map i: M 0
s ,! C0

t is a smooth embedding, so M 0
s is a submanifold of C0

t .

Proof. Let �B;C� be a point in C0
s : by the slice theorem for C0

s , the restriction of the

projection map ~C0
s ! C0

s � ~C0
s =Gs to a small enough open neighborhood of �B;C� in the
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slice �B;C� �Ker d�;0B;C gives a smooth parameterization of an open neighborhood of �B;C�
in C0

s . Similarly, by the slice theorem [24], Proposition 2.8 for C0
t , the restriction of the

projection map ~C0
t ! C0

t � ~C0
t =Gt to a small enough open neighborhood of i�B;C� in the

slice i�B;C� �Ker d�;0
i�B;C� gives a smooth parameterization of an open neighborhood of

�i�B;C�� in C0
t . Comparing the operators d 0;�

B;C in equation (2.59) and d 0; t;�
i�B;C� in equation

(3.32), we see that the di¨erential of the smooth embedding

i: ~C0
s ! ~C0

t ; �B;C� 7! �BlBnAL;Cl 0�;
of Lemma 3.11 restricts to an isomorphism

Di: Ker d�;0B;C GKer d�;0; t
i�B;C�HKer d 0; t;�

A;F lKer d 0;n;�
A;F � Ker d�;0B;C:

Hence, the di¨erential Di: TB;CC
0
s ! Ti�B;C�C0

t is injective and the induced maps i: C0
s ! C0

t
and i: M 0

s ! C0
t are smooth immersions. Since the map i: M 0

s ! C0
t is a topological

embedding according to Lemma 3.13, and is a smooth immersion, the map i: M 0
s ! C0

t is
a smooth embedding. r

3.5.2. Construction of the stabilized cokernel bundle. Again, we assume that there
are no zero-section reducible monopoles in Ms. For any representative �A;F� of a point
in the image of i: Ms ,!Mt, we have Coker�DS�A;F � Coker d 1;n

A;F HL2
kÿ1�F n

2 �, since

�DS�A;F � d 1
A;F (by de®nition) and Coker d 1; t

A;F � 0. The splitting of the last term of the
elliptic deformation complex (3.18) at a reducible PU�2� monopole into tangential and
normal deformation components (3.34) yields a splitting of the corresponding complexes
of Hilbert bundles,

V � ~C0
t �Gt L2

kÿ1�F2�G ~C0
t �Gt L2

kÿ1�F t
2 lF n

2 �;�3:39�
when restricted to i�Ms�. This splitting can be seen by using a reduction of the structure
group Gt to Gs:

Vji�Ms�G i� ~Ms� �Gs L2
kÿ1�F2�GV t lVn;�3:40�

where V t � i� ~Ms� �Gs L2
kÿ1�F t

2�;
Vn � i� ~Ms� �Gs L2

kÿ1�F n
2 �:

The action (3.2) of S1 on V �W lW nL induces the trivial action of S1 on the bundle
V t and the standard action by complex multiplication on Vn; see the action (3.3) of S1 on
gt G iRlL induced by the action of S1 on V.

Note that although the splitting (3.40) is not well-de®ned away from the stra-
tum i�Ms�, since the full gauge group Gt does not preserve the splitting of the ®ber,
L2

kÿ1�F2�GL2
kÿ1�F t

2�lL2
kÿ1�F n

2 �, the circle action on L2
kÿ1�F2� induced by the circle action

(3.2) on V does preserve this splitting, with the circle acting trivially on L2
kÿ1�F t

2� and
by complex multiplication on L2

kÿ1�F n
2 �. Hence, the vector bundle (3.39) is S1 equivariant

with respect to the circle action on the ®ber L2
kÿ1�F t

2 lF n
2 � induced by the circle action

(3.2) on V.

We use the preceding observation below to de®ne a ®nite-rank, real subbundle XHV
with an almost complex structure when restricted to i�Ms�. (If the requirement that
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X! i�Ms� has an almost complex structure were dropped then we would not require the
splitting into tangential and normal components in order to construct X.) We shall need the
following well-known consequence of Kuiper's result that the unitary group of a Hilbert
space is contractible [46], Theorem 3 (see also [9], OI.7, p. 67 or [49], p. 208):

Theorem 3.17 ([46], p. 29). Let M be a compact topological space or a space which

has the homotopy type of a CW complex. Then every vector bundle over M, with ®ber an

in®nite-dimensional, real or complex separable Hilbert space H and structure group GL�H�,
is trivial.

We have the following version of Kuiper's result in the smooth category:

Corollary 3.18. Let M be a smooth manifold which is compact or has the homo-

topy type of a CW complex. Then every Cy vector bundle over M, with ®ber an in®nite-
dimensional, real or complex separable Hilbert space H and structure group GL�H�, has a

global Cy trivialization.

Proof. If W is a vector bundle over M with ®ber a Hilbert space H, then Theorem
3.17 yields a C0 trivialization t: W!M � H, that is, a C0 section t of the Cy Hilbert
bundle Hom�W;M � H� over M which gives a linear isomorphism on each ®ber. Now
suppose that ty is a Cy section of the bundle Hom�W;M � H�. If ty is chosen so that
kt�p� ÿ ty�p�k is su½ciently small for each p A M, then ty is an isomorphism on each
®ber and gives the desired global, Cy trivialization. r

Note that if we are given a vector bundle W over a space M with ®ber a separable
Hilbert space H and structure group G HU�H�, then we have an isomorphism of vector
bundles WGFr�W� �U�H� H, where Fr�W� is the principal U�H� bundle of unitary frames
for W. Recall that a quasi-subbundle V 0 !M of a smooth vector bundle p: V !M over a
manifold M is a closed subspace V 0HV such that pjV 0 is still surjective and each ®ber of
pjV 0 is a linear subspace [40], De®nition 1.2.

Theorem 3.19. Assume that the moduli space Ms contains no zero-section pairs. Then

there is an open neighborhood U of the subspace i�Ms� in Ct, which does not contain any
zero-section pairs or other reducibles, and a ®nite-rank, smooth, trivial, vector subbundle

X! U of V! U, which is S1 equivariant with respect to the circle action (3.2), such that the

following hold:

(1) The restriction of X to i�Ms� is a complex vector bundle.

(2) The smooth bundle map PX? : V! X? de®ned by the ®berwise L2-orthogonal pro-

jection PX? onto the subbundle X? ! U restricts to a surjective ®ber map

PX? : Ran�DS�A;F ! X?A;F

for any point �A;F� A U.

(3) If �A;F� is an L2
l representative of a point in U, for some integer k e ley, then

the ®ber XA;F is contained in L2
l�F2� � L2

l�L�n gt�lL2
l�Vÿ�.
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Proof. By Corollary 3.18, there is a smooth trivialization of Vn given by a smooth
isomorphism of complex Hilbert bundles,

t: Vn G i�Ms� � L2�F n
2 �;

as the space Gs (of L2
k�1 gauge transformations) is a subgroup of the unitary group of the

Hilbert space L2�F n
2 �. We have an equality of L2-orthogonal complements,

�Ran DSA;F�? � �Ran d 1;n
A;F�?HL2�F n

2 �;

for every �A;F� A i� ~Ms�, by Lemma 3.15 and the fact that Ran d 1; t
A;F � L2�F t

2� by Proposi-
tion 2.16, for generic parameters t. Thus, the family of operators fd 1;n

A;F: �A;F� A i� ~Ms�g
de®nes quasi-subbundles Ran d1;n and �Ran d1;n�? of Vn ! i�Ms� with ®bers

Ran d1;nj�A;F� � f�A 0;F 0;Ran d 1;n
A 0;F 0 �: �A 0;F 0� A �A;F�g=Gt:

For each point �A;F� A i�Ms�, we de®ne

V?�A;F� � t�Ran d1;nj�A;F��HL2�F n
2 �:

Observe that there is an open neighborhood U�A;F�H i�Ms� with the property that for all
�A 0;F 0� A U�A;F�, the map

t�Ran d1;nj�A 0;F 0�� ! V?�A;F�

de®ned by L2-orthogonal projection onto V?�A;F� is surjective. Since i�Ms� is compact, it

has a ®nite subcover U�Aa;Fa� of such neighborhoods. If V �L
a

V�Aa;Fa�, then V is a ®nite-

dimensional, complex subspace of L2�F n
2 �. If we de®ne X 00 ! i�Ms� by setting

X 00 � tÿ1
ÿ
i�Ms� � V

�
;

then X will be a complex, ®nite-dimensional, trivial subbundle of Vnji�Ms� such that ®berwise
L2-orthogonal projection onto the subbundle X?HVnji�Ms� is surjective when restricted to
the quasi-subbundle Ran d1;n.

We now extend the bundle X 00 ! i�Ms� to a subbundle of V over an open neigh-
borhood U of i�Ms� in C0

t , which does not contain any other reducible or zero-section
pairs, and which is S1 equivariant with respect to the circle action (3.2). The space Ms is
a smooth submanifold of the Riemannian manifold C0

t by Lemma 3.16 and so it has an
S1-equivariant normal bundle p: N! i�Ms� and an S1-invariant tubular neighborhood
given by an S1-equivariant di¨eomorphism

g: OHN! UHC0
t ;

from an open, S1-invariant neighborhood O of the zero section of N onto an open,
S1-invariant neighborhood of i�Ms� in C0

t (see, for example, [10], p. 306). The bundle
projection p and the di¨eomorphism g de®ne an S1-equivariant, Cy retraction,

r � p � gÿ1: UHC0
t ! i�Ms�:
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The complex vector bundle X 00 ! i�Ms� then extends to a vector bundle r�X 00 ! U, a sub-
bundle of r��Vji�Ms�� ! U, which are both S1 equivariant with respect to the circle action
(3.2). Since the map r is an S1-equivariant, Cy retraction, there is an S1-equivariant, Cy

isomorphism ([37], Theorem 4.1.5, [39]),

f: VjU ! r��Vji�Ms��:

We obtain a Cy subbundle of the vector bundle VjU by setting

X 0 � fÿ1�r�X 00� ! U;

both S1 equivariant with respect to the action (3.2). Because X 00 ! i�Ms� is isomorphic to
i�Ms� � CrX as a complex vector bundle, for some rX A N, we obtain an isomorphism of
S1-equivariant vector bundles,

X 0GU� CrX ;

since the maps f and r are S1 equivariant; the circle acts non-trivially on U, except along
the stratum i�Ms�, and acts by complex multiplication on CrX .

By construction, the ®berwise L2-orthogonal projection VjA;F ! �X 0A;F�? restricts to
a surjective map Ran d 1

A;F ! �X 0A;F�? for any pair �A;F� representing a point in U, after
shrinking U if necessary.

Given an L2
k pair �A;F� representing a point in UHC0

t , our construction yields a
subspace

X 0A;F HL2�F2� � L2�L�n gt�lL2�Vÿ�:

If lf k is an integer, it does not necessarily follow that X 0A;F is contained in the subspace
of L2

lÿ1 pairs when �A;F� is an L2
l pair. However, for any t > 0 the heat operator

exp
ÿÿt�1� d 1

A;Fd 1;�
A;F�

�
: L2�L�n gt�lL2�Vÿ� ! L2

lÿ1�L�n gt�lL2
lÿ1�Vÿ�

is a bounded, Gt-equivariant, S1-equivariant, linear map and we can de®ne

XA;F � exp
ÿÿt�1� d 1

A;Fd 1;�
A;F�

�
X 0A;F:

For small enough t � t�U�, the approximation properties of the heat kernel (see [24],
Lemma A.1 for a similar application), ensure that

. X! U is a trivial, S1-equivariant vector bundle, with the same rank as X 0, and

. L2-orthogonal projection VjA;F ! X?A;F restricts to a surjective map

Ran d 1
A;F ! X?A;F

for any pair �A;F� representing a point in U.
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We let PX: V! X be the Cy bundle map de®ned by ®berwise L2-orthogonal pro-
jection. This completes the proof. r

3.5.3. De®nition of the thickened moduli space and the link. With Theorem 3.19 in
place, we can ®nally construct the required ambient, ®nite-dimensional, smooth manifold
of De®nition 3.14 and the link of the singular stratum of reducibles.

De®nition 3.20. Assume Ms contains no zero-section pairs. Let X be a ®nite-rank,
smooth, S1-equivariant vector bundle over an open neighborhood of i�Ms� in Ct such that,
as in Theorem 3.19, L2-orthogonal projection gives a surjective map of quasi vector bun-
dles Ran DS! X? over Ms. We say that X is a stabilizing bundle for Ran DS and call

Mt�X; s� � �PX?S�ÿ1�0�HCt�3:41�

the thickened moduli space de®ned by X. If �A;F� A ~Ct represents �A;F� A Ct, we write
Xj�A;F� for the subspace of L2

kÿ1�F2� representing the ®ber of X over �A;F�. We then de®ne

Nt�X; s� � Ker�PX?D
n�;�3:42�

a complex, ®nite-rank, smooth vector bundle over Ms with ®bers

Nt�X; s�j�A;F�GKer�d 0;n;�
A;F �PX?d 1;n

A;F�;

noting that Dn
A;F � d 0;n;�

A;F � d 1;n
A;F for �A;F� A i�Ms�.

Theorem 3.21. Suppose that the spinu structure t admits a reduction t � sl snL.
Assume Ms contains no zero-section pairs. Then the following hold:

(1) There is an S1-invariant, open neighborhood U of i�Ms� in Ct such that the zero

locus UXMt�X; s� is regular and so a manifold of dimension dimMt � rankR X.

(2) The space Ms is a smooth, S1-invariant submanifold of Mt�X; s�.

(3) The bundle Nt�X; s� is a normal bundle for the submanifold i: Ms ,!Mt�X; s� and
the tubular map is equivariant with respect to the circle action on Nt�X; s� given by the trivial

action on the base Ms and complex multiplication on the ®bers, and the circle action on

Mt�X; s� induced from the S1 action (3.2).

(4) The restriction of the section S to Mt�X; s� takes values in X and vanishes trans-

versely on Mt�X; s� ÿ i�Ms�.

Proof. The space Mt�X; s� is the zero locus of the section T � PX?S of a vector
subbundle X? ! UHCt of VjU constructed in Theorem 3.19, for some open neighbor-
hood U of i�Ms� in Ct. For any point �A;F� A i�Ms�HSÿ1�0�, we have

�DT�A;F � PX?�DS�A;F:
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(The di¨erential of PX does not appear here since S�A;F� � 0.) According to De®nition
3.20, the L2-orthogonal projection PX? gives a surjective map

PX? : Ran�DS�A;F ! X?A;F

and thus �DT�A;F is surjective at all points �A;F� in the image of Ms. Surjectivity is an
open condition, so we may assume that DT is surjective on the open neighborhood U of
i�Ms�HCt, after shrinking U if necessary. The zero locus of T in this open set is regular
and thus a smooth submanifold of Ct, which gives assertion (1).

By Lemma 3.16 the space Ms is a smooth submanifold of Ct and as its image is
contained in Mt�X; s�, it is also a smooth submanifold of Mt�X; s� and assertion (2) follows,
as the zero locus of an S1-equivariant section is S1 invariant.

We observe that Nt�X; s� is the normal bundle of Ms in Mt�X; s�, since

TA;FMt�X; s� � Ker d 0;�
A;F XKer PX?�DS�A;F�3:43�

� �Ker d 0; t;�
A;F lKer d 0;n;�

A;F �X �Ker d 1; t
A;F lKer PX?d 1;n

A;F�
� KerD t

A;F lKer PX?D
n
A;F

� TA;Fi�Ms�lNt�X; s�jA;F:

In the second equality above, we make use of the fact that the ®bers of the vector bundle
X! i�Ms� are contained in L2

kÿ1�F n
2 � and so (by de®nition) PX � 0 on

L2
kÿ1�F t

0�lL2
kÿ1�F t

2�IRanD t
A;F:

Also, the splitting (3.43) of tangent spaces corresponds to the splitting of Hilbert spaces
L2

k�F1�GL2
k�F t

1�lL2
k�F n

1 �, de®ned by the subspaces (3.21). Hence, the isomorphism (3.43)

is equivariant with respect to the circle action (3.2) on the subspace TA;FMt�X; s� of L2
k�F1�,

the trivial action on the subspace TA;Fi�Ms� of L2
k�F t

1�, and complex multiplication on the
subspace Nt�X; s�jA;F of L2

k�F n
1 �. This proves assertion (3).

Because Mt�X; s� is given by UX �PX?S�ÿ1�0� � UXSÿ1�X�, we see that S takes
values in X on Mt�X; s� and so PX?S � S on Mt�X; s�. According to Theorem 2.13, our
transversality result for the section S of VjU � X?lX de®ned by the PU�2� monopole
equations (2.32), the section S vanishes transversely on Uÿ i�Ms� with zero locus
�UXMt�ÿ i�Ms�. This implies that for each �A;F� in ÿUÿ i�Ms�

�
XSÿ1�0�, the di¨erential

�DS�A;F: T�A;F�C
�;0
t ! Vj�A;F�

is surjective. But we have the identi®cations

T�A;F�Mt�X; s� � Ker
ÿ
D�PX?S�

�
�A;F�

� Ker�PX?DS��A;F� �since S�A;F� � 0�

� �DS�ÿ1
�A;F��Xj�A;F��;
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and so one has a surjective di¨erential

�DS��A;F�: T�A;F�Mt�X; s� ! Xj�A;F�;

for �A;F� A ÿUÿ i�Ms�
�
XSÿ1�0�. Thus, the sections PX?S and SÐwhich are equal on

Mt�X; s�Ðvanish transversely when restricted to Mt�X; s�, proving assertion (4). r

The equivariant tubular neighborhood theorem (see [10], p. 306 for the ®nite-
dimensional, G-equivariant case and [48] for the in®nite-dimensional case) provides an
embedding

g: O ,! Ct;�3:44�

mapping an open, S1-invariant neighborhood O of the zero-section Ms HNt�X; s� onto an
open neighborhood of the submanifold i: Ms ,!Mt�X; s� which covers the embedding i;
the map (3.44) is S1-equivariant with respect to scalar multiplication on the ®bers of
Nt�X; s� and the circle action induced by (3.2) on Ct.

The map g then descends to a homeomorphism, and a di¨eomorphism on smooth
strata, from the zero locus jÿ1�0�=S1 in Nt�X; s�=S1 onto an open neighborhood of i�Ms�
in the actual moduli space, Mt, where we de®ne

j � PXS � g;�3:45�

to be an S1-equivariant obstruction section over OHNt�X; s� of the S1-equivariant obstruc-

tion bundle

g�X! Nt�X; s�:�3:46�

This descends to a vector bundle

�g�X�=S1 ! Nt�X; s�=S1

on the complement of the zero section, Ms HNt�X; s�=S1, whose Euler class may be com-
puted from

�g�X�=S1 G �p�NX�=S1 ! Nt�X; s�=S1;

where pN : Nt�X; s� !Ms is the projection.

We can now construct the link of Ms in Mt, following De®nition 3.14.

De®nition 3.22. Assume Ms contains no zero-section pairs. Let N e
t �X; s�HNt�X; s�

be the sphere bundle of ®ber vectors of length e and set

PNt�X; s� � N e
t �X; s�=S1:

The link of the stratum i�Ms�HMt of reducible PU�2� monopoles is de®ned by

Lt; s � g
ÿ
jÿ1�0�XPNt�X; s�

�
HM�;0

t =S1:�3:47�
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The orientation for Lt; s is de®ned by the orientation on Ms and in turn from the homology
orientation W (see [56], O6.6) and the complex structure on the ®bers of Nt�X; s� given by the
S1 action. We treat the quotient PNt�X; s� as the complex projectivization of a complex
vector bundle; we use the complex orientation on the obstruction bundle g�X in (3.46).

The following lemma shows that the link Lt; s can be represented homologically.

Lemma 3.23. Assume Ms contains no zero-section pairs. Then for generic e, the sec-
tion j of the obstruction bundle g�X in (3.46) vanishes transversely on N e

t �X; s�.

Proof. From the ®nal statement of Theorem 3.21, we see that j vanishes trans-
versely on Mt�X; s� ÿ i�Ms� and so j cuts out the zero locus, Mt ÿ i�Ms�, as a regular
submanifold of Mt�X; s� ÿ i�Ms�. Then for generic values of e, the zero locus will intersect
N e

t �X; s� transversely. r

Lemma 3.23 implies that

�Lt; s� � e
ÿ�g�X�=S1

�
X �PNt�X; s���3:48�

is the homology class of the link in De®nition 3.22.

3.5.4. Group actions and lifts of the normal bundle embedding to the pre-con®guration
space. In [18] we shall need a lift of the S1-equivariant di¨eomorphism g from a neigh-
borhood OHNt�X; s� of the zero-section Ms onto an open neighborhood of i�Ms� in the
thickened moduli space Mt�X; s�HCt,

~g: ~OH ~Nt�X; s� ! ~Mt�X; s�;�3:49�

where ~OH ~Nt�X; s� is an S1 and Gs invariant open neighborhood of ~Ms and

~Mt�X; s� � pÿ1
ÿ
Mt�X; s�

�
if p : ~Ct ! ~Ct=Gt � Ct is the projection. It is convenient to describe the construction here.
As usual, we need only consider the case where Ms contains no zero-section pairs.

To see what should be the ``correct'' equivariance properties of the lift (3.49), we ®rst
consider the obvious extension i: Nt�X; s� ! Ct of the embedding i: Ms ,! Ct, since g

approximates this extension on a small open neighborhood of the zero section, Ms. Let
~Ms � pÿ1�Ms�H ~Cs be the preimage of Ms HCs under the projection ps: ~Cs ! ~Cs=Gs,

and let

~Nt�X; s� � p�s Nt�X; s� ! ~Ms

be the Gs-equivariant pullback bundle, so

~Nt�X; s�H ~Ms � F n
1 ;

where F n
1 HF1 GF t

1 lF n
1 is the complex Hilbert subspace in (3.21). The bundle ~Nt�X; s� is

complex, with trivial circle action on ~Ms and action by complex multiplication on F n
1 .
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The S1-equivariant map i: Ns�X; s� ! Ct, �B;C; h� 7! �i�B;C� � h�, is covered by

i: ~Nt�X; s� ! ~Ct; �B;C; h� 7! i�B;C� � h:�3:50�
This map is equivariant with respect to the embedding %: Gs ,! Gt in de®nition (3.10), for
the following domain and range Gs actions:

. The action of s A Gs on ~Nt�X; s� given by the usual gauge group action on
�B;C� A ~Ms and the action of Gs on h � �b;c 0� A F n

1 induced by the isomorphism
F1 GF t

1 lF n
1 and the embedding %: Gs ,! Gt, as described in O3.4.2, soÿ

s; �B;C; b;c 0�� 7! ÿ
s�B;C�; sÿ2b; sÿ1c 0

�
:

. The action of %�s� A Gt on ~Ct and F1 in de®nition (3.10), soÿ
s; i�B;C� � h

� 7! %�s�ÿi�B;C� � h
�
:

The fact that %�s�i�B;C� � i
ÿ
s�B;C�� was noted in Lemma 3.11, while we see that

i�sÿ2b; sÿ1c 0� � %�s�i�b;c 0� by the remarks following equation (3.23) in O3.4.2.

The map (3.50) is also S1 equivariant for the following domain and range circle
actions:

. The trivial S1 action on ~Ms and action by complex multiplication on F n
1 ,ÿ

eiy; �B;C; h�� 7! �B;C; eiyh�:
. The S1 action (3.2) on ~Ct, induced by the trivial action on the factor W of

V �W lW nL and complex multiplication on W nL, so on the image of the map
(3.50) one has ÿ

eiy; i�B;C� � h
� 7! i�B;C� � eiyh;

recalling that the points i�B;C� are ®xed by the action (3.2).

We now turn to the construction of the map (3.49), which we shall require to have the
same Gs and S1-equivariance properties as the map (3.50). If �B;C� A Ms, then Proposition
2.8 in [24] yields an open neighborhood ~Ui�B;C� of i�B;C� in the slice i�B;C� �Ker d 0;�

i�B;C�,
such that projection onto p� ~Ui�B;C�� � Ui�B;C� gives a local parameterization for an open
neighborhood of �i�B;C�� in Mt�X; s�; the pair i�B;C� has trivial stabilizer in Gt since
C1j 0. Because Ms is compact we can assume (by shrinking O if necessary) that

g�B;C; h� A U�i�B;C��;

for all �B;C; h� A OHNt�X; s�. Hence,

g�B;C; h� � �i�B;C� � g0�B;C; h��

for a slice element g0�B;C; h� A Ker d 0;�
i�B;C� uniquely determined by i�B;C; h�, and we can

therefore set

~g�B;C; h� � i�B;C� � g0�B;C; h�; �B;C; h� A ~OH ~Nt�X; s�;�3:51�
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where ~O is the preimage of O � ~O=Gs. Note that g0�B;C; h�Ah. If s A Gs, then the preced-
ing equation yields

%�s�~g�B;C; h� � i
ÿ
s�B;C��� %�s�g0�B;C; h�;�3:52�

and we again have %�s�g0�B;C; h� A Ker d 0;�
i�s�B;C��, by the Gt-equivariance of the slice con-

dition and the fact that %�s�i�B;C� � i
ÿ
s�B;C��. On the other hand,

~g
ÿ
s�B;C; h�� � i

ÿ
s�B;C��� g0

ÿ
s�B;C; h��;�3:53�

while g�s�B;C; h�� � g�B;C; h� A O � ~O=Gs. Hence, comparing equations (3.52) and (3.53),
we see that we must have

~g
ÿ
s�B;C; h�� � %�s�~g�B;C; h�:

Therefore, the map ~g has the same Gs-equivariance properties as the map i: ~Nt�X; s� ! ~Ct

in (3.50); a very similar argument shows that it has the same S1-equivariance properties.

3.6. The link of a stratum of reducible monopoles: Chern character of the normal

bundle. To compute intersection pairings on the space PNt�X; s�, we need to know the
Chern classes of Nt�X; s�. The Chern character of the vector bundle Nt�X; s� !Ms is
computed by observing that, as elements of K�Ms�, we have �Nt�X; s�� � Index Dn � �X�,
where Dn is the normal component (3.37) of the family of deformation operators D para-
meterized by Ms. For convenience in this section, we shall often omit explicit mention of
the embedding map i: Ms ,!Mt�X; s� and write the bundles i�Nt�X; s� and i��Index Dn�
over Ms simply as Nt�X; s� and Index Dn, respectively. We then use the Atiyah-Singer
index theorem for families to express ch

ÿ
Nt�X; s�

�
in terms of the cohomology classes on

H��C0
s ; R� described in O2.4.2.

From (3.37) we obtain a family of elliptic di¨erential operators

Cy�E� ���!Dn

Cy�F�???y ???y
Ms � X ���!id Ms � X

where Cy��� denotes the space of smooth sections of the families of ®nite-rank vector
bundles E, F over Ms � X de®ned by

E � ~Ms �Gs F n
1�3:54�

� ~Ms �Gs

ÿ�L1 nL�lW�nL
�
;

F � ~Ms �Gs �F n
0 lF n

2 �
� ~Ms �Gs

ÿ�L0 lL��nLlWÿnL
�
:

Recall from the paragraph following (3.23) that an element s A Gs acts on the bundles listed
in (3.54) as multiplication by sÿ2 on the factors L j nL and as multiplication by sÿ1 on the
factors WGnL.

Feehan and Leness, PU(2) monopoles and links 115



Recall that Nt�X; s� � Ker PX?D
n by de®nition (3.42). On the other hand, by equa-

tion (3.37), we see that

Coker PX?D
n
i�B;C� � Coker d 0;n;�

i�B;C�lCoker PX?d 1;n
i�B;C�:

For any �B;C�, we have Coker d 0;�
i�B;C� � 0, as the stabilizer of i�B;C� is trivial in Gt, so

Coker d 0;n;�
i�B;C� � 0, while Lemma 3.15 and Proposition 2.16 imply that Coker d 1; t

i�B;C� � 0.
Hence,

Coker PX?d 1; t
i�B;C� � 0

and

Coker PX?D
n
i�B;C� � Coker PX?d 1;n

i�B;C�lCoker PX?d 1; t
i�B;C�

� Coker PX?d 1
i�B;C� � Coker PX?�DS�i�B;C�:

Because L2-orthogonal projection from Ran�DS�i�B;C� surjects onto X?i�B;C� for all points
�B;C� A Ms, we obtain the identity

Coker PX?D
n � Coker PX? GX:

The subbundle X of V!Ms is trivial by the construction of Theorem 3.19. From the sta-
bilization construction of [9], OI.7.B and the preceding remarks we see that, as elements of
the K-theory group K�Ms�,

Index Dn � �Ker PX?D
n� ÿ �Coker PX?D

n��3:55�
� �Nt�X; s�� ÿ �X�
� �Nt�X; s�� ÿ �Ms � CrX �;

where rX � rankC X. To compute ch�Index Dn� we shall apply the Atiyah-Singer index
theorem for families of Dirac operators.

Proposition 3.24 ([6], [14], Theorem 5.1.16). Let X be a closed, oriented, smooth four-

manifold with spinc structure �r;W�. Suppose E! T � X is a locally trivial family of com-
plex vector bundles over X, parameterized by a compact space T, with a connection At on the

bundle Et � Ejftg�X for all t A T . Then the Chern character of the index bundle of the family

of Dirac operators parameterized by T,

Cy�EnW�� ���!D Cy�EnWÿ�???y ???y
T � X ���!id T � X
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given by DAt
: Cy�Et nW�� ! Cy�Et nWÿ�, t A T , is

ch
ÿ
Index�D;E;W�� � ch�E� ch

ÿ
Index�D;W��

� ch�E�e1
2c1�W��Â�X�=�X �;

where D: Cy�W�� ! Cy�Wÿ� is the Dirac operator de®ned by the given spinc structure.

The index of the family of operators in Proposition 3.24 de®nes a group homo-
morphism [14], p. 184,

Index�D; ��: K�T � X� ! K�T�;

by taking the element �E� of K�T � X� to Index�D;E;W� � �Ker D� ÿ �Coker D� in K�T�,
a virtual vector bundle over the parameter space T. We now compute ch

ÿ
Nt�X; s�

�
in the

following steps:

. Identify Dn with the sum of a pair of families of Dirac operators, D 0 and D 00.

. Compute ch
ÿ
Nt�X; s�

�
, using Proposition 3.24 to compute the Chern characters of

the index bundles of these families of Dirac operators.

The ®rst step is accomplished in part by introducing the following families of oper-
ators:

Cy�E 0� ���!d Cy�F 0�???y ???y
Ms � X ���!id Ms � X

and

Cy�E 00� ���!D 00
Cy�F 00�???y ???y

Ms � X ���!id Ms � X

�3:56�

where E � E 0lE 00 and F � F 0lF 00, and we de®ne

E 0 � ~Ms �Gs �L1 nL� and E 00 � ~Ms �Gs �W�nL�;�3:57�
F 0 � ~Ms �Gs

ÿ�L0 lL��nL
�

and F 00 � ~Ms �Gs �WÿnL�:

Explicitly, if �B;C� is a pair representing a point �B;C� in Ms, so the spin connection in the
pair i�B;C� A ~Mt is given by BlBnAL and AL � AL n �Bdet�� is the induced unitary
connection on the subbundle L of gt G iRlL, the operators on the ®bers de®ned by these
families are then given by

dAL
1 d �AL

� d�AL
: Cy�L1 nL� ! Cy

ÿ�L0 lL��nL
�
;�3:58�

D 00BnAL
: Cy�W�nL� ! Cy�WÿnL�;

where D 00BnAL
is the Dirac operator. We use the preceding families to rewrite Index Dn in

terms of index bundles whose Chern characters are more readily computable:
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Lemma 3.25. Continue the above notation. Then, as elements of K�Ms�,

Index Dn � Index d� Index D 00:

Proof. As an element of K�Ms�, the index bundle Index Dn depends only on
the homotopy class of the leading symbol [49], Theorem III.8.6. Thus, the index bundle
of the family �B;C� 7! Dn

B;C is equivalent to that of the family �B;C� 7! Dn
B;0, where

Dn
B;0 � dAL

�D 00BnAL
. r

We now identify the family of operators d in (3.56) with a family of Dirac operators.
(Identi®cations of this type were used in [5] to compute the index of the elliptic deforma-
tion complex for the anti-self-dual equation.) The vector bundle End�W�GW nW � is a
Cli¨ord module, with Cli¨ord multiplication on the factor W in the tensor product, and so
we obtain a Dirac operator,

D: Cy�WG nW �� ! Cy�WHnW ��;�3:59�

on End�W� ([49], pp. 122±123). Under the identi®cation L�nR C with End�W� given by
Cli¨ord multiplication, the operator d � � d on L� is identi®ed with the Dirac operator
(3.59) (see [49], Theorem II.5.12). Restricting the domain of Cli¨ord multiplication and
tensoring with the line bundle L gives isomorphisms

L1 nR LGHom�W�;Wÿ�nC L;�3:60�
�L0 lL��nR LGEnd�W��nC L;

and therefore isomorphisms

E 0GE 0ÿ and F 0GE 0�;

where the bundles E 0G are de®ned by

E 0ÿ � ~Ms �Gs

ÿ
Hom�W�;Wÿ�nL

�
;�3:61�

E 0� � ~Ms �Gs

ÿ
End�W��nL

�
:

The operator d �AL
� d�AL

is the restriction of d �AL
� dAL

to L1 nR L composed with the pro-

jection from �L0 lL2�nR L to �L0 lL��nR L. Thus, the isomorphisms (3.60) identify
the family of operators d in (3.56) with the family of Dirac operators:

Cy�E 0ÿ� ���!D 0
Cy�E 0��???y ???y

Ms � X ���!id Ms � X :

�3:62�

Explicitly, if �B;C� is a pair representing a point �B;C� in Ms, the Dirac operator on the
®ber given by this family,

D 0BnAL
: Cy

ÿ
Hom�W�;Wÿ�nL

�! Cy
ÿ
End�W��nL

�
;�3:63�
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is de®ned by the spinc connection on End�W � induced by the spinc connection B on W and
the unitary connection AL � AL n �Bdet�� on L. The preceding identi®cation yields:

Lemma 3.26. Continue the above notation. Then, as elements of K�Ms�,

Index d � Index D 0:

We now begin the second step, which is to compute the Chern characters of the index
bundles of the families of Dirac operators in (3.56) and (3.62). The following technical
lemma helps to identify the universal bundles E 0G, E 00, and F 00.

Lemma 3.27. If Qi !M, i � 1; 2, are S1 bundles over a manifold M and
Li � Qi �S1 C, i � 1; 2 are the associated complex line bundles, and k A Z, then the fol-

lowing hold:

(1) If V !M is a complex vector bundle, and eiy A S1 acts on the ®ber product

Q1 �M V by eiy � �q1; v� � �eiyq1; e
ikyv�, then �Q1 �M V�=S1 GLÿk

1 nV .

(2) If eiy A S1 acts on the ®ber product Q1 �M Q2 by eiy � �q1; q2� � �eiyq1; e
ikyq2�,

then the ®rst Chern class of the S1-bundle �Q1 �M Q2�=S1 !M is c1�Q2� ÿ kc1�Q1�, where the

action of S1 on the quotient �Q1 �M Q2�=S1 is induced by the S1 action on Q2 of weight one.

Proof. The associated line bundles Li � Qi �S1 C are given by the quotients of
Qi � C by the relation �qi; z�@ �eÿiyqi; e

iyz�, for �qi; z� A Qi � C and eiy A S1; under the
same relation, Q1 �S1 S1 � Q1. A tensor product of a complex line bundle L with a com-
plex vector bundle V is given by the quotient of the ®ber product L�M V by the relation
�z; v�@ �wÿ1z;wv�, for z A L; v A V , and w A C�. Hence,

Lÿk
1 nV � f��q1; z�; v� A L1 �M V : ��q1; z�; v�@ ��q1;wz�;wkv�;w A C�g

� f��q1; e
im�; v� A Q1 �M V : ��q1; e

im�; v�@ ��q1; e
iyeim�; eikyv�; eiy A S1g

� f�p1; v� A Q1 �M V : �p1; v�@ �eiyp1; e
ikyv�; eiy A S1g �where p1 � �q1; e

im��
� �Q1 �M V�=S1;

where in the second line above we can assume without loss that z3 0. This proves assertion
(1) and assertion (2) follows trivially from this. r

Since it will not cause confusion, we will write Ls for the restriction of the universal
bundle of equation (2.69) to Ms � X ,

Ls � ~Ms �Gs C;

and de®ne Ls;x !Ms by

Ls;x � LsjMs�fxg:�3:64�

By construction, c1�Ls;x� � c1�Ls�=x � ms�x� where x A H0�X ; Z� is a generator. Let
pM : Ms � X !Ms and pX : Ms � X ! X be the projections.
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Lemma 3.28. Assume Ms contains no zero-section pairs. If �rJ � idX ��D!Ms � X

is the line bundle de®ned by the map rJ of Lemma 2.24 and the line bundle D in (2.76)
then, using Hom�W�;Wÿ�GWÿnW�;� and End�W��GW�nW�;�, there are iso-

morphisms,

E 0ÿGE 0n p�X Wÿ; E 0�GE 0n p�X W�;

E 00GE 00n p�X W�; F 00GE 00n p�X Wÿ;

where we de®ne

E 0 � ÿp�MLs;x n �rJ � idX ��D
�n2

n p�X �W�;�nL�;�3:65�
E 00 � p�MLs;x n �rJ � idX ��Dn p�X L:

Proof. There are isomorphisms,

E 0GG � ~Ms �Gs L�nHom�W�;WG�;�3:66�

where, from equation (3.23), the action of s A Gs on ~Ms � L is given by

�B;C; z� 7! ÿ
s�B;C�; sÿ2z

�
:

Let ~Ms �Gs �X � S1� be the unit sphere bundle of Ls. If eim A S1 acts onÿ
~Ms �Gs �X � S1���Ms�X p�X L

by ��B;C�; x; eiy; z� 7! ��B;C�; x; eimeiy; eÿi2mz�Ðwhere �B;C� A ~Ms, x A X , eiy A S1 and
z A p�X LÐthen we obtain an isomorphism of complex line bundlesÿÿ

~Ms �Gs �X � S1���Ms�X p�X L
�
=S1 ! ~Ms �Gs L;�3:67�

��B;C�; x; eiy; z� 7! ��B;C�; e2iyz�:
Lemma 3.27 then implies that

~Ms �Gs LG Ln2
s n p�X L�3:68�

and equation (3.68) gives

E 0GG Ln2
s n p�X �LnW�;�nWG�:�3:69�

The desired expression for E 0G then follows from the isomorphism

Ls G p�MLs;x n �rJ � idX ��D
given by Lemma 2.24.

In the bundles

E 00G ~Ms �Gs �W�nL� and F 00G ~Ms �Gs �WÿnL�;
an element s A Gs acts on ~Ms �WGnL by

ÿ�B;C�;C 0� 7! ÿ
s�B;C�; sÿ1C 0

�
, where

C 0 A Cy�WG nL�, as noted in the remark following equation (3.23). Lemma 3.27 and
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the argument yielding equation (3.68) then imply that there are isomorphisms of complex
vector bundles

E 00G Ls n p�X �W�nL� and F 00G Ls n p�X �WÿnL�:�3:70�

The isomorphisms in the conclusion of the lemma now follow from equation (3.70) and the
isomorphism Ls G p�MLs;x n �rJ � idX ��D implied by equation (2.77). r

Given Lemma 3.28, the index bundles of the families of Dirac operators in (3.56) and
(3.62) now take the shape:

Cy�E 0nWÿ� ���!D 0
Cy�E 0nW��???y ???y

Ms � X ���!id Ms � X

and

Cy�E 00nW�� ���!D 00
Cy�E 00nWÿ�???y ???y

Ms � X ���!id Ms � X :

We abuse notation slightly by continuing to denote the families of Dirac operators on these
isomorphic bundles by D 0 and D 00.

The ®nal step in the computation of the Chern character of Nt�X; s� is to compute the
Chern characters of these families.

Given the decomposition (3.37) of Dn
i�B;C�, it will be convenient to de®ne

IndexC Dn
i�B;C� � ns � n 0s � n 00s ; where

n 0s � IndexC�d �AL
� d�AL

�;
n 00s � IndexC D 00BnAL

:
�3:71�

Viewing E � ClL and su�E� � iRlL, we can compute the complex index of d �AL
� d�AL

from the real index of d �
Â
� d�

Â
on Cy

ÿ
L1 n su�E�� (for example, see [14], Equation

(4.2.22)) and the fact (Lemma 2.9) that d �
Â
� d�

Â
decomposes as the direct sum of d � � d�

on Cy�iL1� and d �AL
� d�AL

on Cy�L1 nL�; the complex index of the spinc Dirac operator
is given in [56], p. 47. Thus,

n 0s�t; s� � ÿ
ÿ
c1�s� ÿ c1�t�

�2 ÿ 1

2
�w� s�;�3:72�

n 00s �t; s� �
1

8

ÿÿ
2c1�t� ÿ c1�s�

�2 ÿ s
�
:

We can now state and prove one of the main results of our article:

Theorem 3.29. Let t be a spinu structure over a closed, oriented, Riemannian,
smooth four-manifold X. Assume t admits a splitting t � sl snL, where L is a complex

line bundle. Suppose that there are no zero-section pairs in Ms. Let ms be the Seiberg-
Witten m-map, as in de®nition (2.71). Let x A H0�X ; Z� be the positive generator and for

fgig a basis for H1�X ; Z�=Tor, let fg�i g be the dual basis for H 1�X ; Z� introduced in
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De®nition 2.21. Let rX � rankC X denote the rank of the stabilizing bundle. Then the

Chern character of the normal bundle Nt�X; s� of the stratum Ms ,!Mt�X; s� is

ch
ÿ
Nt�X; s�

� � rX � n 00s ems�x� � n 0se
2ms�x��3:73�

ÿ 8
P
i<j

hg�i g�j
ÿ
c1�t� ÿ c1�s�

�
; �X �ie2ms�x�ms�gigj�

� 1

2

P
i<j

hg�i g�j
ÿ
2c1�t� ÿ c1�s�

�
; �X �iems�x�ms�gigj�

� �ems�x� ÿ 32e2ms�x�� P
i<j<k<l

hg�i g�j g�kg�l ; �X �ims�gigjgkgl�:

where ms�gigj� � ms�gi�ms�gj� and similarly for ms�gigjgkgl�.

Proof. For convenience in the proof, we write m � ms�x� and gJ;�
i � ms�gi�, as in

Lemma 2.24. The K-theory identi®cation (3.55) of Nt�X; s�, Lemmas 3.25 and 3.26, and the
homomorphism property of the Chern character (see, for example, [49], Proposition
III.11.16) imply that

ch
ÿ
Nt�X; s�

� � ch�Index Dn� � ch�X��3:74�
� ch�Index D 0� � ch�Index D 00� � rX:

Recall that Index�D�;E;W� denotes the index bundle of the family of operators obtained,
as in Proposition 3.24, by twisting the Dirac operator D�: Cy�Wÿ� ! Cy�W�� by a
family of connections on the bundle E. Note that ch

ÿ
Index�D�;W�� � ÿch

ÿ
Index�D;W ��,

where D�: Cy�Wÿ� ! Cy�W��. We now use Lemma 3.28 and Proposition 3.24 to partly
compute the Chern characters of the index bundle Index D 0. Bundles over X will be con-
sidered to be bundles over Ms � X ; the pullback p�X will be omitted.

(3.75)

ch�Index D 0� � ch
ÿ
Index�D�;E 0;W �� � ch�E 0� ch

ÿ
Index�D�;W��

� ÿch
ÿÿ

p�MLs;x n �rJ � idX ��D
�n2

nW�;�nL
�

ch
ÿ
Index�D;W��

� ÿp�M ch�Ls;x�2�rJ � idX �� ch�D�2 ch�W�;��ec1�L�e
1
2c1�W��Â�X�=�X �:

Similarly, we use Lemma 3.28 and Proposition 3.24 to partly compute the Chern character
of the index bundle Index D 00:

ch�Index D 00� � ch
ÿ
Index�D;E 00;W �� � ch�E 00� ch

ÿ
Index�D;W���3:76�

� ch
ÿ
p�MLs;x n �rJ � idX ��DnL

�
e

1
2c1�W��Â�X�=�X �

� p�M ch�Ls;x��rJ � idX �� ch�D�ec1�L�e
1
2c1�W��Â�X�=�X �:

In the ®rst lines of (3.75) and (3.76) we simply rewrite the index bundles using the notation
of Proposition 3.24.
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For the calculation of ch�Index D 00� in (3.76), we compute ch�D� using the expression
for �rJ � idX ��c1�D� in Lemmas 2.23 and 2.24:

r� ch�D� � Qb1�X �

i�1

egJ; �
i
�g�i � Qb1�X �

i�1

�1� gJ;�
i � g�i �:

Because c1�Ls;x� � m as noted before Lemma 3.28, we see p�M ch�Ls;x� � p�Mem. We shall

write m for p�Mm. Applying this to (3.76) and noting that c1�L� � 1

2
c1�W�� � c1�t� ÿ 1

2
c1�s�,

we obtain

ch�Index D 00�

� em Qb1�X �

i�1

egJ; �
i
�g�i

 !
ec1�t�ÿ1

2c1�s� 1ÿ 1

24
p1�X�

� �
=�X �

� em 1�P
i<j

�gJ;�
i gJ;�

j � � �g�i g�j � �
P

i<j<k<l

�gJ;�
i gJ;�

j gJ;�
k gJ;�

l � � �g�i g�j g�kg�l�
 !

� 1� 1

2

ÿ
2c1�t� ÿ c1�s�

�� 1

8

ÿ
2c1�t� ÿ c1�s�

�2
� �

1ÿ 1

24
p1�X�

� �
=�X �;

and therefore, using s � 1

3
hp1�X�; �X �i (see [7], Theorem I.3.1)

ch�Index D 00� � em

�
1

8

ÿ
2c1�t� ÿ c1�s�

�2 ÿ 1

8
s�3:77�

� 1

2

P
i<j

�gJ;�
i gJ;�

j �hg�i g�j
ÿ
2c1�t� ÿ c1�s�

�
; �X �i

� P
i<j<k<l

�gJ;�
i gJ;�

j gJ;�
k gJ;�

l �h�g�i g�j g�kg�l�; �X �i
�
;

completing the calculation of ch�Index D 00�.

We now complete the calculation of ch�Index d� in (3.75). To compute ch�W�;�� we
observe that c1�W�;�� � ÿc1�W�� while c2�W�;�� � c2�W�� and so, using this and the
isomorphism su�W��GL�, we have

ch�W�;�� � 2� c1�W�;�� � 1

2

ÿ
c1�W�;��2 ÿ 2c2�W�;���

� 2ÿ c1�W�� � 1

2
c1�W��2 � 1

4

ÿ
p1

ÿ
su�W���ÿ c1�W��2�

� 2ÿ c1�W�� � 1

4

ÿ
p1�L�� � c1�W��2�:

Applying this to the terms involving W� in (3.75) and writing c1�W�� � c1�s� yields
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ÿch�W�;��e1
2c1�W��Â�X�=�X �

� ÿ 2ÿ c1�s� � 1

4

ÿ
c1�L�2 � p1�L��

�� �
1� 1

2
c1�s� � 1

8
c1�L�2

� �
1ÿ 1

24
p1�X�

� �
=�X �

� ÿ 2� 1

4
p1�L��

� �
1ÿ 1

24
p1�X �

� �
=�X �:

Hence, using the preceding expression in (3.75) and c1�L� � c1�t� ÿ c1�s�, we see that

ch�Index d�

� ÿp�M ch�Ls;x�2�rJ � idX �� ch�D�2 ch�L� 2� 1

4
p1�L��

� �
1ÿ 1

24
p1�X �

� �
=�X �

� ÿe2m Qb1�X�

i�1

�1� 2gJ;�
i � g�i �

 !
1� ÿc1�t� ÿ c1�s�

�� 1

2

ÿ
c1�t� ÿ c1�s�

�2
� �

� 2� 1

4
p1�L��

� �
1ÿ 1

24
p1�X �

� �
=�X �:

Simplifying the preceding expression for ch�Index d� and recalling that p1�L�� � 2w� 3s
(from [38], Satz 1.5), yields

ch�Index d�

� ÿe2m 1� 4
P
i<j

�gJ;�
i gJ;�

j � � �g�i g�j � � 16
P

i<j<k<l

�gJ;�
i gJ;�

j gJ;�
k gJ;�

l � � �g�i g�j g�kg�l�
 !

� 1� ÿc1�t� ÿ c1�s�
�� 1

2

ÿ
c1�t� ÿ c1�s�

�2
� �

2� 1

4
p1�L��

� �
1ÿ 1

24
p1�X�

� �
=�X �;

and thus,

ch�Index d� � e2m

�
ÿÿc1�t� ÿ c1�s�

�2 ÿ 1

2
sÿ 1

2
w�3:78�

ÿ 8
P
i<j

�gJ;�
i gJ;�

j �h�g�i g�j �
ÿ
c1�t� ÿ c1�s�

�
; �X �i

ÿ 32
P

i<j<k<l

�gJ;�
i gJ;�

j gJ;�
k gJ;�

l �hg�i g�j g�kg�l ; �X �i
�
:

The desired expression for ch
ÿ
Nt�X; s�

�
follows from (3.72), (3.74), (3.77), and (3.78). r

Finally, we calculate the total Chern class c
ÿ
Nt�X; s�

�
, as an element of rational

cohomology, under a simplifying assumption.

Corollary 3.30. Continue the hypotheses of Theorem 3.29 and assume that a ^ a 0 � 0,
for every a; a 0 A H 1�X ; Z�. Then, as elements of H��Ms; R�,

c
ÿ
Nt�X; s�

� � ÿ1� 2ms�x�
�n 0sÿ1� ms�x�

�n 00s :
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Proof. For convenience, we write m � ms�x�. The Chern character determines the
Chern polynomial as an element of rational cohomology (see the formula in [53], Problem
16-A or [3], pp. 156±157), so ch

ÿ
Nt�X; s�

�
determines

ct

ÿ
Nt�X; s�

� �PrX

i�0

ci

ÿ
Nt�X; s�

�
ti � QrX

j�1

�1� ait�;

where the ai are the Chern roots of Nt�X; s�. Theorem 3.29 implies that, with the constraint
on H 1�X ; Z�,

ch
ÿ
Nt�X; s�

� �PrX

j�1

exp�aj� � rX � n 0se
2m � n 00s em:

Suppose n 0s f 0 and n 00s f 0. If
QrX

j�1

�1� ait� � �1� 2mt�n 0s�1� mt�n 00s , then aj � �2m for

1e j e n 0s and aj � m for n 0s < j e n 0s � n 00s , while aj � 0 for n 0s � n 00s < j e rX. Then one can
easily see that ch

ÿ
Nt�X; s�

�
is equal to the Chern character associated to the Chern poly-

nomial �1� 2mt�n 0s �1� mt�n 00s . The case where either n 0s or n 00s is negative follows from the
observation that if G A K�Ms�, then ch�ÿG� � ch�G� while c�ÿG� � c�G�ÿ1. r

Appendix A. Abundant four-manifolds

Our goal in this section is to prove the

Theorem A.1. Every compact, complex algebraic, simply connected surface with
b�2 f 3 is abundant.

In [16], p. 175 we asserted without further explanation that simply connected, mini-
mal, complex algebraic surfaces of general type were abundant. On the other hand, some of
the fake K3-surfaces of [33] fail to be abundant. If log transforms are performed on tori
in three distinct nuclei then the intersection form on B? is a degenerate form with three-
dimensional radical and having an ÿE8 lÿE8 summand ([16], p. 175). We apply Theorem
A.1 to produce classes L A H 2�X ; Z� which are orthogonal to the SW-basic classes, with
square equal to prescribed even integers. As far as we can tell, one can always ®nd such
classes L for compact four-manifolds with b�2 f 3, even if non-abundant: it is an interesting
problem to determine if indeed this is true.

We are extremely grateful to AndraÂs Stipsicz for describing a proof of Theorem A.1
in the case where X is a minimal surface of general type with odd intersection form: see
Lemmas A.4 and A.6, as well as the ideas for the case of odd minimal surfaces of general
type in OA.2Ðthese are all due to him. The argument for Lemma A.4 relies on the ``odd
four-square theorem'' (Lemma A.5), for whose proof we are indebted to A. Agboola [1].

For the remainder of this section, unless further restrictions are mentioned, we sup-
pose X is a compact, connected, smooth four-manifold with an orientation for which
b�2 �X� > 0.
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A.1. Four-manifolds whose basic classes are multiples of a ®xed class. We consider
the cases of even and odd intersection forms separately, beginning with the even case:

Lemma A.2. Suppose �L;Q� is an inde®nite, integral, unimodular lattice and that

k A L. If Q is even and js�Q�je rank�Q� ÿ 4 then k?, the Q-orthogonal complement of k in
L, contains a hyperbolic sublattice.

Proof. We may assume without loss that k is primitive because a sublattice H is
orthogonal to k � dk 0 if and only if it is orthogonal to k 0, where d A Z and k 0 is primitive.

From the classi®cation of inde®nite, integral, unimodular forms (for example, see
Theorem 1.2.21 in [34]) we have

�L;Q�G 1

8
s�Q�E8 l

1

2

ÿ
rank�Q� ÿ js�Q�j�H:�A:1�

By hypothesis, rank�Q� ÿ js�Q�jf 4, so if R � H lH then �R;QjR� is a sublattice of
�L;Q�. Let kR denote the component of k in R. Because R is even, we have Q�kR; kR� � 2h
for some h A Z. Let e1; e2 and f1; f2 be bases for the two hyperbolic sublattices of R, so
Q�e1; e2� � Q� f1; f2� � 1 and all other pairings of these four vectors vanish. De®ne
v � e1 � he2, so v2 � 2h and v is primitive. The hyperbolic sublattice F � Z f1 � Z f2 HR is
orthogonal to v. According to Theorem 1 in [75], the orthogonal group of �R;QjR� acts
transitively on primitive vectors of a given square. Hence, there is an automorphism A of R

such that Q�Ax;Ay� � Q�x; y� for all x; y A R and Av � kR. Because F is contained in v?,
then A�F�H k?R . Hence, the hyperbolic sublattice A�F� is contained in k?. r

Corollary A.3. Let X be a simply-connected spin four-manifold with b�2 �X�f 3. If the
SW-basic classes of X are multiples of a class K A H 2�X ; Z�, then X is abundant.

Proof. We consider the intersection form Q to be a form on H 2�X ; Z�. By Rochlin's
theorem (see Theorem 1.2.29 in [34]), we know that s�X�1 0 �mod 16� and so the classi®-
cation (A.1) of forms yields

ÿ
H 2�X ; Z�;Q�G 2kE8 l lH with k; l A Z. A result of Furuta

[34], Theorem 1.2.31 then implies that l f 2jkj � 1, where k � 1

16
s�X� and

l � 1

2

ÿ
b2�X� ÿ s�X��:

If s�X � � 0 and b�2 �X�f 3, then b2�X �f 4 and so 0e rank�Q� ÿ 4; if s�X �3 0, then
k 3 0 and Furuta's theorem implies l f 2 and so again js�Q�je rank�Q� ÿ 4. Therefore,
K? contains a hyperbolic sublattice by Lemma A.2. r

We turn to the more complicated case, where the intersection form is odd.

Lemma A.4. Suppose �L;Q� is an inde®nite, integral, unimodular lattice. If Q is odd

with b�2 f 5 and bÿ2 f 3, and k A L is characteristic, then k? contains a hyperbolic sublattice.

Proof. We may assume without loss that k is primitive for, if not, write k � dk 0

where d A Z and k 0 A L is primitive. Then Q�k; x� � dQ�k 0; x�1Q�x; x� �mod 2� for
all x A L since k is characteristic. If d were even we would have Q�x; x�1 0 �mod 2�
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for all x, contradicting our hypothesis that Q is an odd form. Hence, d is odd and
dQ�k 0; x�1Q�k 0; x�1Q�x; x� �mod 2� for all x and thus k 0 is also characteristic. Then a
sublattice H is orthogonal to k if and only if it is orthogonal to k 0.

The classi®cation of inde®nite, integral, unimodular forms shows that, because Q is
odd, we can ®nd a basis fei; fjg for L for which e2

i � 1, f 2
i � ÿ1, and

�L;Q�G Lb�2
i�1

Zei

 !
l

Lbÿ2
j�1

Z fj

 !
:

For odd integers a1; a2; a3; a4; c1 yet to be determined, choose

l � a1e1 � a2e2 � a3e3 � a4e4 �
Pb�2
i�5

ei � c1 f1 �
Pbÿ2
j�2

fj A L:

The element l is primitive since at least one basis coe½cient is equal to one. By hypothesis,
b�2 f 5 and bÿ2 f 3, so we can de®ne

H � Z�e5 � f2� � Z�e5 � f3�

and observe that �H;QjH� is hyperbolic and orthogonal to l. Then

Q�l; l� � a2
1 � a2

2 � a2
3 � a2

4 � �b�2 ÿ 4� ÿ c2
1 ÿ �bÿ2 ÿ 1�

� a2
1 � a2

2 � a2
3 � a2

4 � s�Q� ÿ c2
1 ÿ 3;

and so

Q�l; l� ÿ s�Q� � c2
1 � 3 � a2

1 � a2
2 � a2

3 � a2
4 :�A:2�

Since the coe½cients of l are odd, we have Q�l; ei�1Q�l; fj�1 1 �mod 2� for all i; j; thus l
is characteristic and we have l2 1 s�Q� �mod 8�. As c1 is odd, so we can write c1 � 2u� 1
for some u A Z. The left-hand side of the preceding equation therefore yields

Q�l; l� ÿ s�Q� � c2
1 � 31 �2u� 1�2 � 31 4� 4u�u� 1�1 4 �mod 8�:

Now any positive integer which is congruent to 4 �mod 8� can be written as the sum
of four odd squares (see Lemma A.5). So we select any odd integer c1 for which
Q�k; k� ÿ s�Q� � c2

1 � 3 > 0 and then choose odd integers a1; a2; a3; a4 so that

a2
1 � a2

2 � a2
3 � a2

4 � Q�k; k� ÿ s�Q� � c2
1 � 3:�A:3�

Therefore equations (A.2) and (A.3) give

Q�l; l� � Q�k; k�:

A result of Wall (see [34], Proposition 1.2.18) implies that the orthogonal group of �L;Q�
acts transitively on the primitive, characteristic elements with a given square. Hence, we
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can ®nd an orthogonal automorphism A of �L;Q� with Al � k. Then A�H� is a hyperbolic
sublattice of L which is orthogonal to k. r

Lagrange's theorem tells us that every positive integer k is the sum of four integral
squares [36], Theorem 20.5. While the following re®nement of this result must surely be
well known, we cannot ®nd references to it in standard texts on elementary number theory,
so we include a proof here which was generously supplied to us by Adebisi Agboola [1].
AndraÂs Stipsicz has pointed out to us that Lemma A.5 was used by Dieter Kotschick in [42]
to show that every ®nitely presentable group is the fundamental group of a closed, almost
complex four-manifold.

Lemma A.5. A positive integer is the sum of four odd squares if and only if it is con-

gruent to 4 modulo 8.

Proof. Let k be a positive integer. The set of squares modulo 8 is 0; 1; 4. Hence, if k

is the sum of four odd squares, then we must have k 1 4 �mod 8�.

Conversely, suppose that k 1 4 �mod 8�. By Lagrange's theorem we can write

k � w2 � x2 � y2 � z2:

Since k is even, we must have one of the following possibilities (up to rearranging the terms
on the right-hand side):

(a) w; x are even, and y; z are odd.

(b) w; x; y; z are all even.

(c) w; x; y; z are all odd (as desired).

Now since k 1 4 �mod 8�, it is not hard to check that case (a) cannot happen. In fact,
it is easy to see that if case (a) is true, then k 1 2 or 6 �mod 8�.

To see that case (c) can occur, write k � 8m� 4, where m is a non-negative integer, so

k � 12 � �8m� 3�:

Legendre's theorem tells us that a positive integer is the sum of three integral squares if and
only if it cannot be written in the form 4a�8b� 7�, for some a; b (see [36], O20.10 for the
statement and [2] for a proof ). Now 1 is odd, and since 8m� 3 cannot be of the form
4a�8b� 7�, we can express 8m� 3 as a sum of three squares. So we can write

k � 12 � x2 � y2 � z2:

Since 1 is odd, and we have ruled out case (a) above, it follows that x; y; z are all odd. r

It remains to consider an ``unstable range'', where b�2 �Q� and bÿ2 �Q� are small. De®ne
w�Q� � 2� b2�Q� and note that 2w�Q� � 3s�Q� � 4� 5b�2 �Q� ÿ bÿ2 �Q�.
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Lemma A.6. Suppose �L;Q� is an integral, inde®nite, unimodular lattice and that

k A L. Assume Q is odd and k is characteristic. If one of the following hold, then k? contains
a hyperbolic sublattice:

(a) b�2 � 3 and bÿ2 f 5,

(b) b�2 � 3 and 2e bÿ2 e 4, and k has square 2w�Q� � 3s�Q�.

Proof. Interchanging the role of b�2 and bÿ2 in the proof of Lemma A.4 takes care of
case (a). Thus we need only consider case (b).

Continuing the notation of the proof of Lemma A.4, we choose

l � 3e1 � 3e2 � e3 �
Pbÿ2
j�1

fj A L:

Plainly, l is characteristic, primitive, and is orthogonal to the hyperbolic sublattice
H � Z�e3 � f1� � Z�e3 � f2� of �L;Q�, while (as 2w�Q� � 3s�Q� � 19ÿ bÿ2 )

Q�l; l� � 19ÿ bÿ2 � Q�k; k�:
Since Q is odd, we cannot have bÿ2 � 3 (which would give Q�k; k� � 16) so bÿ2 � 2 or
bÿ2 � 4, which gives Q�k; k� � 17 or 15, respectively, neither of which is divisible by d 2,
d A Z, unless d �G1. Thus k is primitive.

Just as in the proof of Lemma A.4, Wall's theorem implies that we can ®nd an
orthogonal automorphism A of �L;Q� with Al � k, since k; l are both primitive, charac-
teristic, and have equal square. Then A�H� is a hyperbolic sublattice of k?. This takes
care of case (b) and completes the proof of the lemma. r

Lemmas A.4 and A.6 thus yield:

Corollary A.7. Let X be a simply-connected four-manifold having odd intersection

form QX , with b�2 �X�f 5 and bÿ2 �X�f 3 or b�2 �X� � 3 and bÿ2 �X�f 2. Suppose that the
SW-basic classes of X are integer multiples of a class K A H 2�X ; Z�, where K is character-

istic. Then X is abundant.

Combining Corollaries A.3 and A.7 yields:

Proposition A.8. Let X be a simply-connected four-manifold. Suppose the SW-basic
classes of X are multiples of a class K A H 2�X ; Z�, where K is characteristic. If any one of the

following hold, then X is abundant:

(a) QX is even with b�2 �X �f 3,

(b) QX is odd with b�2 �X�f 5 and bÿ2 �X �f 3,

(c) QX is odd with b�2 �X � � 3 and bÿ2 �X�f 5,

(d) QX is odd with b�2 �X� � 3 and 2e bÿ2 �X �e 4, and K 2 � 2w�X� � 3s�X�.
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A.2. Compact, complex algebraic, simply connected surfaces. We now combine the
results of the preceding subsection to prove the principal result of this appendix:

Proof of Theorem A.1. Let X be a compact, complex algebraic, simply connected
surface with b�2 �X�f 3. Suppose X is minimal. The Enriques-Kodaira classi®cation then
implies that X is one of the following (see [34], O3.4):

(a) a K3 surface,

(b) an elliptic surface,

(c) a surface of general type.

The cases where X is di¨eomorphic to CP2, CP2KCP2, or CP1 � CP1 (when X has
Kodaira dimension ÿy, see [34], p. 88 and Theorem 3.4.13) are eliminated by our require-
ment that b�2 �X �f 3.

If X is elliptic, then it is di¨eomorphic to E�n�p;q, for some n; p; q A N, pe q,

gcd�p; q� � 1 (see Theorems 3.4.12 and 3.4.13 in [34]); if X is a K3 surface, then it is dif-
feomorphic to the surface E�2� (see Theorem 3.4.9 in [34]), which is included in this family
as E�n�1;1 � E�n� (see [34], p. 83 for the construction of this family).

Let f be the homology class of a regular ®ber of E�n�p;q and observe that fpq �
1

pq
f is

a primitive, integral homology class. According to [28] (see [34], Theorem 3.3.6), the SW-
basic classes of E�n�p;q are multiples of the PoincareÂ dual PD� fpq�. Thus, X is abundant by
Proposition A.8 (cases (a), (b), and (c)) and the observation that b�2

ÿ
E�n�p;q

� � 2nÿ 1 and
bÿ2
ÿ
E�n�p;q

� � 10nÿ 1 (see [34], Lemma 3.3.4), so b�2 �X �f 3 and bÿ2 �X�f 19 for nf 2.

If X is a minimal algebraic surface of general type, then its SW-basic classes are
GKX by [30], where KX is the canonical class. If QX is even, then X is abundant by Prop-
osition A.8. If QX is odd, the Bogomolov-Miyaoka-Yau inequality, c2

1�X �e 3c2�X � (see
[7], Theorem VII.1.1 (iii)), implies that

3se w;

since c2
1�X� � K 2

X � 2w� 3s and c2�X � � w. Thus

b�2 �X�e 2bÿ2 �X� � 1:�A:4�

Equality in (A.4), or c2
1�X� � 3c2�X�, holds only if the universal covering space of X is

the closed unit ball in C2 by [34], Theorem 7.2.24 (or see [7], Corollary I.15.5 and the
discussion in [7], p. 230 or [54], Theorem 4). Since X is simply-connected and closed by
hypothesis, we must have

b�2 �X � < 2bÿ2 �X � � 1:

If b�2 �X� � 3, then the preceding inequality yields bÿ2 �X �f 2 while if b�2 �X �f 5, it yields
bÿ2 �X�f 3. Hence, for QX odd, X is again abundant by Proposition A.8.
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This proves the theorem for minimal surfaces. If X is an abundant, smooth four-
manifold, there is a hyperbolic sublattice H HH 2�X ; Z� such that K is orthogonal to H if
K is an SW-basic class. The blow-up XKCP2 is also abundant, since we may view H as a
hyperbolic sublattice of H 2�XKCP2; Z�, all SW-basic classes of XKCP2 have the form
K GPD�e� (see [26]), and such classes are again orthogonal to H. Hence, if X is abundant,
all its blow-ups are abundant too. This completes the proof of the theorem. r
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